CS107 Lecture 6
C Strings

Reading: K&R (1.9, 5.5, Appendix B3) or Essential C section 3

This document is copyright (C) Stanford Computer Science, licensed under Creative Commons Attribution 2.5 License. All rights reserved.
Based on slides created by Cynthia Lee, Chris Gregg, Nick Troccoli, Lisa Yan, Jerry Cain and others.

C Strings

How can a computer represent more complex data items, like text?

Why answering this question is important:

* lllustrates how strings are represented in C and other languages (today)

* Hot take 1: C strings aren't a true data type so much as they are an agreement.

* Hot take 2: Every convenience you’re used to from other languages—length tracking,
bounds checks, immutability—is gone and your responsibility now.

* Helps us better understand buffer overflows (today and Wednesday)

* Hot take 3: A good number of infamous bugs and security exploits reduce to
"someone misunderstood C strings".

* Serves as a gentle reintroduction to pointers (Wednesday and Friday)

The char type

A char is a variable type that represents a single character (aka a "glyph").

char
char
char

char
char
char

char

letter
plus
space

newline
'\t
|\l|;

‘\n';
quote =

backslash "\\';

ASCIl

Under the hood, C represents each char as a single-byte integer that serves as
its ASCII value.

* Uppercase letters are numbered sequentially.

* Lowercase letters are numbered sequentially.

* Digit characters are numbered sequentially.

* Lowercase letters are 32 more than their uppercase equivalents (via a bit flip!)

char upper "A'y // really 65
char lower 'a'; // really 97 (i.e., '"A' + 32)
char zero = '0'; // really 48

Common ctype.h Functions

Function Description

isalpha(ch) | trueifchis 'a' through 'z" or 'A" through 'Z"

islower (ch) trueifchis 'a' through 'z
isupper(ch) trueifchis "A' through 'Z!
isspace(ch) trueif chisaspace, tab, new line, etc.
isdigit(ch) trueifchis '0"' through '9"
toupper (ch) returns uppercase version of a letter

tolower (ch) returns lowercase version of a letter

C Strings: The Agreement

C doesn'tinclude a dedicated data type for strings. Instead, a string is
represented as an array of chars with a sentinel marking its end.

index

"Hello"
Char IHI Iel lll Ill IOI I\el

"\0' isthe null character, and you always need one extra byte in the array
forit. You’'ll also hear it called the null byte or the zero byte. | use all three
interchangeably.

String Length

C strings are not objects. (In fact, nothing in Cis an object.) If we want to
compute the length of the string, we must compute it ourselves.

index
va/ue IHl lel lll Ill lol l,l 1 1 lWl IOI 'P| lll ldl I!l I\@I

We typically call the built-in strlen function to compute string length. The
null byte doesn’t contribute to the computed length.

size_t len = strlen(str); // e.g., 13

Alert: strlen runsin linear time: It walks the entire string from
beginning to end and counts. Save the length if you need it later.

Common string.h Functions

Function

Description

strlen(str)

returns the number of charsin a C string (excluding the "\0").

strcmp(strl, str2),
strncmp(strl, str2, n)

compares two strings and returns 0 if identical, <0 if str1 comes
before str2in alphabet,>0if str1 comes after str2 in alphabet.
strncmp stops comparing after at most n characters.

strchr(str, ch)
strrchr(str, ch)

character search: returns a pointer to the first occurrence of ch in str,
or NULL if chisn’t found. strrchr find the last occurrence.

strstr (haystack, needle)

string search: returns a pointer to the start of the first occurrence of
needlein haystack,or NULL if needle isn’t there.

strcpy(dst, src),
strncpy(dst, src, n)

copies charactersin src to dst, including null-terminating character.
Assumes enough space in dst. strncpy stops after at most n chars,
and does notadd "\0"' unlessstrlen(src) < n.

strcat(dst, src),
strncat(dst, src, n)

concatenate src onto the end of dst. strncat stops concatenating
after at most n characters. This one always addsthe '\0"'.

strspn(str, accept),
strcspn(str, reject)

strspn returns the length of the initial segment of str consisting
entirely of characters from accept. strcspn returns the length of the
initial segment of str consisting of characters not found in reject.

The string.hlibrary: strcmp

stremp(strl, str2):comparetwo strings (note: ==, <, etc. don’t work)
* returns 0 if both strings are truly identical

* <0if strlislexicographically smaller than str2
* >0 if strilislexicographically larger than str2

Eint cmp = strcmp(strl, str2);

tif (cmp == 0) {

§ // equal

'} else if (cmp < 0) {

§ // strl comes before str2

1 else {

// strl comes after str2

The string.h library: strcpy

strcpy(dst, src):copiesthe contents of the src string—assumed to be
"\O'-terminated—into the space addressed by dst.

i char orig[6]; // include space for '\O'
i strcpy(orig, "hello");

Echar clone[6];
i strcpy(clone, orig); // strcpy copies the '\0' as well

i clone[0] = 'c';

Eprintf "%s'", orig); // hello

ipr'intf("%s", Clone); // Ce-L-LO or'ig 'hl lel lll |l| |o| |\@|
clone ? ? ? ? ? ?

10

The string.h library: strcpy

We must make sure there is enough space at the destination to hold the
entire copy, including the '\ @' character.

char tiny[6];
strcpy(tiny, "hello, world!"); // bigger than tiny can bear

Writing past array bounds is an example of a buffer overflow.

