
1
This document is copyright (C) Stanford Computer Science, licensed under Creative Commons Attribution 2.5 License. All rights reserved.

Based on slides created by Cynthia Lee, Chris Gregg, Nick Troccoli, Lisa Yan, Jerry Cain and others.

CS107 Lecture 10
Stack and Heap

Reading: K&R 5.6-5.9 or Essential C section 6 on the heap

2

Array Trivia: sizeof

Address Value

…

0x105 '\0'

0x104 'e'

0x103 'p'

0x102 'a'

0x101 'r'

0x100 'g'

…

When you declare an array, contiguous memory is
allocated on the stack to store each of its elements.

The array name (e.g., fruit) is not a true pointer. It refers
to the entire array.

Here, sizeof returns the size of the entire array, in bytes.

That’s because the array declaration is in scope at the time
the compile-time sizeof operation is evaluated.

fruit

STACK

char fruit[6];
strcpy(fruit, ”grape");
size_t size = sizeof(fruit); // 6

3

When you pass an array as a parameter, C really
passes the address of the first element.

Address Value
0x1f2 '\0'

0x1f1 'i'

0x1f0 'h'
...

0xff

0xfe
0xfd
0xfc
0xfb
0xfa

0xf9
0xf8

...

str

str

main

STACK

0x1f0func

void func(char *str) {

 ...
}

int main(int argc, char *argv[]) {
 char str[3];

 strcpy(str, "hi");
 func(str);
 ...
}

This is the state of memory just
as func begins to execute.

size_t size = sizeof(str); // 8

size_t size = sizeof(str); // 3

The amount of memory set aside
for main's str array is 3 bytes.

The amount
of memory
set aside for
func's str is

8 bytes.

Array Trivia: sizeof

4

Array Trivia: Pointer Arithmetic

When applying pointer arithmetic, we advance a
pointer by a certain number of bytes.

Address Value

…

0xff5 '\0'

0xff4 'h'

0xff3 'c'

0xff2 'a'

0xff1 'e'

0xff0 'p'

…

READ-ONLY DATA

char *a = "peach"; // e.g., 0xff0
char *b = str + 1; // e.g., 0xff1
char *c = str + 3; // e.g., 0xff3

printf("%s\n", a); // prints peach
printf("%s\n", b); // prints each
printf("%s\n", c); // prints ch

5

Pointer arithmetic advances a pointer by a multiple
of the pointee type's size.

Address Value

…

0x1004 45

0x1000 16

0xffc 34

0xff8 12

0xff4 23

0xff0 52

…

STACK

Array Trivia: Pointer Arithmetic

int numbers[] = {52, 23, 12, 34, 16, 45};
int *nums0 = numbers; // shorter name
int *nums1 = nums0 + 1; // e.g., 0xff4
int *nums3 = nums1 + 2; // e.g., 0xffc
int *nums2 = nums3 - 1; // e.g., 0xff8

printf("%d\n", *nums1); // 23
printf("%d\n", *nums2); // 12
printf("%d\n", *nums3); // 34
printf("%zu\n", nums3 – nums1); // 2

The 1, 2, and -1 offsets are internally scaled by sizeof(int).

Because nums1 and nums3 are both of type int *,
nums3 – nums1 evaluates to the number of ints that fit in between them.
Restated, if nums1 + 2 equals nums3, then nums3 – nums1 better equal 2.

6

CS107 Topic 3: Stack and Heap Memory

How can we effectively manage all forms of memory in our programs?

Why is answering this question useful?
• Illustrates how we can efficiently pass data around using pointers
• Illustrates how to construct data structures that live longer than the

function calls that create them.
Learning goals:
• Understand the differences between stack and heap memory and when to

choose one over the other.
• Become fluent in malloc, free, and realloc as standard C language

directives used to manage heap memory.

7

CS107 Topic 3: Stack and Heap Memory

Stack segment: Used for function calls, local
variables, and return addresses. It typically

occupies higher memory addresses and grows
downwards towards the heap as it expands.

