CS107 Lecture 10
Stack and Heap

Reading: K&R 5.6-5.9 or Essential C section 6 on the heap

This document is copyright (C) Stanford Computer Science, licensed under Creative Commons Attribution 2.5 License. All rights reserved.
Based on slides created by Cynthia Lee, Chris Gregg, Nick Troccoli, Lisa Yan, Jerry Cain and others.

Array Trivia: sizeof

. . STACK
When you declare an array, contiguous memory is Address Value

allocated on the stack to store each of its elements.

Echar fruit[6];

' strepy(fruit, ”grape™); ’@xl@5 "\O'

size_t size = sizeof(fruit); // 6
Ox104| 'e'
The array name (e.g., fruit)is not a true pointer. It refers .

. Ox103 P
to the entire array.

Ox102| 'a’
Here, sizeof returns the size of the entire array, in bytes. 0x101| 'r'

L fruit— oxi00| 'g'
That’s because the array declaration is in scope at the time -

the compile-time sizeof operation is evaluated.

Array Trivia: sizeof

STACK
When you pass an array as a parameter, C really Address Value
passes the address of the first element. B ox1f2] '\@!
void func(char-str) £ Ox1f1 S
 (size_t size = sizeof(str); // 8) main| str Ox1fo [tht
The amount 7_/:,_,-‘;: ---------------------------------- -
of mgmory } Oxff
set aside for -
func's stris dint main(int argc, char xargv[]) { Oxfe
8 bytes. E char-str{3]; T :
' ‘s1ze t size = sizeof(str); // 3 ; oxfd
S t l;éb—y_(-S‘t' y- Mhitt e : 0% .FC
func(str); i
. i func Oxfb
} Oxfa
p Oxf9
The amount of memory set aside This is the state of memory just £
formain's str array is 3 bytes. as func begins to execute. STroxfs

Array Trivia: Pointer Arithmetic

When applying pointer arithmetic, we advance a

pointer by a certain number of bytes. READ-ONLY DATA

Address Value

char *a = "peach"; /| e.g., Oxffo | Oxff5| '\O"
char *b = str + 1; /] e.g., Oxffl ' h!
char *c = str + 3; /] e.g., Oxff3 Oxff4
; Oxff3 'c'
printf("%s\n", a); // prints peach | T
printf("%s\n", b); // prints each E Oxff2 a
printf("%s\n", c); // prints ch ? oxffl| 'e'
Oxffo| 'p'

Array Trivia: Pointer Arithmetic

Pointer arithmetic advances a pointer by a multiple

of the pointee type's size. STACK

Address Value

The 1,2, and -1 offsets are internally scaled by sizeof (int).

int numbers[] = {52, 23, 12, 34, 16, 45};

'int *nums® = numbers; // shorter name ' - 45
L. OX1004_

tint *numsl = numsO + 1; // e.g., Oxff4 . =

int *nums3 = numsl + 2; // e.g., Oxffc 5 oxi000=| 16
tint *nums2 = nums3 - 1; // e.g., Oxff8 | —
Oxffc— 34
printf("%d\n", *numsl); /] 23 oxfra— 12
printf("%d\n", *nums2); /] 12] =
printf("%d\n", *nums3); // 34 oxffaz| 23
iprintf("%zu\n", nums3 - numsl); /] 2 -
oo oooooooooooooooooooooooooooooo ' oxffo=| 52

Because nums1 and nums3 are both of type int *,
nums3 - nums1 evaluates to the number of ints that fit in between them.

Restated, if nums1 + 2 equals nums 3, then nums3 - nums1 better equal 2. 5

CS107 Topic 3: Stack and Heap Memory

How can we effectively manage all forms of memory in our programs?

Why is answering this question useful?

* |[llustrates how we can efficiently pass data around using pointers

* |llustrates how to construct data structures that live longer than the
function calls that create them.

Learning goals:

* Understand the differences between stack and heap memory and when to
choose one over the other.

* Become fluentinmalloc, free,and realloc as standard C language
directives used to manage heap memory.

CS107 Topic 3: Stack and Heap Memory

this week’s focus

Stack segment: Used for function calls, local

variables, and return addresses. It typically

| occupies higher memory addresses and grows

downwards towards the heap as it expands.

