
1
This document is copyright (C) Stanford Computer Science, licensed under Creative Commons Attribution 2.5 License. All rights reserved.

Based on slides created by Cynthia Lee, Chris Gregg, Nick Troccoli, Lisa Yan, Jerry Cain and others.

CS107 Lecture 6
 C Strings

Reading: K&R (1.9, 5.5, Appendix B3) or Essential C section 3

2

C Strings

How can a computer represent more complex data items, like text?

Why answering this question is important:
• Illustrates how strings are represented in C and other languages (today)

• Hot take 1: C strings aren't a true data type so much as they are an agreement.
• Hot take 2: Every convenience you’re used to from other languages—length tracking,

bounds checks, immutability—is gone and your responsibility now.

• Helps us better understand buffer overflows (today and Wednesday)
• Hot take 3: A good number of infamous bugs and security exploits reduce to

"someone misunderstood C strings".

• Serves as a gentle reintroduction to pointers (Wednesday and Friday)

3

The char type

A char is a variable type that represents a single character (aka a "glyph").

 char letter = 'M';
 char plus = '+';
 char space = ' ';

 char newline = '\n';
 char tab = '\t';
 char quote = '\'';

 char backslash = '\\';

4

ASCII

Under the hood, C represents each char as a single-byte integer that serves as
its ASCII value.

• Uppercase letters are numbered sequentially.
• Lowercase letters are numbered sequentially.
• Digit characters are numbered sequentially.
• Lowercase letters are 32 more than their uppercase equivalents (via a bit flip!)

 char upper = 'A'; // really 65
 char lower = 'a'; // really 97 (i.e., 'A' + 32)
 char zero = '0'; // really 48

5

Common ctype.h Functions

Function Description

isalpha(ch) true if ch is 'a' through 'z' or 'A' through 'Z'

islower(ch) true if ch is 'a' through 'z'

isupper(ch) true if ch is 'A' through 'Z'

isspace(ch) true if ch is a space, tab, new line, etc.

isdigit(ch) true if ch is '0' through '9'

toupper(ch) returns uppercase version of a letter

tolower(ch) returns lowercase version of a letter

6

C Strings: The Agreement
C doesn't include a dedicated data type for strings. Instead, a string is

represented as an array of chars with a sentinel marking its end.

'\0' is the null character, and you always need one extra byte in the array
for it. You’ll also hear it called the null byte or the zero byte. I use all three

interchangeably.

"Hello"
index 0 1 2 3 4 5

char 'H' 'e' 'l' 'l' 'o' '\0'

7

String Length

C strings are not objects. (In fact, nothing in C is an object.) If we want to
compute the length of the string, we must compute it ourselves.

We typically call the built-in strlen function to compute string length. The
null byte doesn’t contribute to the computed length.

size_t len = strlen(str); // e.g., 13

index 0 1 2 3 4 5 6 7 8 9 10 11 12 13

value 'H' 'e' 'l' 'l' 'o' ',' ' ' 'w' 'o' 'r' 'l' 'd' '!' '\0'

Alert: strlen runs in linear time: It walks the entire string from
beginning to end and counts. Save the length if you need it later.

8

Common string.h Functions
Function Description

strlen(str) returns the number of chars in a C string (excluding the '\0').

strcmp(str1, str2),
strncmp(str1, str2, n)

compares two strings and returns 0 if identical, < 0 if str1 comes
before str2 in alphabet, > 0 if str1 comes after str2 in alphabet.

strncmp stops comparing after at most n characters.

strchr(str, ch)
strrchr(str, ch)

character search: returns a pointer to the first occurrence of ch in str,
or NULL if ch isn’t found. strrchr find the last occurrence.

strstr(haystack, needle) string search: returns a pointer to the start of the first occurrence of
needle in haystack, or NULL if needle isn’t there.

strcpy(dst, src),
strncpy(dst, src, n)

copies characters in src to dst, including null-terminating character.
Assumes enough space in dst. strncpy stops after at most n chars,

and does not add '\0' unless strlen(src) < n.

strcat(dst, src),
strncat(dst, src, n)

concatenate src onto the end of dst. strncat stops concatenating
after at most n characters. This one always adds the '\0'.

strspn(str, accept),
strcspn(str, reject)

strspn returns the length of the initial segment of str consisting
entirely of characters from accept. strcspn returns the length of the

initial segment of str consisting of characters not found in reject.