Buffer overflows are a leading source of security bugs and account for a
disproportionate share of vulnerabilities.

t-iny |h| |e| |l| |l| |O|] 1] 1 IWI lol Ir‘l Ill ldl I!l '\6'

0 o)

In this case, the buffer overflow could very well
overwrite memory set aside for other local variables,

since they are generally allocated next to each other. i

The string.hlibrary: strncpy

strncpy(dst, src, n): copies at most n bytes from src into the string
dst. Unlessthere’sa "\0"' in these n bytes,dst won’tgeta "\0' either.

Echar tight[8];

i strncpy (tight, "continue", 8); // doesn’t write the '\0'

i char snug[8];

i strncpy(snug, '"persist", 8); // barely has space for '\0'

i char roomy[8];

' strncpy(roomy, "endure", 8); // doesn’t even touch roomy[7]

When we fail to terminate a character array witha '\0" buttreatitasaC
string anyway, string library function can’t work properly—e.g., strlen will
continue reading beyond the bounds of its src in search of a mystery '\0"!

12

string.h Etudes

What value should fill in the blank? char str[13
A 4 strcpy(str, "hello");
B. 5

(c)s
D. 12

Thought question: Will 12 work, even if it’s not
ideal? What about strlen("hello") + 1?

string.h Etudes

What is printed out by the following program?

Ldint main(int argc, char *xargv[]) {
: char str[9];

strcpy(str, "Hi earth'");

str[2] = "\0';

printf("str = %s, len = %zu\n",

str, strlen(str)); A, str = H-i, len = 8
return 03 str = Hi, len = 2

'' . str = Hi earth, len =
D. str = Hi earth, len =

N 0o

The string.hlibrary: strcat, strncat

strcat(dst, src):appends the contents of src to the contents of dst
strncat(dst, src, n):same, but appends at most n non-"\0 bytes from src

i char greeting[13]; // enough space for strings + '\O'
i strcpy(greeting, "hello ");

i strcat(greeting, "world!");

iprintf("%s", greeting); // hello world!

Echar alert[16];
i strcpy(alert, ”Alert: ");
' strncat(alert, "overflow detected", 15 - strlen(alert));

iprintf("%s\n", alert); // Alert: overflow

Both strcat and strncat overwrite theold '\0' and add a new one at the end.
Restated, both assume the destination already contains a properly null-terminated string
and blindly append beginning atits '\0"'.

Note that we can’t concatenate C strings using + as we can in C++ and Python. That’s a
modern idea that C is too old, stubborn, and curmudgeony to support. 15

C Strings As Parameters

When we pass a string as a parameter, it is passed as a char *. C passes the
address of the first character rather than a copy of the whole array.

int main(int arge, char xargv(D) (T oy Py mand

char reprimand[] = "I told you to clean your room!!'";)
printf("SpongeMom: %s\n", reprimand); length 32 and effectively
mockmeme (reprimand) ; // same as mock(&reprimand[0]); strcpy’s the string into it.
printf("SpongeBob: %s\n", reprimand); ’

| return 0; Passing a C string to

t mockmeme is really passing the

address of its leading char—or
equivalently, the base address
of the full char array.

ivoid mockmeme (char *text) { // catch location of some C string
bool upper = true;
for (size_t i = 0; i < strlen(text); i++) {
if (disalpha(text[i])) {
text[i] = upper ? toupper(text[i]) : tolower(text[i]);
upper = lupper;

Changes to the text arrayAare
reflected in the original
reprimand.

}

__

C Strings and Suffixes

Since C strings are pointers to characters—i.e., char *s—we can adjust the
pointer to overlook characters at the beginning,.

i char word[8];
i strcpy(word, '"racecar"); // fits perfectly!
i char *all = word;

ichar *some = word + 4; // same as some = &word[4]
iprintf("%s\n", all); // prints racecar
iprintf ("%s\n", some); // prints car
Word lr‘l lal ICI lel ICI lal 'Pl l\@l
all |oxfl some | Oxf5

17

string.h Etudes

What is printed out by the following program?

Eint main(int argc, char *xargv[]) {

. char veggiel9]; i a. magoes d. pomagoes
5 strcpy(veggie, '"potatoes"); : b .
. char *fruit = veggie + 2; 5 . magtoes e. pomitoes
strcpy(fruit, "mag"); G pomang. pomidoes
| printf("%s\n", veggie);
Y

fruit

Vegg-ie lpl IOI l_tl lal Itl IOI lel ISI I\el

string.h Etudes

What is printed out by the following program?

Eint main(int argc, char *xargv[]) {

char veggiel9l;) i 2. magoes d. pomagoes
strcpy(veggie, '"potatoes"); | b t it
char xfruit = veggie + 2; . magtoes e. pomitoes
strncpy (fruit, "mid", 2); | C. pomag . pomldoes
printf("%s\n", veggie); ’

fruit

Vegg-ie lpl IOI l_tl lal Itl IOI lel ISI I\el

String Diamonds

Write a function diamond that accepts a string as its only parameter and
prints its letters in a diamond format as shown below.

Evoid diamond(char =*str) {

For example, i size_t length = strlen(str);
diamond ("dor1is") i for (size_t i = 1; i < length; i++) { .
should print: char pl’ef'IX['! + 1];) Each iteration of the first for loop prints each
; strnc.pygpref"lx, 'str,)5 prefix. strncpy is the right call here—we
30 i pr§f1x[11 - ”\O o want to copy 1 visible chars—but we need to
dor E) printf("%s\n", prefix); stamp down ourown "\0"'.
dori ;) '
doris 5 printf("%s\n", str);
oris . for (size_t i = 1; i < length; i++) { .
riz for (size_t j = 05 j < 1i; j++) { Printing suffixes is even
! 3 1 " . ° . .
s § printf (" "); easier, as the it iteration
} . : ! . can ignore the first i
printf("%s\n", str + 1); characters when printing by

. ¥ adding i to str.
3 5 20