Heap segment: Used for dynamic memory
allocation (e.g., viamalloc in C, new in C++)

and grows upwards towards higher addresses.

Data segment: Used to store explicitly
initialized global variables and constant,
including the string constants used throughout
your code (e.g., "apple", "peach",
"rutabaga", "absquatulation").

¥ seac 4

Automatic variables (local to a function's scope), caller’s return address, etc.
(grows towards lower memory addresses)

Dynamic memory allocation through malloc/new free/delete
(grows towards higher memory addresses)

BSS

Text
Binary image of the process (e.g. /bin/1s)

4 0xC00000

| OXFFFFFFFF

0OS Kernel region: Used for the
operating system's kernel, device
cfrivers, and low-level memory
management code. Your code isn’t
allowed to access this region and
attempts to do so result in a crash.

BSS segment: Used for all global
variables that aren't explicitly
initialized before mainis called. By
default, all bytes in this segment start
out as zeroes.

Text segment: Contains the compiled
machine code of the running
executable, like s, emacs,

triangle, sat,or automata
0x08048000

0x00000000

Stack Segment Case Study

When a function is called, a new frame is pushed onto the stack
and makes space for local variables. When the function returns, its

frame is popped and access to those locals formally goes away.
stack =

ivoid func2() {
! 'Int d = O; i
3 é -

- void func1() {
int ¢ = 99;

. func2();

3

Eint main(int argc, char *xargv[]) { E
' int a = 42; |

int b 17;

0x0

main

argc

argv

Oxfo

Stack Segment Case Study

When a function is called, a new frame is pushed onto the stack
and makes space for local variables. When the function returns, its

. main
frame is popped and access to those locals formally goes away.
___ stack = a 42 argc 1
ivoid func2() { i
i} int d = 0; E _ argy oOxfo

- void func1() {
int ¢ = 99;

. func2();

3

Eint main(int argc, char xargv[]) { E
' int a = 42; |

int b 17;

0x0

Stack Segment Case Study

When a function is called, a new frame is pushed onto the stack
and makes space for local variables. When the function returns, its

. main
frame is popped and access to those locals formally goes away.
___ stack = a 42 argc 1
ivoid func2() { |
i} int d = 0; E _ b 17 argy Oxfo

- void func1() {
int ¢ = 99;

. func2();

3

Eint main(int argc, char xargv[]) { E
' int a = 42; |

int b = 17;

. 00 10

Stack Segment Case Study

When a function is called, a new frame is pushed onto the stack
and makes space for local variables. When the function returns, its

frame is popped and access to those locals formally goes away.
stack ==

ivoid func2() {
! 'Int d = O; i
3 é -

- void func1() {
int ¢ = 99;

. func2();

3

Eint main(int argc, char xargv[]) { E
' int a = 42; |

int b 17;

0x0

main

42

argc

argv

Oxfo

11

Stack Segment Case Study

When a function is called, a new frame is pushed onto the stack
and makes space for local variables. When the function returns, its

. main
frame is popped and access to those locals formally goes away.

___ stack = a 42 argc 1
ivoid func2() { i
i} int d = 0; E b 17 argy Oxfo
E funcl
tvoid funcl() {
' int ¢ = 99;
. func2(); |
¥ | -

~int main(int argc, char xargv[]) {
| int a = 42; I
int b = 17;

T 00 12

Stack Segment Case Study

When a function is called, a new frame is pushed onto the stack
and makes space for local variables. When the function returns, its

. main
frame is popped and access to those locals formally goes away.

___ stack = a 42 argc 1
ivoid func2() { :
i} int d = 0; E b 17 argy Oxfo
E funcl
void funcl() { :
| int ¢ = 99; | c | 99
. func2(); |
¥ | -

~int main(int argc, char xargv[]) {
| int a = 42; I
int b = 17;

. 00 13

Stack Segment Case Study

When a function is called, a new frame is pushed onto the stack

and makes space for local variables. When the function returns, its T
frame is popped and access to those locals formally goes away.
___ stack = a 42 argc 1
ivoid func2() { :
i} int d = 0; E b 17 argy oOxfo
E funcl
rvoid funcl() { |
' int ¢ = 99; § c | 99
. func2(); i
3 | ~ '
Eint main(int argc, char *xargv[]) { E
§ int a = 42; §
. dnt b = 17;
| funcl();
i func2();
§ return 0;
0x0 4

Stack Segment Case Study

When a function is called, a new frame is pushed onto the stack
and makes space for local variables. When the function returns, its

main
frame is popped and access to those locals formally goes away.