9

The string.h library: strcmp

strcmp(str1, str2): compare two strings (note: ==, <, etc. don’t work)
• returns 0 if both strings are truly identical
• < 0 if str1 is lexicographically smaller than str2
• > 0 if str1 is lexicographically larger than str2

int cmp = strcmp(str1, str2);
if (cmp == 0) {
 // equal
} else if (cmp < 0) {
 // str1 comes before str2
} else {
 // str1 comes after str2
}

10

char orig[6]; // include space for '\0'
strcpy(orig, "hello");

char clone[6];
strcpy(clone, orig); // strcpy copies the '\0' as well
clone[0] = 'c';

printf("%s", orig); // hello
printf("%s", clone); // cello

The string.h library: strcpy

strcpy(dst, src): copies the contents of the src string—assumed to be
'\0'-terminated—into the space addressed by dst.

orig

0 1 2 3 4 5

'h' 'e' 'l' 'l' 'o' '\0'clone

0 1 2 3 4 5

'h' 'e' 'l' 'l' 'o' '\0'

? ? ? ? ? ?

11

- other program memory -' ' 'w' 'o' 'r' 'l' 'd' '!' '\0'

We must make sure there is enough space at the destination to hold the
entire copy, including the '\0' character.

 char tiny[6];
 strcpy(tiny, "hello, world!"); // bigger than tiny can bear

Writing past array bounds is an example of a buffer overflow.

0 1 2 3 4 5

'h' 'e' 'l' 'l' 'o' ','tiny

😢

The string.h library: strcpy

Buffer overflows are a leading source of security bugs and account for a
disproportionate share of vulnerabilities.

In this case, the buffer overflow could very well
overwrite memory set aside for other local variables,
since they are generally allocated next to each other.

12

strncpy(dst, src, n): copies at most n bytes from src into the string
dst. Unless there’s a '\0' in these n bytes , dst won’t get a '\0' either.

When we fail to terminate a character array with a '\0' but treat it as a C
string anyway, string library function can’t work properly—e.g., strlen will
continue reading beyond the bounds of its src in search of a mystery '\0'!

The string.h library: strncpy

char tight[8];
strncpy(tight, "continue", 8); // doesn’t write the '\0'
char snug[8];
strncpy(snug, "persist", 8); // barely has space for '\0'
char roomy[8];
strncpy(roomy, "endure", 8); // doesn’t even touch roomy[7]

13

What value should fill in the blank?
A. 4
B. 5
C. 6
D. 12

char str[_________];
strcpy(str, "hello");

string.h Etudes

Thought question: Will 12 work, even if it’s not
ideal? What about strlen("hello") + 1?

14

What is printed out by the following program?

A. str = Hi, len = 8
B. str = Hi, len = 2
C. str = Hi earth, len = 8
D. str = Hi earth, len = 2

string.h Etudes

int main(int argc, char *argv[]) {
 char str[9];
 strcpy(str, "Hi earth");
 str[2] = '\0';
 printf("str = %s, len = %zu\n",
 str, strlen(str));
 return 0;
}

15

strcat(dst, src): appends the contents of src to the contents of dst
strncat(dst, src, n): same, but appends at most n non-'\0 bytes from src

Both strcat and strncat overwrite the old '\0' and add a new one at the end.
Restated, both assume the destination already contains a properly null-terminated string

and blindly append beginning at its '\0'.

Note that we can’t concatenate C strings using + as we can in C++ and Python. That’s a
modern idea that C is too old, stubborn, and curmudgeony to support.

