
1
This document is copyright (C) Stanford Computer Science, licensed under Creative Commons Attribution 2.5 License. All rights reserved.

Based on slides created by Cynthia Lee, Chris Gregg, Nick Troccoli, Lisa Yan, Jerry Cain and others.

CS107 Lecture 9
Arrays and Pointers

Reading: K&R (5.2-5.5) or Essential C section 6

2

The Seven Commandments of C Strings

1. If we create a new string as a local char[], we can modify its characters because the
relevant, writable memory resides in the stack frame of the declaring function.

2. We cannot set the name of a char[] equal to another value, because it is not a true
pointer, as it refers to the block of memory reserved for the original array.

3. If we pass a char[] as a parameter, set something equal to it, or perform arithmetic
with it, it's automatically converted to a char *.

4. If we create a new string from a string literal as a char *, we cannot modify its
characters because the characters reside in the read-only data segment.

5. We can set a char * equal to another value, because it is an assignable pointer.

6. Adding an offset to a C string delivers another string—often a suffix string—beginning
many positions beyond the leading character.

7. If we change characters through a string parameter, those changes persist beyond the
function call, because the pointer aliases memory that existed before the call.

3

String Behavior #1: If we create a new string as a
local char[], we can modify its characters because

the relevant, writable memory resides in the stack
frame of the declaring function.

The First Commandment

4

Address Value

…

0x105 '\0'

0x104 'e'

0x103 'l'

0x102 'p'

0x101 'p'

0x100 'a'

…

When we declare an array of characters, memory is
reserved in the stack to store the contents of the entire
array, and we can modify the characters stored there.

str

STACK

The First Commandment

char str[6];
strcpy(str, "apple");

char str[] = "apple";

alternatively, with same effect

5

String Behavior #2: We cannot set the name of
a char[] equal to another value, because it is

not a true pointer, as it refers to the block of
memory reserved for the original array.

The Second Commandment

6

An array variable refers to an entire block of memory. We can't reassign the
name of an existing array to refer to another.

Once declared, an array's size cannot be changed.
We must create another array instead.

The Second Commandment

char good[12];
strcpy(good, "Dr. Jekyll");
char evil[] = "Mr. Hyde";
good = evil; // nope, Jekyll is safe

7

String Behavior #3: If we pass a char[] as a
parameter, set something equal to it, or

perform arithmetic using it, it's automatically
converted to a char *.

The Third Commandment

8

How do you think the parameter str is being represented?

 void fun_times(char *str) {
 ...
 }

 int main(int argc, char *argv[]) {
 char local_str[5];
 strcpy(local_str, "rice");
 fun_times(local_str);
 return 0;
 }

str ?

A. A copy of the array local_str
B. A pointer containing an address to

the first element in local_str

local_str

0xa0 0xa1 0xa2 0xa3 0xa4

'r' 'i' 'c' 'e' '\0'

Third Commandment Etudes

9

How do you think the parameter str is being represented?

 void fun_times(char *str) {
 ...
 }

 int main(int argc, char *argv[]) {
 char local_str[5];
 strcpy(local_str, "rice");
 fun_times(local_str);
 return 0;
 }

str

A. A copy of the array local_str
B. A pointer containing an address to

the first element in local_str

local_str

0xa0 0xa1 0xa2 0xa3 0xa4

'r' 'i' 'c' 'e' '\0'

Third Commandment Etudes

0xa0

10

How do you think the parameter str is being represented?

 int main(int argc, char *argv[]) {
 char local_str[5];
 strcpy(local_str, "rice");
 char *str = local_str + 2;
 ...
 return 0;
 }

Third Commandment Etudes

str ?