___ stack == a 42 argc 1
tvoid func2() { ;
} int d = 0; b | 17 |argy| OxfO
§ funcl
ivoid funcl() { :

int ¢ = 99; | c | 99
. func2(); !
L}
; : func2
int main(int argc, char xargv[]) { |
§ int a = 42; '
| int b = 17;
func1() —~
§ func2()
)

D 0x0 15

Stack Segment Case Study

When a function is called, a new frame is pushed onto the stack

and makes space for local variables. When the function returns, its T
frame is popped and access to those locals formally goes away.
___ stack = a 42 argc 1
tvoid func2() { |
é} int d = 0; E b | 17 Ay Oxfo
| funcl
ivoid funcl() { :
int ¢ = 99; | c | 99

. func2(); !
L}
; : func2
int main(int argc, char xargv[]) { |
| int a = 42; | d|l ©
. dnt b = 17; |
funcl(); —~
i func2();
§ return 0;
L} E
--- 0x0 16

Stack Segment Case Study

When a function is called, a new frame is pushed onto the stack

and makes space for local variables. When the function returns, its T
frame is popped and access to those locals formally goes away.
___ stack = a 42 argc 1
tvoid func2() { |
} int d = 0; b | 17 |argy| OxfO
| funcl
ivoid funcl() { :
int ¢ = 99; | c | 99

. func2(); !
L}
; : func2
int main(int argc, char xargv[]) { |
| int a = 42; | d|l ©
. dnt b = 17; | t
i funcl(); i —
i func2(); ’
§ return 0;
L} !
--- 0x0 17

Stack Segment Case Study

When a function is called, a new frame is pushed onto the stack
and makes space for local variables. When the function returns, its

. main
frame is popped and access to those locals formally goes away.

___ stack = a 42 argc 1
ivoid func2() { :
i} int d = 0; E b 17 argy Oxfo
E funcl
void funcl() { :
| int ¢ = 99; | c | 99
. func2(); i
¥ | -

~int main(int argc, char xargv[]) {
| int a = 42; I
int b = 17;

. 00 18

Stack Segment Case Study

When a function is called, a new frame is pushed onto the stack
and makes space for local variables. When the function returns, its

) main
frame is popped and access to those locals formally goes away.

___ stack — a 42 argc 1
ivoid func2() { :
i} int d = 0; E b 17 argy Oxfo
E ; funcl
rvoid funcl() { |
| int ¢ = 99; | c | 99
func2(); t
B s ~

~int main(int argc, char xargv[]) {
| int a = 42; I
int b = 17;

. 00 19

Stack Segment Case Study

When a function is called, a new frame is pushed onto the stack
and makes space for local variables. When the function returns, its

frame is popped and access to those locals formally goes away.
stack ==

ivoid func2() {
! 'Int d = O; i
3 é -

- void func1() {
int ¢ = 99;

. func2();

3

Eint main(int argc, char xargv[]) { E
' int a = 42; |

int b 17;

0x0

main

42

argc

argv

Oxfo

0

Stack Segment Case Study

When a function is called, a new frame is pushed onto the stack
and makes space for local variables. When the function returns, its

frame is popped and access to those locals formally goes away.
stack ==

ivoid func2() {
! 'Int d = O; i
3 é -

- void func1() {
int ¢ = 99;

. func2();

3

Eint main(int argc, char xargv[]) { E
' int a = 42; |

int b 17;

0x0

main

42

argc

argv

Oxfo

P1

Stack Segment Case Study

When a function is called, a new frame is pushed onto the stack
and makes space for local variables. When the function returns, its

. main

frame is popped and access to those locals formally goes away.
___ stack = a 42 argc 1
ivoid func2() { ,
:} int d = 03 : b 17 argv Ox o
Note the stack frame for this call to func2 func2
'void funcl() { overlays the space previously used for the
' int ¢ = 99; earlier call to funcl. The information that

func2(); accumulated here by the func1l callisn’t

} relevant anymore, so the space can bereused. I

'int main(int argc, char xargv[]) {
' int a = 42;

int b 17;

funcl();

func2();

return 0;