The string.h library: strcat, strncat

char greeting[13]; // enough space for strings + '\0'
strcpy(greeting, "hello ");
strcat(greeting, "world!");
printf("%s", greeting); // hello world!

char alert[16];
strcpy(alert, ”Alert: ");
strncat(alert, "overflow detected", 15 – strlen(alert));
printf("%s\n", alert); // Alert: overflow

16

C Strings As Parameters
When we pass a string as a parameter, it is passed as a char *. C passes the

address of the first character rather than a copy of the whole array.
int main(int argc, char *argv[]) {
 char reprimand[] = "I told you to clean your room!!";
 printf("SpongeMom: %s\n", reprimand);
 mockmeme(reprimand); // same as mock(&reprimand[0]);
 printf("SpongeBob: %s\n", reprimand);
 return 0;
}

void mockmeme(char *text) { // catch location of some C string
 bool upper = true;
 for (size_t i = 0; i < strlen(text); i++) {
 if (isalpha(text[i])) {
 text[i] = upper ? toupper(text[i]) : tolower(text[i]);
 upper = !upper;
 }
 }
}

The declaration of reprimand
allocates a char array of
length 32 and effectively
strcpy’s the string into it.

Passing a C string to
mockmeme is really passing the
address of its leading char—or
equivalently, the base address

of the full char array.

Changes to the text array are
reflected in the original

reprimand.

17

C Strings and Suffixes
Since C strings are pointers to characters—i.e., char *s—we can adjust the

pointer to overlook characters at the beginning.

0xf1 0xf2 0xf3 0xf4 0xf5 0xf6 0xf7 0xf8

'r' 'a' 'c' 'e' 'c' 'a' 'r' '\0'

all

0xee

0xf1 some

0xd2

0xf5

word

char word[8];
strcpy(word, "racecar"); // fits perfectly!
char *all = word;
char *some = word + 4; // same as some = &word[4]
printf("%s\n", all); // prints racecar
printf("%s\n", some); // prints car

18

What is printed out by the following program?

a. magoes
b. magtoes
c. pomag

0xe0 0xe1 0xe2 0xe3 0xe4 0xe5 0xe6 0xe7 0xe8

'p' 'o' 't' 'a' 't' 'o' 'e' 's' '\0'

0xf0

fruit

veggie

string.h Etudes

int main(int argc, char *argv[]) {
 char veggie[9];
 strcpy(veggie, "potatoes");
 char *fruit = veggie + 2;
 strcpy(fruit, "mag");
 printf("%s\n", veggie);
}

d. pomagoes
e. pomitoes
f. pomidoes

19

What is printed out by the following program?

a. magoes
b. magtoes
c. pomag

0xe0 0xe1 0xe2 0xe3 0xe4 0xe5 0xe6 0xe7 0xe8

'p' 'o' 't' 'a' 't' 'o' 'e' 's' '\0'

0xf0

fruit

veggie

string.h Etudes

int main(int argc, char *argv[]) {
 char veggie[9];
 strcpy(veggie, "potatoes");
 char *fruit = veggie + 2;
 strncpy(fruit, "mid", 2);
 printf("%s\n", veggie);
}

d. pomagoes
e. pomitoes
f. pomidoes

20

void diamond(char *str) {
 size_t length = strlen(str);
 for (size_t i = 1; i < length; i++) {
 char prefix[i + 1];
 strncpy(prefix, str, i);
 prefix[i] = '\0';
 printf("%s\n", prefix);
 }

 printf("%s\n", str);
 for (size_t i = 1; i < length; i++) {
 for (size_t j = 0; j < i; j++) {

 printf(" ");
 }
 printf("%s\n", str + i);

 }
}

String Diamonds

Write a function diamond that accepts a string as its only parameter and
prints its letters in a diamond format as shown below.

For example,
diamond("doris")

should print:

d
 do
 dor
 dori
 doris
 oris
 ris
 is
 s

Each iteration of the first for loop prints each
prefix. strncpy is the right call here—we

want to copy i visible chars—but we need to
stamp down our own '\0'.

Printing suffixes is even
easier, as the ith iteration

can ignore the first i
characters when printing by

adding i to str.