Heap segment: Used for dynamic memory
allocation (e.g., via malloc in C, new in C++)

and grows upwards towards higher addresses.

Data segment: Used to store explicitly
initialized global variables and constant,

including the string constants used throughout
your code (e.g., "apple", "peach",
"rutabaga", "absquatulation").

Text segment: Contains the compiled
machine code of the running
executable , like ls, emacs,

triangle, sat, or automata

BSS segment: Used for all global
variables that aren't explicitly

initialized before main is called. By
default, all bytes in this segment start

out as zeroes.

OS Kernel region: Used for the
operating system's kernel, device

drivers, and low-level memory
management code. Your code isn’t

allowed to access this region and
attempts to do so result in a crash.

this week’s focus

8

Stack Segment Case Study

0x0

main

 argc

 argv

void func2() {
 int d = 0;
}

void func1() {
 int c = 99;
 func2();
}

int main(int argc, char *argv[]) {
 int a = 42;
 int b = 17;
 func1();
 func2();
 return 0;
}

1

0xf0

stack

When a function is called, a new frame is pushed onto the stack
and makes space for local variables. When the function returns, its

frame is popped and access to those locals formally goes away.

90x0

main

a argc

 argv

42 1

0xf0

stack

Stack Segment Case Study

void func2() {
 int d = 0;
}

void func1() {
 int c = 99;
 func2();
}

int main(int argc, char *argv[]) {
 int a = 42;
 int b = 17;
 func1();
 func2();
 return 0;
}

When a function is called, a new frame is pushed onto the stack
and makes space for local variables. When the function returns, its

frame is popped and access to those locals formally goes away.

100x0

main

a argc

b argv

42

17

1

0xf0

stack

Stack Segment Case Study

void func2() {
 int d = 0;
}

void func1() {
 int c = 99;
 func2();
}

int main(int argc, char *argv[]) {
 int a = 42;
 int b = 17;
 func1();
 func2();
 return 0;
}

When a function is called, a new frame is pushed onto the stack
and makes space for local variables. When the function returns, its

frame is popped and access to those locals formally goes away.

110x0

Stack Segment Case Study

main

a argc

b argv

42

17

1

0xf0

stack
void func2() {
 int d = 0;
}

void func1() {
 int c = 99;
 func2();
}

int main(int argc, char *argv[]) {
 int a = 42;
 int b = 17;
 func1();
 func2();
 return 0;
}

When a function is called, a new frame is pushed onto the stack
and makes space for local variables. When the function returns, its

frame is popped and access to those locals formally goes away.

120x0

func1

Stack Segment Case Study

void func2() {
 int d = 0;
}

void func1() {
 int c = 99;
 func2();
}

int main(int argc, char *argv[]) {
 int a = 42;
 int b = 17;
 func1();
 func2();
 return 0;
}

When a function is called, a new frame is pushed onto the stack
and makes space for local variables. When the function returns, its

frame is popped and access to those locals formally goes away.
stack

main

a argc

b argv

42

17

1

0xf0

130x0

func1

c

99

Stack Segment Case Study

stack

main

a argc

b argv

42

17

1

0xf0
void func2() {
 int d = 0;
}

void func1() {
 int c = 99;
 func2();
}

int main(int argc, char *argv[]) {
 int a = 42;
 int b = 17;
 func1();
 func2();
 return 0;
}

When a function is called, a new frame is pushed onto the stack
and makes space for local variables. When the function returns, its

frame is popped and access to those locals formally goes away.

140x0

Stack Segment Case Study

func1

c

99

stack

main

a argc

b argv

42

17

1

0xf0
void func2() {
 int d = 0;
}

void func1() {
 int c = 99;
 func2();
}

int main(int argc, char *argv[]) {
 int a = 42;
 int b = 17;
 func1();
 func2();
 return 0;
}

When a function is called, a new frame is pushed onto the stack
and makes space for local variables. When the function returns, its

frame is popped and access to those locals formally goes away.