D 0x0 D2

Stack Segment Case Study

When a function is called, a new frame is pushed onto the stack
and makes space for local variables. When the function returns, its

. main

frame is popped and access to those locals formally goes away.
_______ e stack = a 42 argc 1
ivo1d func2() { |
. int d = 0; 5 b |17 |argy| OxfO
'} :
Note the stack frame for this call to func2 func2
'void funcl() { overlays the space previously used for the
' int ¢ = 99; earlier call to funcl. The information that 41 0

func2(); accumulated here by the func1l callisn’t

} relevant anymore, so the space can bereused. I

'int main(int argc, char xargv[]) {
' int a = 42;

int b 17;

funcl();

func2();

return 0;

e 0x0 D3

Stack Segment Case Study

When a function is called, a new frame is pushed onto the stack
and makes space for local variables. When the function returns, its

. main

frame is popped and access to those locals formally goes away.
_______ e stack = a 42 argc 1
ivo1d func2() { |
. int d = 0; 5 b |17 |argy| OxfO
i} :
Note the stack frame for this call to func2 func2
'void funcl() { overlays the space previously used for the
' int ¢ = 99; earlier call to funcl. The information that 41 0

func2(); accumulated here by the func1l callisn’t t

} relevant anymore, so the space can bereused. I

'int main(int argc, char xargv[]) {
' int a = 42;

int b 17;

funcl();

func2();

return 0;

. 00 D4

Stack Segment Case Study

When a function is called, a new frame is pushed onto the stack
and makes space for local variables. When the function returns, its

frame is popped and access to those locals formally goes away.
stack ==

ivoid func2() {
! 'Int d = O; i
3 é -

- void func1() {
int ¢ = 99;

. func2();

3

Eint main(int argc, char xargv[]) { E
' int a = 42; |

int b 17;

0x0

main

42

argc

argv

Oxfo

P5

Stack Segment Case Study

When a function is called, a new frame is pushed onto the stack
and makes space for local variables. When the function returns, its

frame is popped and access to those locals formally goes away.
stack ==

ivoid func2() {
! 'Int d = O; i
3 é -

- void func1() {
int ¢ = 99;

. func2();

3

Eint main(int argc, char xargv[]) { E
' int a = 42; |

int b 17;

0x0

main

42

Oxfo

L6

Stack Segment Case Study

When a function is called, a new frame is pushed onto the stack
and makes space for local variables. When the function returns, its
frame is popped and access to those locals formally goes away.

ivoid func2() {

! 'Intd:O;

B

Evoid funcl() {
int ¢ = 99;

. func2();

B

int main(int argc, char xargv[]) { |
' int a = 42; '
int b = 17;

funcl();

func2();

return 0;

. 0x0 D7

Stack Segment Case Study: Mayday, Mayday

Here’s a well-intentioned (but broken) program that relies on a
(broken) helper function to create a string of repeated characters.—

main
e L , arge: | 4
. char *create_string(char ch, int num) { stack ==
| char new_str[num + 17; : ,
for (size_t 1 O; 1 < num; i++) { | - Bkl OxIrO

new_str[i] ch;

}
new_str[num] = '"\0';
return new_str;

iint main(int argc, char *xargv[]) {

char *str = create_string('a', 4);
printf("%s\n", str); // want to print aaaa
return 0;

0x0 S

Stack Segment Case Study: Mayday, Mayday

Here’s a well-intentioned (but broken) program that relies on a
(broken) helper function to create a string of repeated characters.—

main

e U , arge:| 4 | str:
. char *create_string(char ch, int num) { 'stack =

char new_str[num + 1];

for (size_t i = 0; i < num; i++) { | ISy OxITi0
new_str[i] = ch; ‘

) |

new_str[num] = '"\0';

return new_str;

iint main(int argc, char *xargv[]) {

char *str = create_string('a', 4);
printf("%s\n", str); // want to print aaaa
return 0;

