CS107 Lecture 9

Arrays and Pointers

Reading: K&R (5.2-5.5) or Essential C section 6

This document is copyright (C) Stanford Computer Science, licensed under Creative Commons Attribution 2.5 License. All rights reserved.
Based on slides created by Cynthia Lee, Chris Gregg, Nick Troccoli, Lisa Yan, Jerry Cain and others.

The Seven Commandments of C Strings

If we create a new string as a local char [], we can modify its characters because the
relevant, writable memory resides in the stack frame of the declaring function.

We cannot set the name of a char [] equal to another value, because it is not a true
pointer, as it refers to the block of memory reserved for the original array.

If we pass a char [] as a parameter, set something equal to it, or perform arithmetic
with it, it's automatically converted to a char *.

If we create a new string from a string literal as a char *, we cannot modify its
characters because the characters reside in the read-only data segment.

We can set a char * equal to another value, because itis an assignable pointer.

Adding an offset to a C string delivers another string—often a suffix string—beginning
many positions beyond the leading character.

If we change characters through a string parameter, those changes persist beyond the
function call, because the pointer aliases memory that existed before the call.

The First Commandment

String Behavior #1: If we create a new string as a
local char [], we can modify its characters because
the relevant, writable memory resides in the stack
frame of the declaring function.

The First Commandment

When we declare an array of characters, memory is
reserved in the stack to store the contents of the entire
array, and we can modify the characters stored there.

char str[6];
strcpy(str, "apple");

alternatively, with same effect

char str[] = "apple'";

STACK

Address Value
[0x105| "\O'
Ox104| '€’
ox103| 'l
0x102| 'P'
Ox101| 'p’
str— ox100| 'a'

The Second Commandment

String Behavior #2: We cannot set the name of
a char [] equal to another value, because it is
not a true pointer, as it refers to the block of
memory reserved for the original array.

The Second Commandment

An array variable refers to an entire block of memory. We can't reassign the
name of an existing array to refer to another.

Echar good[12];

‘strcpy(good, "Dr. Jekyll");

char evil[] = "Mr. Hyde";
ﬁaam&—=—evi}7-// nope, Jekyll is safe

Once declared, an array's size cannot be changed.
We must create another array instead.

The Third Commandment

String Behavior #3: If we passachar[] asa
parameter, set something equal to it, or
perform arithmetic using it, it's automatically
converted to a char *.

Third Commandment Etudes

How do you think the parameter str is being represented?

void fun_times(char *str) { str g;g:::::j::::i::::::;;::ES

}

int main(int argc, char *xargv[]) {
char local_str[5]; local str | 'r' | "iv ['c' | re' ["\o
strcpy(local_str, "rice"); -

fun_times(local_str);
return 0;

A. Acopy of thearray local_str
B. Apointer containing an address to
the first element in local_str

Third Commandment Etudes

How do you think the parameter str is being represented?

<

void fun_times(char *str) { str Oxa0

}

int main(int argc, char *xargv[]) {
char local_str[5]; local str | ' | "i* | "c' | 'e' | "\O'
strcpy(local_str, "rice"); -

fun_times(local_str);
return 0;

A. Acopyofthearray local_str
B.) A pointer containing an address to
the first element in local_str

Third Commandment Etudes

How do you think the parameter str is being represented?

int main(int argc, char xargv[]) { ﬁE;:::::j::::i:::i::;;:}S
char local_str[5]; str
strcpy(local_str, "rice");
char xstr = local_str + 2;
return 0;

} local_str | 'P i C e "\@’'

A. Acopyofthearray local_str +2
B. Apointer containing an address to
the third element in local_str

2

</

10

Third Commandment Etudes

How do you think the parameter str is being represented?

int main(int argc, char *xargv[]) {
char local_str[5]; str @xa2
strcpy(local_str, "rice");
char xstr = local_str + 2;

return 0;

} local_str Ir‘l lil ICI lel I\el
But ‘i;fk
willﬁno’f i‘al‘n ao?clfe
Yake me O
(©X °
ﬁ?ﬁﬁz}? A. Acopy of thearray local_str + 2
ADMKEE 5]+ [B.) A pointer containing an address to D
h h the third element in local_str E
&

11

Commandments 1 - 3: Redux

All standard string functions expect pointers to characters (either char * or
const char *) as parameters. They might accept a char [] instead, but they
are implicitly converted to char * or const char * before being passed.

size_t strlen(const char *s); size_t strlen(const char s[]);
! int strcmp(const char xsl, const char *s2); : int strcmp(const char s1[], const char s2[]); .
! char *strstr(const char *haystack, const char xneedle); ! i char xstrstr(const char haystack[], const char needle[]); :
! char xstrncat(char xdest, const char *src, size_t n); ' char *strncat(char dest[], const char src[], size_t n);

A char * can still be a string in all the core ways a char[] is.

Takeaway: We can create strings using char [] and still pass them around
as parameters using either char [] or char *.

Array and pointers are not the same. They do, however, cooperate.

12

The Fourth Commandment

String Behavior #4: If we create a new string
from a string literal as a char *, we cannot
modify its characters because the characters

reside in the read-only data segment.

13

The Fourth Commandment

There is another convenient way to create a string if we do not need to modify
it later. We can create a char * and set it directly equal to a string literal.

These first four lines run 77777 77 77 7 T T T T T e 5

without drama. . char salutation[] = "Good day!";
salutation’scharacters | char *greeting = "Hello, world!";
aremutable,and i ga1ytation[3] = 'f'; '
greetingisusedina ! . Horo .
read-only manner. ipl’"ln‘tf(%s', greeting);

E . ol = 1 Because greet-ingis declared as a char * and
—EreetTNEToT A

e e initialized to a string literal, those characters are
read-only and can't be safely overwritten. This fifth
of five lines compiles on the myth machines, but
when executed results in undefined behavior (e.g.,
on the myths, this crash crashes).

14

Fourth Commandment Etudes

For each code snippet below, can we modify characters through str?

Key Questions: Where do the characters live? In the read-only data segment?
Or in writable memory like the stack? What else determines mutability?

__

' char str[6]; (v} .void one(char xstr) { ... } v/
char*str:"rutabaga", """""""" 0 ' Evoid two(const char *str) { ... } 9
N : Eint main(int argc, char *argv[]) {
char silly[12]; o char satword[15];
gstrcpy(silly, "hootenanny") ; E § strcpy(satword, "absquatulation");
char xstr = silly; & | one(satword);

' two (satword) ;

. char *s = "barnacle"; L
. char *str = s; o !

return 0;

Fourth Commandment Gotchas

Question: Is there a runtime check that can be used to determine whether a
string's characters are modifiable?

Answer: Not reliably. 4@ This is something you can only tell by looking at
the code itself and knowing how the string was created.

In principle, you might be able to guess from the character addresses, since string
literals reside in a wildly different part of memory than stack arrays do. But this is
neither reliable nor exhaustive.

Question: So then if | am writing a string function that overwrites characters,
how can I tell if the string passed in can be safely modified?

Answer: You can’t! @ This is something you can clarify as an assumption in
documentation.

If someone calls your function on a read-only string, it will crash on the myths.

That, however, is not your function's fault if it's clear read-only strings are a no-no. g

The Fifth Commandment

String Behavior #5: We can set a char *
equal to another value, because it is an
assignable pointer.

17

The Fifth Commandment

A char * variable refers to a single character. We can reassign an existing
char * pointer to be equal to another char * pointer.

__

Echar *elphaba = "Idina Menzel"; // e.g., oxfffo
Echar *understudy = "Shoshana Bean"; // e.g., oxffeo
. elphaba = understudy; // legit! both now store Oxffe®

__

18

The Fifth Commandment

. STACK
We can also set a pointer equal to an array name Address — Value

so it addresses the first element of that array.

TT"E”"”T"(T"% """""""""""" har raroy Eig“f“””"”? [0x105 TP\ O!

int main(int argc, char *argv |

. char fruit[G%; ° E Ox104 1 "€
strcpy(fruit, "apple"); E 0x103 R L
char xfood = fruit; ma‘in Ox102 | 'p!
// equivalent ; 0x101| 'p"
char *food = &fruit[0]; ’

fruit— ox100['a'

// equivalent but misleading, avoid ; 1
char xfood = &fruit; ; food 9x f3NOx100

} An earlier version of this slide used
""""""""""""""""""""""""""""""""""""""" str instead of fruit where
fruitisnow shaded in purple.

Oops. 19

The Sixth Commandment

String Behavior #6: Adding an offsettoa C
string delivers another string—often a suffix
string—beginning many positions
beyond the leading character.

Sixth Commandment Trivia

When we compute pointer arithmetic, we advance a

: : READ-ONLY DATA
pointer by a certain number of characters.

Address Value

char *a = "peach"; /| e.g., Oxffo | Oxff5| '\O"
char *b = str + 1; // e.g., Oxffl | h!
char *c = str + 3; // e.g., Oxff3 Oxff4
; Oxff3 'c'
printf("%s", a); // prints peach | T,
printf("%s", b); // prints each Oxff2 a
printf("%s", ¢); . // prints ch ? oxffl| 'e'
Oxffo| 'p'

21

Sixth Commandment Trivia

When we use bracket notation on anything array-like, we are

really performing pointer arithmetic and dereferencing. READ-ONLY DATA

Address Value

_char #str = "booze"; // e.g., Oxffo |
E - . ra'! :
Ec:har chl str[4]; /] 'e | Oxffs| "\0"
gchar ch2 = x(str + 4); // 'e' ;
' // both add 4 to oxff@, then dereference ! Oxff4| 'e'
i // dereference O0xff4 to surface the 'e' .
| : Oxff3 z
;// unorthodox alternatives to the above Oxff2 'o!
. // that you can use, but should not '
char ch3 = *(4 + str); " l | l | Oxff1| 'o!
; — . e compiler generally translates array notation to
CharCh4 _______ 4[Str]’ __________ the equivalent pointer arithmetic, then generates Q) x (@ 'b!
assembly from the pointer version.
In fact, when looking at the assembly, you can’t
truly know whether array or pointer notation was

used. 22

The Seventh Commandment

String Behavior #7: If we change
characters through a string parameter, those

changes persist beyond the function call,

because the pointer aliases memory that
existed before the call.

Seventh Commandment Scenarios

When we pass a char * string as a parameter, C
makes a copy of the address stored in the char *
and passes it to the function. This means they
both refer to the same memory location. main

i void func(char *s) {

3

printf("%s\n", s);

Eint main(int argc, char *xargv[]) { E func

char xfancy = "pulchritude";
func(fancy);

STACK

Address

Value

fancy oxfffo

S Oxffdo

Ox10

24

Seventh Commandment Scenarios

STACK
When we pass a char array as a parameter, C makes Address ~ Value

a copy of the address of the first array element and
passes it (as a char *) to the function.

[Ox105] "\0'

Ox104| ‘'e'
void func(char *s) { . 0x103 [et
. s[4] = 'k'; 5 main ox102| ra
; : Ox101f 'p'
i int main(int argc, char xargv[]) { | '

| S

char str[] = "spare"; Stri@xl@@ !

func(str);

func s Oxf

The Seven Commandments of C Strings

If we create a new string as a local char [], we can modify its characters because the
relevant, writable memory resides in the stack frame of the declaring function.

We cannot set the name of a char [] equal to another value, because it is not a true
pointer, as it refers to the block of memory reserved for the original array.

If we pass a char [] as a parameter, set something equal to it, or perform arithmetic
with it, it's automatically converted to a char *.

If we create a new string from a string literal as a char *, we cannot modify its
characters because the characters reside in the read-only data segment.

We can set a char * equal to another value, because itis an assignable pointer.

Adding an offset to a C string delivers another string—often a suffix string—beginning
many positions beyond the leading character.

If we change characters through a string parameter, those changes persist beyond the
function call, because the pointer aliases memory that existed before the call.
26

