CS107 Lecture 11

Heap Wrap, Generics - void *

Reading: None &

This document is copyright (C) Stanford Computer Science, licensed under Creative Commons Attribution 2.5 License. All rights reserved.
Based on slides created by Cynthia Lee, Chris Gregg, Nick Troccoli, Lisa Yan, Jerry Cain and others.

Other heap allocators: calloc, strdup

void *calloc(size_t count, size_t size);

callocisaheap allocation function just like malloc, with one important guarantee—
it zeroes out the memory before it returns.
Examples:

int *counts = calloc(26, sizeof(int)); // all zeroes
bool xanswers = calloc(n, sizeof(bool)); // all falses
struct node **x = calloc(num_buckets, sizeof(struct node %)); // all NULLs

char *strdup(const char *str);}
strdup is a convenience function for duplicating C strings onto the heap.

Example: Like anything created using
malloc, anything created

h * = strd "disinf tion");
char *news strdup("disinformation"); using calloc or strdup

news[0] = 'm'; . o should be freed when it's no
char *british = strdup("disorganization") longer needed. Again, soon!
british[9] = 's'; ’

Cleaning Up with free

void free(void xptr);

free accepts the address of a pointer previously returned by malloc, calloc, strdup,
or (the soon to be discussed) realloc and donates the memory back to the heap.

Simple Example

,,,

. char xearth = strdup("earth");

. char *quake = strdup('"quake");

. char *earthquake = malloc(strlen(earth) + strlen(quake) + 1);

' strcpy (earthquake, earth);

. free(earth);

' strcat(earthquake, quake);

ifree(quake);

Eprintf("%s\n", earthquake) ; |
. free(earthquake); // three allocations reverted by three frees |

When you fail to free heap memory you no longer need before letting go of it, you leak
that memory.

free Etudes

For each the code snippet below, identify whether the code visible to you contains an
error or not. If so, explain what that error is.

--

ichar xjennifer = strdup("garner"); :

i char xalias = jennifer; }<L
| free(jennifer); %

i free(alias);

Issue: both jennifer and alias are linked to the
same heap-based string "garner". This code suffers
from a double free.

i char xsatword = strdup("grandiloquence"); | Issue: satword +5, whateveritis, is not the base
free(satword + 5); 4 address of a dynamically allocated figure. satword?

i free(satword) . Yes! But satword + 5?7 Nope!

irchar xheavy = strdup("bloated"); Issue: heavy and light are each attached to the same
i char *light = heavy; heap-based string ""bloated". We only free the string
{ free(heavy); x once, but we can’t access the string through either

i light[e] = 'f'; i variables after that.

char superhero[] = "Batman"; i Issue: superhero is a stack-based "Batman", and

i char *sidekick = strdup(superhero); x sidekickis a heap-based "Antman"'. The first three

| strncpy (sidekick, "An", 2); 4

N lines, albeit contrived, are correct (yay!). But you can’t free
i free(superhero); i superhero, because it has nothing to do with the heap.

Resizing with realloc

void *realloc(void *ptr, size_t size)}

realloc accepts an address previously returned by malloc, calloc, strdup,
or realloc, resizes the memory attached to it as appropriate, and returns the (possibly
new, possibly the same) address.

Example

ichar xserialize(const char *strings[], size_t count) {
| char *serialization = strdup("");
assert(serialization != NULL);
size_t sofar = 0;
for (size_t i = 0; i < count; i++) {
size_t len = strlen(strings[i]);
serialization = realloc(serialization, sofar + len + 1);
assert(serialization != NULL);
strcpy(serialization + sofar, strings[i]);
sofar += len;

}

return serialization;

If there's enough space beyond the

| existing existing block to accommodate the

new, larger size, realloc simply adds
that space to the allocation.

If there isn't enough space, realloc

isnnMymalloc%almgerbbckcophsau

data from old to new, frees the old block,
and returns the address of the new
memory.

In practice, the supplied s1ize is almost
always larger, though realloc will
shrink the allocated size if asked to.

Heap Allocation Redux

void *malloc(size_t size);
void *calloc(size_t count, size_t size);
char *strdup(char x*s);
void *realloc(void *ptr, size_t size);
void free(void *ptr);

Heap memory allocation guarantee: Undefined behavior occurs:

* NULL on failure, so check with assert ¢ If you overflow—i.e., you access

* Memory is contiguous and recycled beyond bytes allocated.

only when you call free * If you use after free, orif you

- realloc preserves existing data call free twice on same address.

 calloc zeroes out bytes,malloc and
realloc do not

* Ifyou reallocor freean
address outside the heap.