0x0 P

Stack Segment Case Study: Mayday, Mayday

Here’s a well-intentioned (but broken) program that relies on a

(broken) helper function to create a string of repeated characters.— in

e S , — arge:[4 | str:

i char xcreate_string(char ch, int num) { 'stack

' char new_str[num + 1]; | ,
for (size_t i = 0; i < num; i++) { : gliBid| OxIio

new_str[i] = ch; § create string

} | ch:| g num: | 4
new_str[num] = "\0';
return new_str; i -

3
Eint main(int argc, char *xargv[]) {
char *str = create_string('a', 4);

printf("%s\n", str); // want to print aaaa
return 0;

30

0x0

Stack Segment Case Study: Mayday, Mayday

Here’s a well-intentioned (but broken) program that relies on a

(broken) helper function to create a string of repeated characters.~ ——=
. R , arge:| 4 | str:
 char *create_string(char ch, int num) { ‘stack =
' char new_str[num + 17; ’ ,

for (size_t i = 0; i < num; i++) { , g2l 0xfif0
new_str[i] = ch; § create string
} | ch:| g num: | 4
new_str[num] = '\0';
| return new_str;
B
Eint main(int argc, char *xargv[]) {
! char *str = create_string('a', 4);
printf("%s\n", str); // want to print aaaa
return 0; !
L} i new_str:
0x0 &

Stack Segment Case Study: Mayday, Mayday

Here’s a well-intentioned (but broken) program that relies on a

(broken) helper function to create a string of repeated characters.~ ——=
. R , arge:| 4 | str:
 char *create_string(char ch, int num) { ‘stack =
| char new_str[num + 17; ! ,

for (size_t i = 0; i < numj; i++) { , gliBid| OxIio

new_str[i] = ch; § create string
} | ch:| g num: | 4
new_str[num] = '\0'; |

! return new_str; i .

B i 0

; i lal

1int main(int argc, char xargv[]) { .

! char *str = create_string('a', 4); ; a
printf("%s\n", str); // want to print aaaa § '3’
return 0; i ot

L} i new_str: a

0x0 &

Stack Segment Case Study: Mayday, Mayday

Here’s a well-intentioned (but broken) program that relies on a
(broken) helper function to create a string of repeated characters.

main
. R , arge:| 4 | str:
' char *create_string(char ch, 1int num) { 'stack
' char new_str[num + 17; ! :
for (size_t i = 0; i < numj; i++) { Sligiall OxIri0
new_str[i] = ch; create string
} ch:| 5 num: | 4
new_str[num] = '\0'; :
return new_str; returns e.g., 0xff50 "0
1 ’
i lal
i int main(int argc, char xargv[]) { o
! char *str = create_string('a', 4); ; a
printf("%s\n", str); // want to print aaaa '3’
return 0; ot
3 i new_str: |2

0x0 p3

Stack Segment Case Study: Mayday, Mayday

Here’s a well-intentioned (but broken) program that relies on a

(broken) helper function to create a string of repeated characters.~ ——=
___ , argc: str:
 char xcreate_string(char ch, int num) { ‘stack = 1 0xfi>50
' char new_str[num + 1]; ’ ,
for (size_t i = 0; i < num; i++) { , gliBid| OxIio
new_str[i] = ch; § create string
} i ch:| 5 num: | 4
new_str[num] = '"\0';
i return new_str; 5 —
B i 0
; i lal
1int main(int argc, char xargv[]) { .
! char *str = create_string('a', 4); | a
printf("%s\n", str); // want to print aaaa § '3’
return 0; § .
3 i new_str: |2
0x0 34

Stack Segment Case Study: Mayday, Mayday

Here’s a well-intentioned (but broken) program that relies on a
(broken) helper function to create a string of repeated characters.—

main

“Char create_string(char ch, int numy { T g ATBC:| 1 [ST 0x{f50
char new_str[num + 1]; i
for (size_t E = 0; 'i]i num; i++) { | [l@68ve 0xfri0
new_str[i] = ch; :
1 Defcon 1: Local variables disappear when the
new_str[num] = '\0'; functionreturns. These foura'sare embedded in
return new_str; a local array that no longer exists, so str is not

} our address to dereference.

Eint main(int argc, char *xargv[]) {
! char *str = create_string('a', 4); :
printf("%s\n", str); // want to print aaaa § $

return 0; '
5 } ’ In some cases, the array can be pre-allocated on

the stack using size information computed at
runtime. Butthat's not ideal if it requires an
inelegant restructuring of the code.