150x0

func2

Stack Segment Case Study

func1

c

99

stack

main

a argc

b argv

42

17

1

0xf0
void func2() {
 int d = 0;
}

void func1() {
 int c = 99;
 func2();
}

int main(int argc, char *argv[]) {
 int a = 42;
 int b = 17;
 func1();
 func2();
 return 0;
}

When a function is called, a new frame is pushed onto the stack
and makes space for local variables. When the function returns, its

frame is popped and access to those locals formally goes away.

160x0

func2

Stack Segment Case Study

func1

c

99

stack

main

a argc

b argv

42

17

1

0xf0
void func2() {
 int d = 0;
}

void func1() {
 int c = 99;
 func2();
}

int main(int argc, char *argv[]) {
 int a = 42;
 int b = 17;
 func1();
 func2();
 return 0;
}

When a function is called, a new frame is pushed onto the stack
and makes space for local variables. When the function returns, its

frame is popped and access to those locals formally goes away.

func2

d

0

170x0

func2

Stack Segment Case Study

func1

c

99

stack

main

a argc

b argv

42

17

1

0xf0
void func2() {
 int d = 0;
}

void func1() {
 int c = 99;
 func2();
}

int main(int argc, char *argv[]) {
 int a = 42;
 int b = 17;
 func1();
 func2();
 return 0;
}

When a function is called, a new frame is pushed onto the stack
and makes space for local variables. When the function returns, its

frame is popped and access to those locals formally goes away.

func2

d

0

180x0

Stack Segment Case Study

func1

c

99

stack

main

a argc

b argv

42

17

1

0xf0
void func2() {
 int d = 0;
}

void func1() {
 int c = 99;
 func2();
}

int main(int argc, char *argv[]) {
 int a = 42;
 int b = 17;
 func1();
 func2();
 return 0;
}

When a function is called, a new frame is pushed onto the stack
and makes space for local variables. When the function returns, its

frame is popped and access to those locals formally goes away.

190x0

Stack Segment Case Study

func1

c

99

stack

main

a argc

b argv

42

17

1

0xf0
void func2() {
 int d = 0;
}

void func1() {
 int c = 99;
 func2();
}

int main(int argc, char *argv[]) {
 int a = 42;
 int b = 17;
 func1();
 func2();
 return 0;
}

When a function is called, a new frame is pushed onto the stack
and makes space for local variables. When the function returns, its

frame is popped and access to those locals formally goes away.

200x0

Stack Segment Case Study

void func2() {
 int d = 0;
}

void func1() {
 int c = 99;
 func2();
}

int main(int argc, char *argv[]) {
 int a = 42;
 int b = 17;
 func1();
 func2();
 return 0;
}

When a function is called, a new frame is pushed onto the stack
and makes space for local variables. When the function returns, its

frame is popped and access to those locals formally goes away.
stack

main

a argc

b argv

42

17

1

0xf0

210x0

Stack Segment Case Study

void func2() {
 int d = 0;
}

void func1() {
 int c = 99;
 func2();
}

int main(int argc, char *argv[]) {
 int a = 42;
 int b = 17;
 func1();
 func2();
 return 0;
}

When a function is called, a new frame is pushed onto the stack
and makes space for local variables. When the function returns, its

frame is popped and access to those locals formally goes away.
stack

main

a argc

b argv

42

17

1

0xf0

220x0

Stack Segment Case Study

void func2() {
 int d = 0;
}

void func1() {
 int c = 99;
 func2();
}

int main(int argc, char *argv[]) {
 int a = 42;
 int b = 17;
 func1();
 func2();
 return 0;
}

When a function is called, a new frame is pushed onto the stack
and makes space for local variables. When the function returns, its

frame is popped and access to those locals formally goes away.
stack

main

a argc

b argv

42

17

1

0xf0

func2

Note the stack frame for this call to func2
overlays the space previously used for the
earlier call to func1. The information that

accumulated here by the func1 call isn’t
relevant anymore, so the space can be reused.