Heap vs Stack: Battle of the Segments

Stack (for local variables) Heap (for dynamic memory)
* Fast * Plentiful
Fast to allocate and deallocate, okay to oversize Can generally provide more memory on demand
* Convenient * Exceptionally flexible
Automatic allocation and deallocation, declare and Runtime decisions about how much and when to
initialize in one step allocate, can resize easily using realloc
* Reasonable type safety » Scope under programmer control
Thanks to the compiler Can precisely determine lifetime

Not especially plentiful Lots of opportunity for error

Total stack size fixed, default 8 - 32 MB Minimal type safety, forget to allocate/free before
. . done, allocate wrong size, etc., memory leaks

' Somewhat inflexible & d

Cannot add or resize at runtime, scope dictated by

control flow in and out of function calls

CS107 Topic 4: C Generics

How can we leverage our knowledge of memory and data representation to
write code that works for all data types?

Why is answering this question useful?

* Writing general purpose code that works on all types means one
implementation, not many, thereby avoid cut-and-paste with type changes.

* |t teaches us how to to pass functions as parameters to provide just
enough intelligence about the data for the generic code to work properly.

Learning Goals
e Learn how to write C code that works with for all data types.
 Learn about how to use void * and overcome its shortcomings.

Strongly Typed Data Exchange

Let’s once again implement a routine capable of

exchanging two numbers.

T X Oxff34

;int main(int argc, char *xargv[]) {

int x = 17;
int y = 23;

swap_ints (&x, &y);
printf("x = %d, y = %d\n", x, y);

return 0;

3

Evoid swap_ints(int *a, int xb) {

*xa = *b;
*xb temp;

int temp = *a;

Assuming the line in red has just
executed, the state of memory
immediately afterward is presented
up and to the right.

Stac
Address

K
Value

main
y Oxff30

: b oxff18
swap_ints a oxff1o
' temp oxffoc

17

High-level POV: swap_ints accépts the
locations of two ints and exchanges them
using a well understood algorithm.

Low-level POV: swap_1ints exchanges four-byte
patterns at the provided addresses, and those

patterns incidentally represent ints.

Strongly Typed Data Exchange

Stack

Let’s once again implement a routine capable of Address Value

exchanging two numbers—this time as shorts.
X 0xff34| 251

;-int main(int argc, char xargv[]) { 5 main
short x = 251; y Oxtt32
short y = 277; -

swap_shorts(&x, &y);
printf("x = %d, y = %d\n", x, y); ; b oxffis
return 0; swap_shorts a Oxff1oe

Temp oxffoe

3

Evoid swap_shorts(short *a, short xb) {

short temp = x*aj; High-level POV: swap_shorts accepts the
xa = *b; . o . + locations of two shorts and exchanges them
. *b = temp; Assuming the line in red has just using the same algorithm that swap_1ints does.
5 1 executed, the state of memory
S immediately afterward is presented Low-level POV: swap_shorts swaps two 16-bit
up and to the right. patterns. Code exchanges two shortsiifit

exchanges their underlying bit patterns. 0

Strongly Typed Data Exchange

Let’s implement it once more, this time for the
strings in the back corner of the data segment.

nt main(int arge, char sarg(D) (| madin | X OXFFEpexe

char *x = "2"; | y oxff30
char *xy = "5"; ’
swap_strings(&x, &y);

printf("x = %d, y = %d\n", x, y); ,
return 0; swap_strings a oxffl

Address Value

3

void swap_strings(char *xa, char *xb) {
| char xtemp = *a;
*a *b;

*b temp;

The narrative is the same: éxchange the
bit patterns residing within the two (54
orange boxes, whatever they happen to be. DATA

Is it possible to implement a single Oxc
function that works for all types? - 11

swap: Going Generic

These three functions all accomplish the same thing—swapping two values—
but require three different strongly typed signatures.

' void swap_ints(int *a, int xb) { 5 Each of the three routines:

’ int temp = xa; * accepts pointers to values that should be

| :z 3 zb; . exchanged.

5} - i * creates temporary storage just big enough to

R i | store one of the two values.

i void swap_shorts(short *a, short xb) { reads the data addressed by a and copies

short temp = *a; | that same data into the temporary storage.

*a = xb; 5 .
. xb = temp; | * reads the data addressed by b and copies a
1 § bitwise replica into the space addressed by a.
ol * reads the data residing in the temporary and

i void swap_strings(char #xa, char *xb) {
char *temp = x*a;
*a = *bj i : : -
xb = temp; ; The primary difference worth pointing out: the
L} : number of bytes moved is different in each.

copies all of it into the space addressed by b.

12

swap: Going Generic

void swap(pointer to datal, pointer to data2) {
store a copy of datal in temporary storage
copy data2 to location of datal
copy data in temporary storage to location of data2

13

swap: Going Generic

void swap(pointer to datal, pointer to data2) {
store a copy of datal in temporary storage
copy data2 to location of datal
copy data in temporary storage to location of data2

int temp = *datalptr; 4 bytes

short temp = *datalptr; 2 bytes

char *temp = *datalptr; 8 bytes

Problem: each type may need a different size temp!
14

swap: Going Generic

void swap(pointer to datal, pointer to data2) {
store a copy of datal in temporary storage
copy data2 to location of datal
copy data in temporary storage to location of data2

*datalPtr = *data2ptr; 4 bytes

*datalPtr = *data2ptr; 2 bytes

*datalPtr

*data2ptr; 8 bytes

Problem: each type needs to copy a different amount of data!
15

swap: Going Generic

void swap(pointer to datal, pointer to data2) {
store a copy of datal in temporary storage
copy data2 to location of datal
copy data in temporary storage to location of data2

¥
*dataz2ptr = temp; 4 bytes
*dataz2ptr = temp; 2 bytes
*dataz2ptr = temp; 8 bytes

Problem: each type needs to copy a different amount of data!
16

swap: Going Generic

void swap(void *datalptr, void *data2ptr) {
store a copy of datal in temporary storage
copy data2 to location of datal
copy data in temporary storage to location of data2

17

swap: Going Generic

void swap(void *datalptr, void *data2ptr) {
// store a copy of datal in temporary storage
// copy data2 to location of datal
// copy data in temporary storage to location of data2

18

swap: Going Generic

void swap(void *datalptr, void *data2ptr) {
// store a copy of datal in temporary storage
// copy data2 to location of datal
// copy data in temporary storage to location of data2

If we don’t know the data type, we don't know
how many bytes it is. Let’s take that as another
parameter.

19

swap: Going Generic

void swap(void *datalptr, void *data2ptr, size_ t nbytes) {
// store a copy of datal in temporary storage
// copy data2 to location of datal
// copy data in temporary storage to location of data2

If we don’t know the data type, we don’t know
how many bytes it is. Let’s take that as another
parameter.

20

swap: Going Generic

void swap(void *datalptr, void *data2ptr, size_ t nbytes) {
// store a copy of datal in temporary storage
// copy data2 to location of datal
// copy data in temporary storage to location of data2

Let's start by making space for the temporary.
How can we allocate nbytes of temp space?

21

swap: Going Generic

void swap(void *datalptr, void *data2ptr, size_ t nbytes) {
void temp; ???
// store a copy of datal in temporary storage
// copy data2 to location of datal
// copy data in temporary storage to location of data2

Let’s start by making space to store the temporary
value. How can we make nbytes of temp space?

22

swap: Going Generic

void swap(void *datalptr, void *data2ptr, size_ t nbytes) {
char temp[nbytes];
// store a copy of datal in temporary storage
// copy data2 to location of datal
// copy data in temporary storage to location of data2

temp is nbytes of memory,
since each char is 1 byte!

23

swap: Going Generic

void swap(void *datalptr, void *data2ptr, size_ t nbytes) {
char temp[nbytes];
// store a copy of datal in temporary storage
// copy data2 to location of datal
// copy data in temporary storage to location of data2

Now, how can we copy in what
datalptr points to into temp?

24

swap: Going Generic

void swap(void *datalptr, void *data2ptr, size_ t nbytes) {
char temp[nbytes];
// store a copy of datal in temporary storage
temp = *datalptr; ???
// copy data2 to location of datal
// copy data in temporary storage to location of data2

Now, how can we copy in what
datalptr points to into temp?

25

swap: Going Generic

void swap(void *datalptr, void *data2ptr, size_ t nbytes) {
char temp[nbytes];
// store a copy of datal in temporary storage
temp = *datalptr; ???
// copy data2 to location of datal
// copy data in temporary storage to location of data2

We can’t dereference a void * (or set an array
equal to something). C doesn’t know what it
points to! Therefore, it doesn’t know how many
bytes there it should be looking at.

26

The Byte Replicator: memcpy

memcpy is a function that copies a specified number of bytes from one address
to another address.

void *memcpy(void *dest, const void *src, size t n);

It copies the next n bytes that src points to to the location contained in dest. (It
also returns dest). It assumes the two regions of memory don't overlap.

memcpy must take pointers to the bytes to work with to

Int X = 5; know where they live and where they should be copied to.

int y = 4;
memcpy (&x, &y, sizeof(x)); // like x =y

27

swap: Going Generic

void swap(void *datalptr, void *data2ptr, size_ t nbytes) {
char temp[nbytes];
// store a copy of datal in temporary storage
temp = *datalptr; ???
// copy data2 to location of datal
// copy data in temporary storage to location of data2

We can’t dereference a void *. C doesn’t know
what it points to! Therefore, it doesn’t know how
many bytes there it should be looking at.