35

0x0

Introducing malloc

Much as C++ allows you to via its operator new, C allows you to
dynamically allocate memory using operator new’s equivalent: malloc

void *malloc(size_t size)}

* malloc expects the number of raw bytes that

should be allocated from the heap. Examples:

* malloc returns the base address of thefreshly . . . _ i10c(n « sizeof(int)):
allocated memory. char xt malloc(strlen(s) + 1);

« malloc doesn't know or care if the memory is to be node *n = malloc(sizeof(node));
used as an array, a record, or something else.

* The return type is a void * to denote an address to generic (i.e., type-less) memory.
* You can set another pointer equal to it without casting.
36

Stack Segment Case Study: malloc Heals

Here's a working version that repairs the problem by allocating the

new string on the heap usingmalloc. ~ oain
R 0 e , arge:| 4 | str:
char xcreate_string(char ch, int num) { stack =
char *new_str = malloc(num + 1) :
assert(new_str != NULL) ; g2l 0xfif0
for (size_t i = 0; 1 < num; i++) { § create string
new_str[i] = ch; i ch:| o num: | 4
1 :
. new_str[num] = '\0'; : new_str: | Oxed0
5 return new_str; 5 ~— —
B '
1nt main(int argc, char *argv[]) { |
; char *str = create_string('a', 4); iheap -
§ printf("%s\n", str); // want to print aaaa i
§ return 0; // should free str, will soon
)
0x0 ’

Stack Segment Case Study: malloc Heals

Here's a working version that repairs the problem by allocating the

new string on the heap using malloc. ~ main
(L. , argc: str:
i char *create_string(char ch, int num) { 'stack 1 Oxed0,
' char *new_str = malloc(num + 1)} ! :
assert(new_str != NULL) | argv: | Oxff0
for (size_t i = 0; i < num; i++) { rehwnseg”bxedo create string
new_str[i] = ch; i ch:| o num: | 4
} :
new_strinum] = '\0'; ! new_str: | Oxed0
return new_str; ; ~— —

3

1nt main(int argc, char *argv[]) {

char *str = create_string('a', 4);
printf("%s\n", str); // want to print aaaa
return 0; // should free str, will soon

Eheap —

0x0

Stack Segment Case Study: malloc Heals

Here's a working version that repairs the problem by allocating the

new string on the heap usingmalloc. ~ [pain
R , argc: str:

' char *create_string(char ch, 1int num) { 'stack = 1 Oxed0,
char *new_str = malloc(num + 1)} i :
assert(new_str != NULL) | - Bkl OxIrO
for (size_t i = 0; i < num; i++) { |

new_str[i] = ch;
}
| new_str[num] = '"\0';
| return new_str;
L}

1nt main(int argc, char *argv[]) { i "\0'
char *str = create_string('a', 4); iheap — =
printf("%s\n", str); // want to print aaaa i —
return 0; // should free str, will soon a

} Ial

Ial
0x0 ’

Stack Segment Case Study: malloc Heals

Here's a working version that repairs the problem by allocating the

new string on the heap usingmalloc. — :
main
___ argc: str:
. char *create_string(char ch, int num) { 'stack =< 8¢ 11 OxedO,
| char *new_str = malloc(num + 1)} § | oxfffo
assert(new_str != NULL); i - argv:
for (size_t i = 0; i < num; i++) { :
new_str[i] = ch;
}
new_str[num] = '"\0';
§ return new_str;
3
Eint main(int argc, char *grgv[]) { E \0'
chgr xstr = create_string('a', 4);. iheap - g
printf("%s\n", str); // want to print aaaa !
return 0; // should free str, will soon a
} |a|
Ial
0x0 0

Dynamic Memory Etude

Let’s write a function that returns an array of the first Len multiples of mult.

int xarray_of_multiples(int mult, int len) { !
/* TODO: arr declaration here x/ :

for (size_t i = 0; i < len; i++) {
arr[i] = mult * (i + 1);

}

return arr; Declare a pointer to catch the heap-based
it address returned by malloc.