230x0

Stack Segment Case Study

void func2() {
 int d = 0;
}

void func1() {
 int c = 99;
 func2();
}

int main(int argc, char *argv[]) {
 int a = 42;
 int b = 17;
 func1();
 func2();
 return 0;
}

When a function is called, a new frame is pushed onto the stack
and makes space for local variables. When the function returns, its

frame is popped and access to those locals formally goes away.
stack

main

a argc

b argv

42

17

1

0xf0

func2

d

0

Note the stack frame for this call to func2
overlays the space previously used for the
earlier call to func1. The information that

accumulated here by the func1 call isn’t
relevant anymore, so the space can be reused.

240x0

Stack Segment Case Study

void func2() {
 int d = 0;
}

void func1() {
 int c = 99;
 func2();
}

int main(int argc, char *argv[]) {
 int a = 42;
 int b = 17;
 func1();
 func2();
 return 0;
}

When a function is called, a new frame is pushed onto the stack
and makes space for local variables. When the function returns, its

frame is popped and access to those locals formally goes away.
stack

main

a argc

b argv

42

17

1

0xf0

func2

d

0

Note the stack frame for this call to func2
overlays the space previously used for the
earlier call to func1. The information that

accumulated here by the func1 call isn’t
relevant anymore, so the space can be reused.

250x0

Stack Segment Case Study

main

a argc

b argv

42

17

1

0xf0

stack
void func2() {
 int d = 0;
}

void func1() {
 int c = 99;
 func2();
}

int main(int argc, char *argv[]) {
 int a = 42;
 int b = 17;
 func1();
 func2();
 return 0;
}

When a function is called, a new frame is pushed onto the stack
and makes space for local variables. When the function returns, its

frame is popped and access to those locals formally goes away.

260x0

Stack Segment Case Study

main

a argc

b argv

42

17

1

0xf0

stack
void func2() {
 int d = 0;
}

void func1() {
 int c = 99;
 func2();
}

int main(int argc, char *argv[]) {
 int a = 42;
 int b = 17;
 func1();
 func2();
 return 0;
}

When a function is called, a new frame is pushed onto the stack
and makes space for local variables. When the function returns, its

frame is popped and access to those locals formally goes away.

270x0

Stack Segment Case Study

0x0

void func2() {
 int d = 0;
}

void func1() {
 int c = 99;
 func2();
}

int main(int argc, char *argv[]) {
 int a = 42;
 int b = 17;
 func1();
 func2();
 return 0;
}

When a function is called, a new frame is pushed onto the stack
and makes space for local variables. When the function returns, its

frame is popped and access to those locals formally goes away.

280x0

main
argc:

argv:

1

0xfff0
stack

Stack Segment Case Study: Mayday, Mayday

Here’s a well-intentioned (but broken) program that relies on a
(broken) helper function to create a string of repeated characters.

char *create_string(char ch, int num) {
 char new_str[num + 1];
 for (size_t i = 0; i < num; i++) {
 new_str[i] = ch;
 }
 new_str[num] = '\0';
 return new_str;
}

int main(int argc, char *argv[]) {
 char *str = create_string('a', 4);
 printf("%s\n", str); // want to print aaaa
 return 0;
}

290x0

main
argc: str:

argv:

1

0xfff0
stack

Here’s a well-intentioned (but broken) program that relies on a
(broken) helper function to create a string of repeated characters.

char *create_string(char ch, int num) {
 char new_str[num + 1];
 for (size_t i = 0; i < num; i++) {
 new_str[i] = ch;
 }
 new_str[num] = '\0';
 return new_str;
}

int main(int argc, char *argv[]) {
 char *str = create_string('a', 4);
 printf("%s\n", str); // want to print aaaa
 return 0;
}

Stack Segment Case Study: Mayday, Mayday

300x0

main
argc: str:

argv:

create_string
ch: num:

1

0xfff0
stack

'a' 4

Here’s a well-intentioned (but broken) program that relies on a
(broken) helper function to create a string of repeated characters.

char *create_string(char ch, int num) {
 char new_str[num + 1];
 for (size_t i = 0; i < num; i++) {
 new_str[i] = ch;
 }
 new_str[num] = '\0';
 return new_str;
}

int main(int argc, char *argv[]) {
 char *str = create_string('a', 4);
 printf("%s\n", str); // want to print aaaa
 return 0;
}