A. A copy of the array local_str + 2
B. A pointer containing an address to

the third element in local_str

local_str

0xa0 0xa1 0xa2 0xa3 0xa4

'r' 'i' 'c' 'e' '\0'

11

How do you think the parameter str is being represented?

 int main(int argc, char *argv[]) {
 char local_str[5];
 strcpy(local_str, "rice");
 char *str = local_str + 2;
 ...
 return 0;
 }

Third Commandment Etudes

str

A. A copy of the array local_str + 2
B. A pointer containing an address to

the third element in local_str

local_str

0xa0 0xa1 0xa2 0xa3 0xa4

'r' 'i' 'c' 'e' '\0'

0xa2

12

All standard string functions expect pointers to characters (either char * or
const char *) as parameters. They might accept a char[] instead, but they

are implicitly converted to char * or const char * before being passed.

A char * can still be a string in all the core ways a char[] is.
Takeaway: We can create strings using char[] and still pass them around

as parameters using either char[] or char *.

Array and pointers are not the same. They do, however, cooperate.

Commandments 1 – 3: Redux

size_t strlen(const char *s);
int strcmp(const char *s1, const char *s2);

char *strstr(const char *haystack, const char *needle);
char *strncat(char *dest, const char *src, size_t n);

size_t strlen(const char s[]);
int strcmp(const char s1[], const char s2[]);

char *strstr(const char haystack[], const char needle[]);
char *strncat(char dest[], const char src[], size_t n);

13

String Behavior #4: If we create a new string
from a string literal as a char *, we cannot

modify its characters because the characters
reside in the read-only data segment.

The Fourth Commandment

14

There is another convenient way to create a string if we do not need to modify
it later. We can create a char * and set it directly equal to a string literal.

The Fourth Commandment

char salutation[] = "Good day!";
char *greeting = "Hello, world!";
salutation[3] = 'f';
printf("%s", greeting);

greeting[0] = 'h';

These first four lines run
without drama.

salutation’s characters
are mutable, and

greeting is used in a
read-only manner.

Because greeting is declared as a char * and
initialized to a string literal, those characters are

read-only and can't be safely overwritten. This fifth
of five lines compiles on the myth machines, but

when executed results in undefined behavior (e.g.,
on the myths, this crash crashes).

15

For each code snippet below, can we modify characters through str?
Key Questions: Where do the characters live? In the read-only data segment?

Or in writable memory like the stack? What else determines mutability?

Fourth Commandment Etudes

char str[6];

char *str = "rutabaga";

char silly[12];
strcpy(silly, "hootenanny");
char *str = silly;

char *s = "barnacle";
char *str = s;

void one(char *str) { ... }

void two(const char *str) { ... }

int main(int argc, char *argv[]) {
 char satword[15];
 strcpy(satword, "absquatulation");
 one(satword);
 two(satword);
 return 0;
}

16

Question: Is there a runtime check that can be used to determine whether a
string's characters are modifiable?
Answer: Not reliably. This is something you can only tell by looking at
the code itself and knowing how the string was created.

In principle, you might be able to guess from the character addresses, since string
literals reside in a wildly different part of memory than stack arrays do. But this is
neither reliable nor exhaustive.

Question: So then if I am writing a string function that overwrites characters,
how can I tell if the string passed in can be safely modified?
Answer: You can’t! This is something you can clarify as an assumption in
documentation.

If someone calls your function on a read-only string, it will crash on the myths.
That, however, is not your function's fault if it's clear read-only strings are a no-no.

Fourth Commandment Gotchas

17

String Behavior #5: We can set a char *
equal to another value, because it is an

assignable pointer.

The Fifth Commandment

18

A char * variable refers to a single character. We can reassign an existing
char * pointer to be equal to another char * pointer.

The Fifth Commandment

char *elphaba = "Idina Menzel"; // e.g., 0xfff0
char *understudy = "Shoshana Bean"; // e.g., 0xffe0
elphaba = understudy; // legit! both now store 0xffe0

19

We can also set a pointer equal to an array name
so it addresses the first element of that array.

