
1
This document is copyright (C) Stanford Computer Science, licensed under Creative Commons Attribution 2.5 License. All rights reserved.

Based on slides created by Cynthia Lee, Chris Gregg, Nick Troccoli, Lisa Yan, Jerry Cain and others.

CS107 Lecture 11
Heap Wrap, Generics – void *

Reading: None 😍

2

Other heap allocators: calloc, strdup

void *calloc(size_t count, size_t size);
calloc is a heap allocation function just like malloc, with one important guarantee—

it zeroes out the memory before it returns.

char *strdup(const char *str);
strdup is a convenience function for duplicating C strings onto the heap.

int *counts = calloc(26, sizeof(int)); // all zeroes
 bool *answers = calloc(n, sizeof(bool)); // all falses

 struct node ** = calloc(num_buckets, sizeof(struct node *)); // all NULLs

Examples:

char *news = strdup("disinformation");
news[0] = 'm';
char *british = strdup("disorganization");
british[9] = 's';

Example: Like anything created using
malloc, anything created
using calloc or strdup

should be freed when it's no
longer needed. Again, soon!

3

Cleaning Up with free

void free(void *ptr);
free accepts the address of a pointer previously returned by malloc, calloc, strdup,

or (the soon to be discussed) realloc and donates the memory back to the heap.

When you fail to free heap memory you no longer need before letting go of it, you leak
that memory.

char *earth = strdup("earth");
char *quake = strdup("quake");
char *earthquake = malloc(strlen(earth) + strlen(quake) + 1);
strcpy(earthquake, earth);
free(earth);
strcat(earthquake, quake);
free(quake);
printf("%s\n", earthquake);
free(earthquake); // three allocations reverted by three frees

Simple Example

4

free Etudes

For each the code snippet below, identify whether the code visible to you contains an
error or not. If so, explain what that error is.

char *jennifer = strdup("garner");
char *alias = jennifer;
free(jennifer);
free(alias);

char *satword = strdup("grandiloquence");
free(satword + 5);
free(satword);

char *heavy = strdup("bloated");
char *light = heavy;
free(heavy);
light[0] = 'f';

Issue: both jennifer and alias are linked to the
same heap-based string "garner". This code suffers
from a double free.

char superhero[] = "Batman";
char *sidekick = strdup(superhero);
strncpy(sidekick, "An", 2);
free(superhero);

Issue: satword + 5, whatever it is, is not the base
address of a dynamically allocated figure. satword?
Yes! But satword + 5? Nope!

Issue: heavy and light are each attached to the same
heap-based string "bloated". We only free the string
once, but we can’t access the string through either
variables after that.

Issue: superhero is a stack-based "Batman", and
sidekick is a heap-based "Antman". The first three
lines, albeit contrived, are correct (yay!). But you can’t free
superhero, because it has nothing to do with the heap.

5

void *realloc(void *ptr, size_t size);
realloc accepts an address previously returned by malloc, calloc, strdup,

or realloc, resizes the memory attached to it as appropriate, and returns the (possibly
new, possibly the same) address.

char *serialize(const char *strings[], size_t count) {
 char *serialization = strdup("");
 assert(serialization != NULL);
 size_t sofar = 0;
 for (size_t i = 0; i < count; i++) {
 size_t len = strlen(strings[i]);
 serialization = realloc(serialization, sofar + len + 1);
 assert(serialization != NULL);
 strcpy(serialization + sofar, strings[i]);
 sofar += len;
 }
 return serialization;
}

If there's enough space beyond the
existing existing block to accommodate the

new, larger size, realloc simply adds
that space to the allocation.

If there isn't enough space, realloc
simply malloc’s a larger block, copies all
data from old to new, frees the old block,

and returns the address of the new
memory.

In practice, the supplied size is almost
always larger, though realloc will
shrink the allocated size if asked to.

Resizing with realloc

Example

6

Heap Allocation Redux

Heap memory allocation guarantee:
• NULL on failure, so check with assert
• Memory is contiguous and recycled

only when you call free
• realloc preserves existing data
• calloc zeroes out bytes, malloc and
realloc do not

Undefined behavior occurs:
• If you overflow—i.e., you access

beyond bytes allocated.
• If you use after free, or if you

call free twice on same address.
• If you realloc or free an

address outside the heap.

void *malloc(size_t size);
void *calloc(size_t count, size_t size);

char *strdup(char *s);
void *realloc(void *ptr, size_t size);

void free(void *ptr);

7

Stack (for local variables)
• Fast

Fast to allocate and deallocate, okay to oversize

• Convenient
Automatic allocation and deallocation, declare and
initialize in one step

• Reasonable type safety
Thanks to the compiler

⚠ Not especially plentiful
Total stack size fixed, default 8 – 32 MB

⚠ Somewhat inflexible
Cannot add or resize at runtime, scope dictated by
control flow in and out of function calls

Heap (for dynamic memory)
• Plentiful

Can generally provide more memory on demand

• Exceptionally flexible
Runtime decisions about how much and when to
allocate, can resize easily using realloc

• Scope under programmer control
Can precisely determine lifetime

⚠ Lots of opportunity for error
Minimal type safety, forget to allocate/free before
done, allocate wrong size, etc., memory leaks

Heap vs Stack: Battle of the Segments

8

CS107 Topic 4: C Generics
How can we leverage our knowledge of memory and data representation to
write code that works for all data types?

Why is answering this question useful?
• Writing general purpose code that works on all types means one

implementation, not many, thereby avoid cut-and-paste with type changes.
• It teaches us how to to pass functions as parameters to provide just

enough intelligence about the data for the generic code to work properly.
Learning Goals
• Learn how to write C code that works with for all data types.
• Learn about how to use void * and overcome its shortcomings.

9

Let’s once again implement a routine capable of
exchanging two numbers.

Strongly Typed Data Exchange
Stack

Address Value
…

0xff34 17
0xff30 23

…

0xff18 0xff30
0xff10 0xff34
0xff0c 17

…

x

b

main

swap_ints

y

a
temp

int main(int argc, char *argv[]) {
 int x = 17;
 int y = 23;
 swap_ints(&x, &y);
 printf("x = %d, y = %d\n", x, y);
 return 0;
}

void swap_ints(int *a, int *b) {
 int temp = *a;
 *a = *b;
 *b = temp;
}

Assuming the line in red has just
executed, the state of memory

immediately afterward is presented
up and to the right.

High-level POV: swap_ints accepts the
locations of two ints and exchanges them

using a well understood algorithm.

Low-level POV: swap_ints exchanges four-byte
patterns at the provided addresses, and those

patterns incidentally represent ints.

10

Let’s once again implement a routine capable of
exchanging two numbers—this time as shorts.

Strongly Typed Data Exchange
Stack

Address Value
…

0xff34 251
0xff32 277

…

0xff18 0xff32
0xff10 0xff34
0xff0e 251

…

x

b

main

swap_shorts

y

a
temp

int main(int argc, char *argv[]) {
 short x = 251;
 short y = 277;
 swap_shorts(&x, &y);
 printf("x = %d, y = %d\n", x, y);
 return 0;
}

void swap_shorts(short *a, short *b) {
 short temp = *a;
 *a = *b;
 *b = temp;
}

Assuming the line in red has just
executed, the state of memory

immediately afterward is presented
up and to the right.

High-level POV: swap_shorts accepts the
locations of two shorts and exchanges them

using the same algorithm that swap_ints does.

Low-level POV: swap_shorts swaps two 16-bit
patterns. Code exchanges two shorts if it

exchanges their underlying bit patterns.

11

Let’s implement it once more, this time for the
strings in the back corner of the data segment.