Stack Segment Case Study: Mayday, Mayday

310x0

main
argc: str:

argv:

create_string
ch: num:

new_str:

1

0xfff0
stack

'a' 4

Stack Segment Case Study: Mayday, Mayday

Here’s a well-intentioned (but broken) program that relies on a
(broken) helper function to create a string of repeated characters.

char *create_string(char ch, int num) {
 char new_str[num + 1];
 for (size_t i = 0; i < num; i++) {
 new_str[i] = ch;
 }
 new_str[num] = '\0';
 return new_str;
}

int main(int argc, char *argv[]) {
 char *str = create_string('a', 4);
 printf("%s\n", str); // want to print aaaa
 return 0;
}

320x0

main
argc: str:

argv:

create_string
ch: num:

new_str:

1

0xfff0
stack

'a' 4

'\0'
'a'
'a'
'a'
'a'

Stack Segment Case Study: Mayday, Mayday

Here’s a well-intentioned (but broken) program that relies on a
(broken) helper function to create a string of repeated characters.

char *create_string(char ch, int num) {
 char new_str[num + 1];
 for (size_t i = 0; i < num; i++) {
 new_str[i] = ch;
 }
 new_str[num] = '\0';
 return new_str;
}

int main(int argc, char *argv[]) {
 char *str = create_string('a', 4);
 printf("%s\n", str); // want to print aaaa
 return 0;
}

330x0

main
argc: str:

argv:

create_string
ch: num:

new_str:

1

0xfff0
stack

'a' 4

'\0'
'a'
'a'
'a'
'a'

returns e.g., 0xff50

Here’s a well-intentioned (but broken) program that relies on a
(broken) helper function to create a string of repeated characters.

char *create_string(char ch, int num) {
 char new_str[num + 1];
 for (size_t i = 0; i < num; i++) {
 new_str[i] = ch;
 }
 new_str[num] = '\0';
 return new_str;
}

int main(int argc, char *argv[]) {
 char *str = create_string('a', 4);
 printf("%s\n", str); // want to print aaaa
 return 0;
}

Stack Segment Case Study: Mayday, Mayday

340x0

main
argc: str:

argv:

create_string
ch: num:

new_str:

1

0xfff0
stack

'a' 4

'\0'
'a'
'a'
'a'
'a'

0xff50

Here’s a well-intentioned (but broken) program that relies on a
(broken) helper function to create a string of repeated characters.

char *create_string(char ch, int num) {
 char new_str[num + 1];
 for (size_t i = 0; i < num; i++) {
 new_str[i] = ch;
 }
 new_str[num] = '\0';
 return new_str;
}

int main(int argc, char *argv[]) {
 char *str = create_string('a', 4);
 printf("%s\n", str); // want to print aaaa
 return 0;
}

Stack Segment Case Study: Mayday, Mayday

350x0

main
argc: str:

argv:

1

0xfff0
stack

0xff50

Here’s a well-intentioned (but broken) program that relies on a
(broken) helper function to create a string of repeated characters.

char *create_string(char ch, int num) {
 char new_str[num + 1];
 for (size_t i = 0; i < num; i++) {
 new_str[i] = ch;
 }
 new_str[num] = '\0';
 return new_str;
}

int main(int argc, char *argv[]) {
 char *str = create_string('a', 4);
 printf("%s\n", str); // want to print aaaa
 return 0;
}

Stack Segment Case Study: Mayday, Mayday

Defcon 1: Local variables disappear when the
function returns. These four a's are embedded in
a local array that no longer exists, so str is not

our address to dereference.

In some cases, the array can be pre-allocated on
the stack using size information computed at

runtime. But that's not ideal if it requires an
inelegant restructuring of the code.

36

Introducing malloc

Much as C++ allows you to via its operator new, C allows you to
dynamically allocate memory using operator new’s equivalent: malloc

void *malloc(size_t size);

• malloc expects the number of raw bytes that
should be allocated from the heap.