Address Value
…

0x105 '\0'
0x104 'e'
0x103 'l'
0x102 'p'
0x101 'p'
0x100 'a'
0xf8 0x100

…

fruit
food

main

int main(int argc, char *argv[]) {
 char fruit[6];
 strcpy(fruit, "apple");
 char *food = fruit;
 // equivalent
 char *food = &fruit[0];
 // equivalent but misleading, avoid
 char *food = &fruit;
 ...
}

STACK

The Fifth Commandment

An earlier version of this slide used
str instead of fruit where

fruit is now shaded in purple.
Oops.

20

String Behavior #6: Adding an offset to a C
string delivers another string—often a suffix

string—beginning many positions
beyond the leading character.

The Sixth Commandment

21

When we compute pointer arithmetic, we advance a
pointer by a certain number of characters.

Address Value

…

0xff5 '\0'

0xff4 'h'

0xff3 'c'

0xff2 'a'

0xff1 'e'

0xff0 'p'

…

READ-ONLY DATA

Sixth Commandment Trivia

char *a = "peach"; // e.g., 0xff0
char *b = str + 1; // e.g., 0xff1
char *c = str + 3; // e.g., 0xff3

printf("%s", a); // prints peach
printf("%s", b); // prints each
printf("%s", c); // prints ch

22

When we use bracket notation on anything array-like, we are
really performing pointer arithmetic and dereferencing.

char *str = "booze"; // e.g., 0xff0
char ch1 = str[4]; // 'e'
char ch2 = *(str + 4); // 'e'
// both add 4 to 0xff0, then dereference
// dereference 0xff4 to surface the 'e'

// unorthodox alternatives to the above
// that you can use, but should not
char ch3 = *(4 + str);
char ch4 = 4[str];

Address Value

…

0xff5 '\0'

0xff4 'e'

0xff3 'z'

0xff2 'o'

0xff1 'o'

0xff0 'b'

…

READ-ONLY DATA

The compiler generally translates array notation to
the equivalent pointer arithmetic, then generates

assembly from the pointer version.
In fact, when looking at the assembly, you can’t

truly know whether array or pointer notation was
used.

Sixth Commandment Trivia

23

String Behavior #7: If we change
characters through a string parameter, those
changes persist beyond the function call,

because the pointer aliases memory that
existed before the call.

The Seventh Commandment

24

When we pass a char * string as a parameter, C
makes a copy of the address stored in the char *

and passes it to the function. This means they
both refer to the same memory location.

Address Value

…

0xfff0 0x10

…

…

0xffd0 0x10

…

fancy

s

main

func

void func(char *s) {
 printf("%s\n", s);
}

int main(int argc, char *argv[]) {
 char *fancy = "pulchritude";
 func(fancy);
 ...
}

Seventh Commandment Scenarios
STACK

25

When we pass a char array as a parameter, C makes
a copy of the address of the first array element and

passes it (as a char *) to the function.

Address Value

…
0x105 '\0'
0x104 'e'
0x103 'r'
0x102 'a'
0x101 'p'
0x100 's'

…
…

0xf 0x100
…

str

s

main

func

Seventh Commandment Scenarios

void func(char *s) {
 s[4] = 'k';
}

int main(int argc, char *argv[]) {
 char str[] = "spare";
 func(str);
 ...
}

STACK

26

The Seven Commandments of C Strings

1. If we create a new string as a local char[], we can modify its characters because the
relevant, writable memory resides in the stack frame of the declaring function.

2. We cannot set the name of a char[] equal to another value, because it is not a true
pointer, as it refers to the block of memory reserved for the original array.

3. If we pass a char[] as a parameter, set something equal to it, or perform arithmetic
with it, it's automatically converted to a char *.

4. If we create a new string from a string literal as a char *, we cannot modify its
characters because the characters reside in the read-only data segment.

5. We can set a char * equal to another value, because it is an assignable pointer.

6. Adding an offset to a C string delivers another string—often a suffix string—beginning
many positions beyond the leading character.

7. If we change characters through a string parameter, those changes persist beyond the
function call, because the pointer aliases memory that existed before the call.