28

swap: Going Generic

void swap(void *datalptr, void *data2ptr, size_ t nbytes) {
char temp[nbytes];
// store a copy of datal in temporary storage
temp = *datalptr; ???
// copy data2 to location of datal
// copy data in temporary storage to location of data2

How can memcpy help us here?
void *memcpy(void *dest, const void *src, size t n);

29

swap: Going Generic

void swap(void *datalptr, void *data2ptr, size_ t nbytes) {
char temp[nbytes];
// store a copy of datal in temporary storage

memcpy(temp, datalptr, nbytes);
// copy data2 to location of datal
// copy data in temporary storage to location of data2

30

swap: Going Generic

void swap(void *datalptr, void *data2ptr, size_ t nbytes) {
char temp[nbytes];
// store a copy of datal in temporary storage
memcpy(temp, datalptr, nbytes);
// copy data2 to location of datal
// copy data in temporary storage to location of data2

We can copy the bytes ourselves into temp! This
is equivalent to temp = *datalptr in non-generic
versions, but this works for any type of any size.

31

swap: Going Generic

void swap(void *datalptr, void *data2ptr, size_ t nbytes) {
char temp[nbytes];
// store a copy of datal in temporary storage
memcpy (temp, datalptr, nbytes);
// copy data2 to location of datal
// copy data in temporary storage to location of data2

How can we copy data2 to the location of datal?

32

swap: Going Generic

void swap(void *datalptr, void *data2ptr, size_ t nbytes) {
char temp[nbytes];
// store a copy of datal in temporary storage
memcpy (temp, datalptr, nbytes);
// copy data2 to location of datal
*datalptr = *data2ptr; ??°?
// copy data in temporary storage to location of data2

How can we copy data2 to the location of datal?

33

swap: Going Generic

void swap(void *datalptr, void *data2ptr, size_ t nbytes) {
char temp[nbytes];
// store a copy of datal in temporary storage
memcpy (temp, datalptr, nbytes);
// copy data2 to location of datal
memcpy(datalptr, data2ptr, nbytes);
// copy data in temporary storage to location of data2

How can we copy data2 to the location of datal?
memcpy!

34

swap: Going Generic

void swap(void *datalptr, void *data2ptr, size_ t nbytes) {
char temp[nbytes];
// store a copy of datal in temporary storage
memcpy (temp, datalptr, nbytes);
// copy data2 to location of datal
memcpy (datalptr, data2ptr, nbytes);
// copy data in temporary storage to location of data2

How can we copy temp’s data to the location of
data2?

35

swap: Going Generic

void swap(void *datalptr, void *data2ptr, size_ t nbytes) {
char temp[nbytes];
// store a copy of datal in temporary storage

memcpy (temp, datalptr, nbytes);
// copy data2 to location of datal

memcpy (datalptr, data2ptr, nbytes);
// copy data in temporary storage to location of data2

memcpy (data2ptr, temp, nbytes);

How can we copy temp’s data to the location of
data2? memcpy!

36

swap: Going Generic

void swap(void *datalptr, void *data2ptr, size_ t nbytes) {
char temp[nbytes];
// store a copy of datal in temporary storage

memcpy (temp, datalptr, nbytes);
// copy data2 to location of datal

memcpy (datalptr, data2ptr, nbytes);
// copy data in temporary storage to location of data2

memcpy (data2ptr, temp, nbytes);

int x = 2;
int y = 5;
swap(&x, &y, sizeof(x));

37

swap: Going Generic

void swap(void *datalptr, void *data2ptr, size_ t nbytes) {
char temp[nbytes];
// store a copy of datal in temporary storage

memcpy (temp, datalptr, nbytes);
// copy data2 to location of datal

memcpy (datalptr, data2ptr, nbytes);
// copy data in temporary storage to location of data2

memcpy (data2ptr, temp, nbytes);

short x = 2;
short y = 5;
swap(&x, &y, sizeof(x));

38

swap: Going Generic

void swap(void *datalptr, void *data2ptr, size_ t nbytes) {
char temp[nbytes];
// store a copy of datal in temporary storage

memcpy (temp, datalptr, nbytes);
// copy data2 to location of datal

memcpy (datalptr, data2ptr, nbytes);
// copy data in temporary storage to location of data2

memcpy (data2ptr, temp, nbytes);

char *x = "2";
char *y = "5";
swap(&x, &y, sizeof(x));

39

swap: Going Generic

void swap(void *datalptr, void *data2ptr, size_ t nbytes) {
char temp[nbytes];
// store a copy of datal in temporary storage

memcpy (temp, datalptr, nbytes);
// copy data2 to location of datal

memcpy (datalptr, data2ptr, nbytes);
// copy data in temporary storage to location of data2

memcpy (data2ptr, temp, nbytes);

mystruct x = {..};
mystruct y = {..};
swap(&x, &y, sizeof(x));

40

Demo: void *s Gone Wrong

swap.c