• malloc returns the base address of the freshly
allocated memory.
• malloc doesn't know or care if the memory is to be

used as an array, a record, or something else.

• The return type is a void * to denote an address to generic (i.e., type-less) memory.
• You can set another pointer equal to it without casting.

int *arr = malloc(n * sizeof(int));
 char *t = malloc(strlen(s) + 1);
 node *n = malloc(sizeof(node));

Examples:

370x0

main
argc: str:

argv:

create_string
ch: num:

new_str:

1

0xfff0
stack

'a' 4

'\0'
'a'
'a'
'a'
'a'

0xed0

heap

Stack Segment Case Study: malloc Heals

Here's a working version that repairs the problem by allocating the
new string on the heap using malloc.

char *create_string(char ch, int num) {
 char *new_str = malloc(num + 1);
 assert(new_str != NULL);
 for (size_t i = 0; i < num; i++) {
 new_str[i] = ch;
 }
 new_str[num] = '\0';
 return new_str;
}

int main(int argc, char *argv[]) {
 char *str = create_string('a', 4);
 printf("%s\n", str); // want to print aaaa
 return 0; // should free str, will soon
}

380x0

main
argc: str:

argv:

create_string
ch: num:

new_str:

1

0xfff0
stack

'a' 4

0xed0

'\0'
'a'
'a'
'a'
'a'

0xed0

heap

Stack Segment Case Study: malloc Heals

Here's a working version that repairs the problem by allocating the
new string on the heap using malloc.

char *create_string(char ch, int num) {
 char *new_str = malloc(num + 1);
 assert(new_str != NULL);
 for (size_t i = 0; i < num; i++) {
 new_str[i] = ch;
 }
 new_str[num] = '\0';
 return new_str;
}

int main(int argc, char *argv[]) {
 char *str = create_string('a', 4);
 printf("%s\n", str); // want to print aaaa
 return 0; // should free str, will soon
}

returns e.g., 0xed0

390x0

main
argc: str:

argv:

1

0xfff0
stack

0xed0

'\0'
'a'
'a'
'a'
'a'

heap

Stack Segment Case Study: malloc Heals

Here's a working version that repairs the problem by allocating the
new string on the heap using malloc.

char *create_string(char ch, int num) {
 char *new_str = malloc(num + 1);
 assert(new_str != NULL);
 for (size_t i = 0; i < num; i++) {
 new_str[i] = ch;
 }
 new_str[num] = '\0';
 return new_str;
}

int main(int argc, char *argv[]) {
 char *str = create_string('a', 4);
 printf("%s\n", str); // want to print aaaa
 return 0; // should free str, will soon
}

400x0

main
argc: str:

argv:

1

0xfff0
stack

0xed0

'\0'
'a'
'a'
'a'
'a'

heap

Stack Segment Case Study: malloc Heals

Here's a working version that repairs the problem by allocating the
new string on the heap using malloc.

char *create_string(char ch, int num) {
 char *new_str = malloc(num + 1);
 assert(new_str != NULL);
 for (size_t i = 0; i < num; i++) {
 new_str[i] = ch;
 }
 new_str[num] = '\0';
 return new_str;
}

int main(int argc, char *argv[]) {
 char *str = create_string('a', 4);
 printf("%s\n", str); // want to print aaaa
 return 0; // should free str, will soon
}

41

Dynamic Memory Etude
Let’s write a function that returns an array of the first len multiples of mult.

How should we declare and initialize arr?

A. int arr[len];
B. int arr[] = malloc(sizeof(int));
C. int *arr = malloc(len * sizeof(int));
D. int *arr = malloc((len + 1) * sizeof(int));

int *array_of_multiples(int mult, int len) {
 /* TODO: arr declaration here */

 for (size_t i = 0; i < len; i++) {
 arr[i] = mult * (i + 1);
 }
 return arr;
}

Declare a pointer to catch the heap-based
address returned by malloc.

Ensure malloc's argument is the number of
bytes needed to fulfill the allocation request.

