CS107, Lecture 8

Introduction to Pointers

Reading: K&R (1.9, 5.5, Appendix B3) or Essential C section 3

This document is copyright (C) Stanford Computer Science, licensed under Creative Commons Attribution 2.5 License. All rights reserved.
Based on slides created by Cynthia Lee, Chris Gregg, Nick Troccoli, Lisa Yan, Jerry Cain and others..

Reminiscing C++

How might we write a C++ program with a function that takes in an int and
changes it? We might use pass by reference.

Had num been declared as a standard int, it would

__

void func(int& num) { i catch a copy of X’s value at the time of the call.
' num = 3;
} Because it’s declared as an int&—that s, a
: . reference to an int—num functions as a second
i int main(int argc, char *argv([]) { . name of a previously existing int. Accessing or
: int x = 2; updating num is really an operation on x itself.
func(x);
cout << x << endl; // prints 3 Hot Take: num behaves like an automatically
return 0; i dereferenced pointer. In practice, that’s usually
} how references work under the hood.

Sadly, C does not support C++-style pass by
reference.

Pointers Revisited

A pointer is a variable that stores a memory address—
typically the address of something meaningful.

* You’ve already used C++ pointers in CS106B. C
programmers use them even more.

e Thereis no true pass-by-reference mechanisminC
like there is in C++, so C coders rely on pointers to
expose the variable addresses to helper functions
so those functions can access and even update
their values.

Pointers are essential to dynamic memory

allocation—arguably more so—in pure C than they are
in C++,

C doesn't define vectors, maps, and hash_maps
like C++ does via its standard libraries.

C programmers often need to wire up their own
implementations of them using pointers and
dynamically allocated memory.

Looking Ahead to C

* All parameters in C are passed by value. When passing arrays as
parameters, the base address of the array decays to a pointer.

* If an address is passed as a parameter, the address itself is copied, just like

any other parameter.

* But because that address is the location of some data residing elsewhere, we have
access to and can even modify that data.

* More generally, if we want to modify a value in a helper function and have
any changes persist after the function returns, you can pass in the address of
the value—that is, its location—instead of passing the value itself. This way

we copy the address instead of the value.

Pointers Revisited: CS106B Style

i i i STAC
A pointer is a variable that stores a —— TACHK
memory address.

myFunc accepts that location as an address of an int.
That's why the type here is int * instead of int.

Eint main(int argc, ar *xargv([]) {
Here, the value of intPtr identifies where the shared int
lives. By dereferencing intPtr, the code identifies the int

int x =24
myFun
printf(m™%d\n", x); // prints
it points to—and not intPtr itself—as the recipient of the 3.
Think of intPtr as a hyperlink and the x in front of it as a
By passing &x to myFunc, main tells mouse click that drills through the link to the destination.
myFunc where x lives. Here, the & is the

address-of operator and produces
the address of x.

Pointers Revisited: CS106B Style

STACK

A pointer is a variable that stores a
memory address.

Evoid myFunc(int *intPtr) {
' *intPtr = 3

3

Eint main(int argc, char *xargv[]) {
@ int x = 2;
myFunc (&x) ;
printf("%d\n", x); // prints 3
return 0;

Pointers Revisited: CS106B Style

. . . STACK
A pointer is a variable that stores a masin
memory address.
X |2
Evoid myFunc(int *intPtr) {
; *xintPtr = 3
3
E'int main(int argc, char *argv[]) { myFunc
- dnt x = 23 i
@ myFunc (&x) ; | .
printf("%d\n", x); // prints 3 | intPtr
| return 0; |
)

Pointers Revisited: CS106B Style

. . . STACK
A pointer is a variable that stores a masin
memory address.
X |2
.Evoid myFunc(int *intPtr) {

; *intPtr = 3;

3

E'int main(int argc, char *argv[]) { myFunc

int x = 2; i

myFunc (&x) ; ;]

printf("%d\n", x); // prints 3 | intPtr

| return 0; |

)

Pointers Revisited: CS106B Style

. . . STACK
A pointer is a variable that stores a main
memory address.
___ X|3
Evoid myFunc(int *intPtr) {
@ +intPtr = 3;
3
E'int main(int argc, char *xargv[]) { myFunc
int x = 2; i
myFunc (&x) ; ;]
printf("%d\n", x); // prints 3 intPtr
; return 0; !
1

Pointers Revisited: CS106B Style

STACK

A pointer is a variable that stores a
memory address.

Evoid myFunc(int *intPtr) {
' *intPtr = 3

3

Eint main(int argc, char *xargv[]) {
. int x = 2;
@ myFunc (&x) ;
printf("%d\n", x); // prints 3
return 0;

10

Pointers Revisited: CS107 Style

A pointer is a variable that stores a Addrese value

memory address.

main [x Oxlfo| 2
Evoid myFunc(int *intPtr) { i

xintPtr = 3;

3

Eint main(int argc, char *xargv[]) {
@ int x = 2;
myFunc (&x) ;
printf("%d\n", x); // prints 3
return 0;

11

Pointers Revisited: CS107 Style

A pointer is a variable that stores a Addrese value

memory address.

main [x Oxlfo| 2
Evoid myFunc(int *intPtr) { i

xintPtr = 3;

3

Eint main(int argc, char *xargv[]) {
. int x = 2;
C ¥ myFunc (&x) ;
printf("%d\n", x); // prints 3
return 0;

12

Pointers Revisited: CS107 Style

A pointer is a variable that stores a nddrent’ e
memory address.
main x Oxlfoy 2
@ void myFunc(int *intPtr) { | —
- xintPtr = 3; | -
3 myFunc | jntPtr 0x10

Eint main(int argc, char *xargv[]) {
int x = 2;

myFunc (&x) ;

printf("%d\n", x); // prints 3
return 0;

13

Pointers Revisited: CS107 Style

A pointer is a variable that stores a nddrent’ e
memory address.
main x Oxlfol 2
'void myFunc(int *intPtr) { ’ —
@ xintPtr = 3; g -
& myFunc | jntPtr 0x10

Eint main(int argc, char *xargv[]) {
int x = 2;

myFunc (&x) ;

printf("%d\n", x); // prints 3
return 0;

14

Pointers Revisited: CS107 Style

A pointer is a variable that stores a nddrent’ e
memory address.
main x Oxlfoy 3
'void myFunc(int *intPtr) { ’ —
@ xintPtr = 3; g -
& myFunc | jntPtr 0x10

Eint main(int argc, char *xargv[]) {
int x = 2;

myFunc (&x) ;

printf("%d\n", x); // prints 3
return 0;

15

Pointers Revisited: CS107 Style

A pointer is a variable that stores a Addrese value

memory address.

main [x Oxlfe| 3
Evoid myFunc(int *intPtr) { i

xintPtr = 3;

3

Eint main(int argc, char *xargv[]) {
. int x = 2;
C ¥ myFunc (&x) ;
printf("%d\n", x); // prints 3
return 0;

16

Pointers Revisited: CS107 Style

A pointer is a variable that stores a
memory address.

Evoid myFunc(int *intPtr) {
| *intPtr = 3

3

Eint main(int argc, char *xargv[]) {
int x = 2;

myFunc (&x) ;

printf("%d\n", x); // prints 3
return 0;

STACK
Address

Value

17

Pointers and Parameters Etudes

We want to write a function that flips the case of a letter.
What should go in each of the blanks?

Evoid flip_case() {
! if (dsupper()) {

The address of a char must
be caught by a char *.

Theﬂmpedcharnnmtbewﬁﬂwh } else if (islower(:)) { !
back to the original through cp. = The case of the char to be

*cp identifies where the flipped ¥ fllpped.must.b.e determined, and
char should be placed. *Cp |Ident|f|es at that char.

~int main(int argc, char *argv[]) {
’ char ch = 'g';

flip_case()5

printf("%c\n", ch); // print 'G'

return 0; .
it We want flip_case, to modifymain’s
""""""""""""""""""""" ch, so we need to pass ch’s address.

18

Pointers and Parameters Etudes

Sometimes, we want to modify a pointer—e.g., a char *—by reference by
sharing the address of that pointer with a function.

Consider the following (broken) implementation of skip_spaces, which
purports to update a C string to leap beyond its leading whitespace.

' void ski p_spaces(char *s) { . Here’s a compact autopsy report outlining why

s += strspn(s, " ") | this version is dead on arrival.

L} o ski p_spaces receives a copy of the

: address stored inmain’s str variable.

{int main(int argc, char *argv[]) { * The strspn callis correct and successfully

' char xstr =" hello"; advances the local variable s, but it doesn’t
skip_spaces(str); advance or otherwise change main’s str.
printf("%s\n", str); // should print hello | + Whenskip_spaces returns,itsupdated

. return 0; pointer s is discarded. main’s str wasn’t

'} | touched, much less updated.

19

Pointers and Parameters Etudes

Now consider a new version of skip_spaces, which relies on
a char *x* parameter (i) to capture the address of main's str.

Because main now shares the location of str with skip_spaces,
skip_spaces can access and even directly modify str's value.

Here’s the new version's grade report:

* mainnow passes &str, the address of its
own char * variable, not some copy of str.

* The char **p_str parameter points
directly tomain’s str, so dereferencing
p_str accesses the original char =*.

Evoid skip_spaces(char xxp_str) {
xp_str += strspn(xp_str, " ");

3

Eint main(int argc, char *xargv[]) {

char xstr =" hello"; i« The expression xp_str += ... updates
skip_spaces(&str); the value stored in str, advancing the
printf("%s\n", str); // should print hello | original pointer beyond all those spaces.
return 0; What failed to happen in vl now works.

L} . Redux: To modify a pointer owned by the caller,

the callee must receive that pointer’s address.
20

Pointers: Key Takeaways

Summary:

* If you’re working with some input and do not care about any changes to the input, pass
the data by value.

* If you are modifying a specific instance of some value, pass the location of what you
would like to modify.

* If a function accept an address as a parameter, that function can travel to that address if
need be.

* If a function accepts an int *, it can modify the int at the supplied address.
* If a function accepts a char *, it can modify the char at the supplied address.
* If a function accepts a char **, it can modify the char * at the supplied address.

21

Strongly Typed Swaps and Rotations

Here are few functions that do more meaningful work than earlier examples.

int main(int argc, char *xargv([]) {
int x = 17, y = 29;
printf("x = %d, y = %d\n", x, y);
swap_ints(&x, &y);
printf("x = %d, vy

void swap_ints(int *one, int *two) {
int temp = *one;
xone = *two;
xtwo = temp;

d\n'", X, y);
3 char xh = "Fred", xw = "Wilma";
printf("husband: %s, wife: %s\n", h, w);
swap_strings(&h, &w);

void swap_strings(char **one, char *xtwo) { i
printf("husband: %s, wife: %s\n", h, w); i

char *temp = *one;
xone = *two; . .
xtwo = temp; swap_strings(&h, &w); // restore
3 char xb = "Pebbles'";

printf("husband: %s, wife: %s, baby: %s\n", h, w, b);
rotate(&h, &w, &b);

printf("husband: %s, wife: %s, baby: %s\n", h, w, b);

void rotate(char *xp, char *xq, char *xr) {
swap_strings(p, q);
swap_strings(p, r);

return 0;

