
1
This document is copyright (C) Stanford Computer Science, licensed under Creative Commons Attribution 2.5 License. All rights reserved.

Based on slides created by Cynthia Lee, Chris Gregg, Nick Troccoli, Lisa Yan, Jerry Cain and others..

CS107, Lecture 8
Introduction to Pointers

Reading: K&R (1.9, 5.5, Appendix B3) or Essential C section 3

2

Reminiscing C++

How might we write a C++ program with a function that takes in an int and
changes it? We might use pass by reference.

void func(int& num) {
 num = 3;
}

int main(int argc, char *argv[]) {
 int x = 2;
 func(x);
 cout << x << endl; // prints 3
 return 0;
}

Had num been declared as a standard int, it would
catch a copy of x’s value at the time of the call.

Because it’s declared as an int&—that is, a
reference to an int—num functions as a second
name of a previously existing int. Accessing or
updating num is really an operation on x itself.

Hot Take: num behaves like an automatically
dereferenced pointer. In practice, that’s usually

how references work under the hood.

Sadly, C does not support C++-style pass by
reference.

3

Pointers Revisited
A pointer is a variable that stores a memory address—
typically the address of something meaningful.

• You’ve already used C++ pointers in CS106B. C
programmers use them even more.

• There is no true pass-by-reference mechanism in C
like there is in C++, so C coders rely on pointers to
expose the variable addresses to helper functions
so those functions can access and even update
their values.

Pointers are essential to dynamic memory
allocation—arguably more so—in pure C than they are
in C++.

C doesn't define vectors, maps, and hash_maps
like C++ does via its standard libraries.
C programmers often need to wire up their own
implementations of them using pointers and
dynamically allocated memory.

4

Looking Ahead to C

• All parameters in C are passed by value. When passing arrays as
parameters, the base address of the array decays to a pointer.
• If an address is passed as a parameter, the address itself is copied, just like

any other parameter.
• But because that address is the location of some data residing elsewhere, we have

access to and can even modify that data.

• More generally, if we want to modify a value in a helper function and have
any changes persist after the function returns, you can pass in the address of
the value—that is, its location—instead of passing the value itself. This way
we copy the address instead of the value.

5

main

STACK
A pointer is a variable that stores a

memory address.

void myFunc(int *intPtr) {
 *intPtr = 3;
}

int main(int argc, char *argv[]) {
 int x = 2;
 myFunc(&x);
 printf("%d\n", x); // prints 3
 ...
}

Pointers Revisited: CS106B Style

By passing &x to myFunc, main tells
myFunc where x lives. Here, the & is the
address-of operator and produces

the address of x.

myFunc accepts that location as an address of an int.
That's why the type here is int * instead of int.

Here, the value of intPtr identifies where the shared int
lives. By dereferencing intPtr, the code identifies the int

it points to—and not intPtr itself—as the recipient of the 3.
Think of intPtr as a hyperlink and the * in front of it as a
mouse click that drills through the link to the destination.

6

main

x

2

STACK
A pointer is a variable that stores a

memory address.

void myFunc(int *intPtr) {
 *intPtr = 3;
}

int main(int argc, char *argv[]) {
 int x = 2;
 myFunc(&x);
 printf("%d\n", x); // prints 3
 return 0;
}

Pointers Revisited: CS106B Style

7

main

x

myFunc

intPtr

2

STACK
A pointer is a variable that stores a

memory address.

void myFunc(int *intPtr) {
 *intPtr = 3;
}

int main(int argc, char *argv[]) {
 int x = 2;
 myFunc(&x);
 printf("%d\n", x); // prints 3
 return 0;
}

Pointers Revisited: CS106B Style

8

main

x

myFunc

intPtr

2

STACK
A pointer is a variable that stores a

memory address.

void myFunc(int *intPtr) {
 *intPtr = 3;
}

int main(int argc, char *argv[]) {
 int x = 2;
 myFunc(&x);
 printf("%d\n", x); // prints 3
 return 0;
}

Pointers Revisited: CS106B Style

9

main

x

myFunc

intPtr

3

STACK
A pointer is a variable that stores a

memory address.

void myFunc(int *intPtr) {
 *intPtr = 3;
}

int main(int argc, char *argv[]) {
 int x = 2;
 myFunc(&x);
 printf("%d\n", x); // prints 3
 return 0;
}

Pointers Revisited: CS106B Style

10

main

x

3

STACK
A pointer is a variable that stores a

memory address.

void myFunc(int *intPtr) {
 *intPtr = 3;
}

int main(int argc, char *argv[]) {
 int x = 2;
 myFunc(&x);
 printf("%d\n", x); // prints 3
 return 0;
}

Pointers Revisited: CS106B Style

11

STACK
Address Value

…

0x1f0 2
…

xmain

A pointer is a variable that stores a
memory address.

void myFunc(int *intPtr) {
 *intPtr = 3;
}

int main(int argc, char *argv[]) {
 int x = 2;
 myFunc(&x);
 printf("%d\n", x); // prints 3
 return 0;
}

Pointers Revisited: CS107 Style

12

Address Value
…

0x1f0 2
…

x

STACKA pointer is a variable that stores a
memory address.

void myFunc(int *intPtr) {
 *intPtr = 3;
}

int main(int argc, char *argv[]) {
 int x = 2;
 myFunc(&x);
 printf("%d\n", x); // prints 3
 return 0;
}

main

Pointers Revisited: CS107 Style

13

Address Value
…

0x1f0 2
…

0x10 0x1f0
…

x

intPtrmyFunc

STACK

main

A pointer is a variable that stores a
memory address.

void myFunc(int *intPtr) {
 *intPtr = 3;
}

int main(int argc, char *argv[]) {
 int x = 2;
 myFunc(&x);
 printf("%d\n", x); // prints 3
 return 0;
}

Pointers Revisited: CS107 Style

14

Address Value
…

0x1f0 2
…

0x10 0x1f0
…

x

STACK

main

intPtrmyFunc

A pointer is a variable that stores a
memory address.

void myFunc(int *intPtr) {
 *intPtr = 3;
}

int main(int argc, char *argv[]) {
 int x = 2;
 myFunc(&x);
 printf("%d\n", x); // prints 3
 return 0;
}

Pointers Revisited: CS107 Style

15

Address Value
…

0x1f0 3
…

0x10 0x1f0
…

STACKA pointer is a variable that stores a
memory address.

void myFunc(int *intPtr) {
 *intPtr = 3;
}

int main(int argc, char *argv[]) {
 int x = 2;
 myFunc(&x);
 printf("%d\n", x); // prints 3
 return 0;
}

x

intPtrmyFunc

main

Pointers Revisited: CS107 Style

16

Address Value
…

0x1f0 3
…

x

STACK

main

A pointer is a variable that stores a
memory address.

void myFunc(int *intPtr) {
 *intPtr = 3;
}

int main(int argc, char *argv[]) {
 int x = 2;
 myFunc(&x);
 printf("%d\n", x); // prints 3
 return 0;
}

Pointers Revisited: CS107 Style

17

Address Value
…

0x1f0 3
…

x

STACK

main

A pointer is a variable that stores a
memory address.

void myFunc(int *intPtr) {
 *intPtr = 3;
}

int main(int argc, char *argv[]) {
 int x = 2;
 myFunc(&x);
 printf("%d\n", x); // prints 3
 return 0;
}

Pointers Revisited: CS107 Style

18

Pointers and Parameters Etudes
We want to write a function that flips the case of a letter.

What should go in each of the blanks?

void flip_case(char *cp) {
 if (isupper(*cp)) {
 *cp = tolower(*cp);
 } else if (islower(*cp)) {
 *cp = toupper(*cp);
 }
}

int main(int argc, char *argv[]) {
 char ch = 'g';
 flip_case(&ch);
 printf("%c\n", ch); // print 'G'
 return 0;
} We want flip_case, to modify main’s

ch, so we need to pass ch’s address.

The address of a char must
be caught by a char *.

The case of the char to be
flipped must be determined, and
*cp identifies at that char.

The flipped char must be written
back to the original through cp.
*cp identifies where the flipped

char should be placed.

19

Sometimes, we want to modify a pointer—e.g., a char *—by reference by
sharing the address of that pointer with a function.

Consider the following (broken) implementation of skip_spaces, which
purports to update a C string to leap beyond its leading whitespace.

Pointers and Parameters Etudes

void skip_spaces(char *s) {
 s += strspn(s, " ")
}

int main(int argc, char *argv[]) {
 char *str = " hello";
 skip_spaces(str);
 printf("%s\n", str); // should print hello
 return 0;
}

Here’s a compact autopsy report outlining why
this version is dead on arrival.
• skip_spaces receives a copy of the

address stored in main’s str variable.
• The strspn call is correct and successfully

advances the local variable s, but it doesn’t
advance or otherwise change main’s str.

• When skip_spaces returns, its updated
pointer s is discarded. main’s str wasn’t
touched, much less updated.

20

Now consider a new version of skip_spaces, which relies on
a char ** parameter () to capture the address of main's str.

Because main now shares the location of str with skip_spaces,
skip_spaces can access and even directly modify str's value.

Pointers and Parameters Etudes

void skip_spaces(char **p_str) {
 *p_str += strspn(*p_str, " ");
}

int main(int argc, char *argv[]) {
 char *str = " hello";
 skip_spaces(&str);
 printf("%s\n", str); // should print hello
 return 0;
}

Here’s the new version's grade report:
• main now passes &str, the address of its

own char * variable, not some copy of str.
• The char **p_str parameter points

directly to main’s str, so dereferencing
p_str accesses the original char *.

• The expression *p_str += ... updates
the value stored in str, advancing the
original pointer beyond all those spaces.
What failed to happen in v1 now works.

Redux: To modify a pointer owned by the caller,
the callee must receive that pointer’s address.

😱

21

Pointers: Key Takeaways

Summary:

• If you’re working with some input and do not care about any changes to the input, pass
the data by value.

• If you are modifying a specific instance of some value, pass the location of what you
would like to modify.

• If a function accept an address as a parameter, that function can travel to that address if
need be.

• If a function accepts an int *, it can modify the int at the supplied address.

• If a function accepts a char *, it can modify the char at the supplied address.
• If a function accepts a char **, it can modify the char * at the supplied address.

22

Here are few functions that do more meaningful work than earlier examples.

Strongly Typed Swaps and Rotations

void swap_ints(int *one, int *two) {
 int temp = *one;
 *one = *two;
 *two = temp;
}

void swap_strings(char **one, char **two) {
 char *temp = *one;
 *one = *two;
 *two = temp;
}

void rotate(char **p, char **q, char **r) {
 swap_strings(p, q);
 swap_strings(p, r);
}

int main(int argc, char *argv[]) {
 int x = 17, y = 29;
 printf("x = %d, y = %d\n", x, y);
 swap_ints(&x, &y);
 printf("x = %d, y = %d\n", x, y);

 char *h = "Fred", *w = "Wilma";
 printf("husband: %s, wife: %s\n", h, w);
 swap_strings(&h, &w);
 printf("husband: %s, wife: %s\n", h, w);
 swap_strings(&h, &w); // restore

 char *b = "Pebbles";
 printf("husband: %s, wife: %s, baby: %s\n", h, w, b);
 rotate(&h, &w, &b);
 printf("husband: %s, wife: %s, baby: %s\n", h, w, b);

 return 0;
}