Ensure malloc's argument is the number of
How should we declare and initialize arr? bytes needed to fulfill the allocation request.
. CS107 policy: assert the address is non-NULL.
A. int arr[len];
B. int arr[] = malloc(sizeof(int));
int *arr = malloc(len * sizeof(int));
. int *arr = malloc((len + 1) * sizeof(int));

2

ég?

()

41

Dynamic Memory Etude

Let's write a function that returns an array of the first Len multiples of mult.

int xarray_of_multiples(int mult, int len) { !
' int *arr = malloc(len * sizeof(int));
assert(arr != NULL);
for (size_t i = 0; i < len; i++) {

arr[i] = mult * (i + 1);
}

return arr;

If an allocation error occurs (e.g., the process is out of heap memory or the heap has been corrupted by flawed heap
management), malloc might return NULL.

assert will intentionally terminate the program if the condition evaluates to false. Memory allocation errors are a big
deal, and we should end the program the moment we see them. Otherwise, your program will proceed and likely crash in a
much more anonymous manner that might not be easily traced back to a failed malloc call.

In practice, you never ship code with active assert statements, but they are used during the development process to
verify that certain expectations are being met and minimize the chances of runtime surprises. (The assert statements can
be stripped out of the executable pretty easily during compilation.) 42

Dynamic Memory Etude

Let's write a function that returns an array of the first Len multiples of mult.

int xarray_of_multiples(int mult, int len) { !
' int *arr = malloc(len * sizeof(int));
assert(arr != NULL);
for (size_t i = 0; i < len; i++) {

arr[i] = mult * (i + 1);
}

return arr;

If an allocation error occurs (e.g., the process is out of heap memory or the heap has been corrupted by flawed heap
management), malloc might return NULL.

assert will intentionally terminate the program if the condition evaluates to false. Memory allocation errors are a big
deal, and we should end the program the moment we see them. Otherwise, your program will proceed and likely crash in a
much more anonymous manner that might not be easily traced back to a failed malloc call.

In practice, you never ship code with active assert statements, but they are used during the development process to
verify that certain expectations are being met and minimize the chances of runtime surprises. (The assert statements can
be stripped out of the executable pretty easily during compilation.) 43

When Heap-Based Allocation Makes Sense

Here are four common scenarios where dynamic memory allocation is
preferable to stack allocation:

 When memory must outlive the current function call
Heap-based memory persists beyond the function call allocating it, unlike stack variables
whose lifetime ends when the allocating function returns.

* When building flexible or resizable data structures
Linked lists, trees, hash tables, and dynamically expanding arrays require memory that
can be allocated, reallocated, and freed on demand.

* When the size required is very large or not easily predicted
Larger arrays and data structures can exhaust the entire stack segment, whereas the heap
segment can manage much larger allocations.

 When data must be shared across multiple functions or modules
Heap memory allows multiple parts of a program to reference and modify the same data

without copying, and that data isn't easily allocated in the main function. »

Other heap allocators: calloc, strdup

void *calloc(size_t count, size_t size);

callocisaheap allocation function just like malloc, with one important extra
guarantee—it zeroes out the memory before it returns.
Examples:

int *counts = calloc(26, sizeof(int)); // all zeroes
bool xanswers = calloc(n, sizeof(bool)); // all falses
struct node **x = calloc(num_buckets, sizeof(struct node %)); // all NULLs

char *strdup(const char *str);}
strdup is a convenience function for duplicating C strings onto the heap.

Example: Like anything created using
malloc, anything created

char *news = strd "disinformation"))
W up ("dis1 !) using calloc or strdup

news[0] = 'm'; . o should be freed when it's no
char xbritish = strdup("disorganization") longer needed. Again, soon
british[9] = 's'; ’

45

Cleaning Up with free

void free(void xptr);

free accepts an address previously returned by malloc, calloc, strdup, or (the soon
to be discussed) realloc and donates the memory there back to the heap.

Simple Example:

,,,

. char xearth = strdup("earth");

. char *quake = strdup('"quake");

. char *earthquake = malloc(strlen(earth) + strlen(quake) + 1);

' strcpy (earthquake, earth);

. free(earth);

' strcat(earthquake, quake);

ifree(quake);

Eprintf("%s\n", earthquake) ; ,
. free(earthquake); // three allocations reverted by three frees |

When you fail to free heap memory you no longer need before letting go of it, you leak

that memory.
46