CS107 policy: assert the address is non-NULL.

42

Dynamic Memory Etude
Let's write a function that returns an array of the first len multiples of mult.

If an allocation error occurs (e.g., the process is out of heap memory or the heap has been corrupted by flawed heap
management), malloc might return NULL.

assert will intentionally terminate the program if the condition evaluates to false. Memory allocation errors are a big
deal, and we should end the program the moment we see them. Otherwise, your program will proceed and likely crash in a

much more anonymous manner that might not be easily traced back to a failed malloc call.

In practice, you never ship code with active assert statements, but they are used during the development process to
verify that certain expectations are being met and minimize the chances of runtime surprises. (The assert statements can

be stripped out of the executable pretty easily during compilation.)

int *array_of_multiples(int mult, int len) {
 int *arr = malloc(len * sizeof(int));

 for (size_t i = 0; i < len; i++) {
 arr[i] = mult * (i + 1);
 }
 return arr;
}

assert(arr != NULL);

43

Dynamic Memory Etude
Let's write a function that returns an array of the first len multiples of mult.

If an allocation error occurs (e.g., the process is out of heap memory or the heap has been corrupted by flawed heap
management), malloc might return NULL.

assert will intentionally terminate the program if the condition evaluates to false. Memory allocation errors are a big
deal, and we should end the program the moment we see them. Otherwise, your program will proceed and likely crash in a

much more anonymous manner that might not be easily traced back to a failed malloc call.

In practice, you never ship code with active assert statements, but they are used during the development process to
verify that certain expectations are being met and minimize the chances of runtime surprises. (The assert statements can

be stripped out of the executable pretty easily during compilation.)

int *array_of_multiples(int mult, int len) {
 int *arr = malloc(len * sizeof(int));

 for (size_t i = 0; i < len; i++) {
 arr[i] = mult * (i + 1);
 }
 return arr;
}

assert(arr != NULL);

44

When Heap-Based Allocation Makes Sense

Here are four common scenarios where dynamic memory allocation is
preferable to stack allocation:
• When memory must outlive the current function call

Heap-based memory persists beyond the function call allocating it, unlike stack variables
whose lifetime ends when the allocating function returns.

• When building flexible or resizable data structures
Linked lists, trees, hash tables, and dynamically expanding arrays require memory that
can be allocated, reallocated, and freed on demand.

• When the size required is very large or not easily predicted
Larger arrays and data structures can exhaust the entire stack segment, whereas the heap
segment can manage much larger allocations.

• When data must be shared across multiple functions or modules
Heap memory allows multiple parts of a program to reference and modify the same data
without copying, and that data isn't easily allocated in the main function.

45

Other heap allocators: calloc, strdup

void *calloc(size_t count, size_t size);
calloc is a heap allocation function just like malloc, with one important extra

guarantee—it zeroes out the memory before it returns.

char *strdup(const char *str);
strdup is a convenience function for duplicating C strings onto the heap.

int *counts = calloc(26, sizeof(int)); // all zeroes
 bool *answers = calloc(n, sizeof(bool)); // all falses

 struct node ** = calloc(num_buckets, sizeof(struct node *)); // all NULLs

Examples:

char *news = strdup("disinformation");
news[0] = 'm';
char *british = strdup("disorganization");
british[9] = 's';

Example: Like anything created using
malloc, anything created
using calloc or strdup

should be freed when it's no
longer needed. Again, soon!

46

Cleaning Up with free

void free(void *ptr);
free accepts an address previously returned by malloc, calloc, strdup, or (the soon

to be discussed) realloc and donates the memory there back to the heap.

When you fail to free heap memory you no longer need before letting go of it, you leak
that memory.

char *earth = strdup("earth");
char *quake = strdup("quake");
char *earthquake = malloc(strlen(earth) + strlen(quake) + 1);
strcpy(earthquake, earth);
free(earth);
strcat(earthquake, quake);
free(quake);
printf("%s\n", earthquake);
free(earthquake); // three allocations reverted by three frees

Simple Example:

