CS107 Lecture 7
More C Strings

Reading: K&R (1.9, 5.5, Appendix B3) or Essential C section 3

This document is copyright (C) Stanford Computer Science, licensed under Creative Commons Attribution 2.5 License. All rights reserved.
Based on slides created by Cynthia Lee, Chris Gregg, Nick Troccoli, Lisa Yan, Jerry Cain and others..

The string.hlibrary: strchr

strchr returns a pointer to the first occurrence of a character in a string, or
NULL if the character is nowhere to be found.

__ Recall this declaration and initialization of
Echar laureate[] = "Katalin Kariko"; laureate allocates an array of just the right

. char xfirst = strchr(laureate, 'a'); size and effectively strepy’s the string
Lprintf("%s\n", first); // atalin Kariko constantln’Fo It.

: * = 1 + 1 1 . !

char ssecomd ©strehn(First S 305 rhoughsqeston iy st 3
proantite oA S e What’s wrong with just first?

Use strrchr to find the last occurrence of a character (or NULL on failure).

Echar xlast = strrchr(laureate, 'a');
iprintf("%s\n", last); // prints ariko

Aside: Katalin Kariké is a Hungarian-American biochemist whose decades-long research on messenger RNA laid the
foundation for mRNA vaccines. After years of limited recognition, her work proved essential to the rapid development of
COVID-19 vaccines and immunizations. She shared the 2023 Nobel Prize in Physiology or Medicine with Drew Weissman.

The string.hlibrary: ststrr

strstr returns a pointer to the first occurrence of a substring within a larger
string, or NULL if the substring isn’t present.

. char laureate[] = "Carolyn Bertozzi";

i char *only = strstr(laureate, "zz");

iprintf("%s\n", laureate); // prints Carolyn Bertozzi
iprintf(”%s\n”, only) ; // prints zzi

Note: Thereis no built-in strrstr, likely because reverse substring search is
not a common need and lacks a simple, single-pass, linear-time
implementation comparable to those for strchr, strrchr,and strstr.

Aside: Carolyn Bertozzi is an American chemist known for pioneering bioorthogonal chemistry, enabling
chemical reactions inside living cells without disrupting biology. She's a professor here and shared the 2022
Nobel Prize in Chemistry with Barry Sharpless of Scripps.

Implementing strrstr anyway

Assuming you’ve a legitimate need for strrstr anyway, implementitto
return a pointer to the last occurrence of substring within a larger string.

Echar xstrrstr(char xhaystack, char xneedle) {
char *curr = haystack;
char xlast = NULL;
while (true) {
curr = strstr(curr, needle);

if (curr == NULL) return last; // no more matches
last = curr;
curr++;
}
Thought Question: Think about how expensive the above Thought Question: What about searching for the
implementation is when you reverse search for last reverse of needle within the reverse of haystack?

"wwwww' in "wwwwwwwwwwwwwwwwwwwwwwwwwwwxyz'. Can that be made to work? Is it clearly better than the
What’s the runtime behavior in this case? above in all cases?

The string.hlibrary: strspn, strcspn

strspn(str, accept) returnsthe length of the initial segment of str
consisting entirely of characters found in accept.

Echar laureate[] = "Barry Sharpless";
i size_t count = strspn(laureate, ”Broad"); // count gets a 4

strcspn(str, reject) alsoreturns the length of the initial segment of
str, this time consisting entirely of characters not found in reject. Here
the inner ¢ stands for complement, as in the complement of a set.

Echar medalist[] = "Maryam Mirzakhani'";
i size_t length = strcspn(medalist, ”Field"); // length gets an 8

C Strings As Parameters

When we pass a mutable string as a parameter, it is often passed as a char *
as a visual cue that it’s a C string. We can, however, manipulate the string
exactly as if it were declared as a char[].

ivoid reverse(char *s) { i ivoid reverse(char s[]) {
if (s[0] == '"\0') return; i i if (s[0] == '"\0') return;
size_t lh = 0, rh = strlen(s) - 1; | ! size_t 1lh = 0, rh = strlen(s) - 1;
while (lh < rh) { .| while (lh < rh) {

char temp = s[lh]; char temp = s[lh];
s[lh] = s[rh]; s[lh] = s[rh];
s[rh] = temp; s[rh] = temp;
lh++; lh++;

rh——- . rh——;
1 Thought Question: Why do we call out the 1

} case wheres[0] == "\0"'? }

__

When we pass a string constant as a parameter (or even a mutable string that
shouldn’t be changed), it’s best to accept it as a const char *. This
mandates that the string's characters be respected as frozen and immutable.

Password Validation

Write a function validate that accepts a candidate password alongside some
constraints and returns true if and only if the candidate password is valid.

In particular, candidate is valid if and only if it’s constructed using only those letters
found in permitted, and none of the forbidden strings appear anywhere within it.

Ebool validate(const char *candidate, const char *permitted,

const char *forbidden[], size_t length) {
If any character

outside permitted

None of the strings
need to change

. . : . .
anywhere—hence if ﬁzzgignégiggTdate, permitted) != strlen(candidate)) appears within
the const char ’ candidate, the

xs. All data i . i

treatZd as reaaj-inl for (size_t 1 = 0; 1 < length; i++) { span length will be

' 4f (strstr(candidate, forbidden[i]) != NULL)) ess than the full
return false; string length.
} If the ith forbidden word appears anywhere within
candidate, strstr will return something non-NULL.

: return true; We don’t care what strstr's exact return value is. We
} only care if it’s NULL versus something else.

Buffer Overflow, Take Il

We must ensure that there is enough space at the destination to house the
entire copy, including the null character.

__

Echar greeting[8]; // not enough space
i strcpy(greeting, "hello, world!"); // overwrites other memory

 Buffer overflows are dangerous because they allow data meant for one part of memory
to spill over into another part of memory, potentially overwriting variables, control
information, or even assembly code instructions.

* Such overwrites can lead to program instability, crashes, and even the execution of
unknown code.

* It’s our job as programmers to identify buffer overflows (and other bugs, of course) and
fix them, not just so our programs run as intended, but also to protect anyone who uses

our software.

Infamous Buffer Overflow Exploits

AOL Instant Messenger Exploit

A flaw in AOL Instant Messenger allowed attackers to send
specially crafted network messages that overwrote memory
beyond a fixed-size buffer, corrupting data structures vital to

AOL's ability to execute with predictability.

AIM was written in C and C++, so the replication of a user
message (without bounds checking) could overwrite return
addresses and function pointers, redirecting execution to
attacker-injected code supplied within the message itself.

Other than being logged in, nothing was required of the
message recipient. Simply receiving a malicious message was
enough to prompt the execution of the buggy code.

The bug allowed hackers to message arbitrary users and execute
arbitrary programs using the logged-in user's credentials.

Scott and Jerry met via Instant Messenger, back when people
lied about meeting online and said they met through mutual
friends. And no, Jerry didn't leverage this bug in any way to
convince Scott to go on a date with him.

Morris Internet Worm

A self-replicating program—written by a Cornell grad student named
Robert Tappan Morris and executed remotely on MIT machines—
exploited vulnerabilities in early-day Internet services, allowing the
execution of arbitrary code.

It exploited buffer overflows and other vulnerabilities in C network

services—e.g., fingerd, sendmail, and rsh—where unbounded
input copied into fixed-size buffers overwrote out-of-bounds memory.

By overwriting control data—again, function pointers and return
addresses—via unchecked overflows, the worm redirected execution
to attacker-injected code, allowing arbitrary commands to run
remotely on vulnerable Unix machines.

After gaining control, the worm transferred its source code (!),
compiled itself (!), and launched new processes (!), enabling auto-
propagation to additional hosts.

Jerry was a sophomore at MIT at the time but had no idea it
happened. Recall that he'd temporarily given up on CS the year prior
because for loops confused him.

https://www.cvedetails.com/cve/CVE-2002-0362/
https://en.wikipedia.org/wiki/Morris_worm

Avoiding Buffer Overflow

There’s no single solution that works for everything. Finding and repairing
overflow vulnerabilities require a combination of software development
techniques.

* vigilance while programming (scrutinizing array reads and writes, pointer arithmetic)
* carefully reading documentation

 thoroughly documenting assumptions in your own code, particularly when others
are expected to use it

* thoroughly testing to identify issues before shipping product, specifically designing
tests to verify overflow is either impossible or detected and handled gracefully

* using software tools to methodically monitor code for illegal memory access and
suspicious function calls (example: valgrind)

10

Avoiding Buffer Overflow

myth’s man page for gets:
char xgets(char *s);

Never use gets(). Because it is +impossible to tell without knowing the
data in advance how many characters gets() will read, and because gets()
will continue to store characters past the end of the buffer, it is
extremely dangerous to use. It has been used to break computer security.
Use fgets() 1instead.

11

Avoiding Buffer Overflow

Linux man page for strcpy/strncpy:

The strcpy() function copies the string pointed to by src, including the
terminating null byte (‘\0’), to the buffer pointed to by dest. The
strings may not overlap, and the destination string dest must be large
enough to receive the copy. Beware of buffer overruns!

If the destination string of a strcpy() is not large enough, then
anything might happen. Overflowing fixed-length string buffers is a
favorite cracker technique for taking complete control of the machine.
Any time a program reads or copies data into a buffer, the program first
needs to check that there’s enough space. This may be unnecessary if you
can show that overflow is impossible, but be careful: programs can get
changed over time, in ways that may make the impossible possible.

12

mailto:https://linux.die.net/man/3/strcpy

Demo: Memory Errors