Strongly Typed Data Exchange

int main(int argc, char *argv[]) {
 char *x = "2";
 char *y = "5";
 swap_strings(&x, &y);
 printf("x = %d, y = %d\n", x, y);
 return 0;
}

void swap_strings(char **a, char **b) {
 char *temp = *a;
 *a = *b;
 *b = temp;
}

Address Value
…

0xff38 0xc
0xff30 0xe

…

0xff18 0xff30
0xff10 0xff38
0xff08 0xc

…

0xf '\0'
0xe '5'
0xd '\0'
0xc '2'

…

x

b

main

swap_strings

y

a
temp

DATA

The narrative is the same : exchange the
bit patterns residing within the two

orange boxes, whatever they happen to be.

Is it possible to implement a single
function that works for all types?

12

swap: Going Generic

void swap_ints(int *a, int *b) {
 int temp = *a;
 *a = *b;
 *b = temp;
}

These three functions all accomplish the same thing—swapping two values—
but require three different strongly typed signatures.

void swap_shorts(short *a, short *b) {
 short temp = *a;
 *a = *b;
 *b = temp;
}

void swap_strings(char **a, char **b) {
 char *temp = *a;
 *a = *b;
 *b = temp;
}

Each of the three routines:
• accepts pointers to values that should be

exchanged.
• creates temporary storage just big enough to

store one of the two values.
• reads the data addressed by a and copies

that same data into the temporary storage.
• reads the data addressed by b and copies a

bitwise replica into the space addressed by a.
• reads the data residing in the temporary and

copies all of it into the space addressed by b.

The primary difference worth pointing out: the
number of bytes moved is different in each.

13

void swap(pointer to data1, pointer to data2) {
 store a copy of data1 in temporary storage
 copy data2 to location of data1
 copy data in temporary storage to location of data2
}

swap: Going Generic

14

void swap(pointer to data1, pointer to data2) {
 store a copy of data1 in temporary storage
 copy data2 to location of data1
 copy data in temporary storage to location of data2
}

 4 bytes

 2 bytes

 8 bytes

Problem: each type may need a different size temp!

int temp = *data1ptr;

short temp = *data1ptr;

char *temp = *data1ptr;

swap: Going Generic

15

void swap(pointer to data1, pointer to data2) {
 store a copy of data1 in temporary storage
 copy data2 to location of data1
 copy data in temporary storage to location of data2
}

 4 bytes

 2 bytes

 8 bytes

Problem: each type needs to copy a different amount of data!

*data1Ptr = *data2ptr;

*data1Ptr = *data2ptr;

*data1Ptr = *data2ptr;

swap: Going Generic

16

void swap(pointer to data1, pointer to data2) {
 store a copy of data1 in temporary storage
 copy data2 to location of data1
 copy data in temporary storage to location of data2
}

 4 bytes

 2 bytes

 8 bytes

Problem: each type needs to copy a different amount of data!

*data2ptr = temp;

*data2ptr = temp;

*data2ptr = temp;

swap: Going Generic

17

void swap(void *data1ptr, void *data2ptr) {
 store a copy of data1 in temporary storage
 copy data2 to location of data1
 copy data in temporary storage to location of data2
}

swap: Going Generic

18

void swap(void *data1ptr, void *data2ptr) {
 // store a copy of data1 in temporary storage
 // copy data2 to location of data1
 // copy data in temporary storage to location of data2
}

swap: Going Generic

19

void swap(void *data1ptr, void *data2ptr) {
 // store a copy of data1 in temporary storage
 // copy data2 to location of data1
 // copy data in temporary storage to location of data2
}

If we don’t know the data type, we don't know
how many bytes it is. Let’s take that as another

parameter.

swap: Going Generic

20

void swap(void *data1ptr, void *data2ptr, size_t nbytes) {
 // store a copy of data1 in temporary storage
 // copy data2 to location of data1
 // copy data in temporary storage to location of data2
}

If we don’t know the data type, we don’t know
how many bytes it is. Let’s take that as another

parameter.

swap: Going Generic

21

void swap(void *data1ptr, void *data2ptr, size_t nbytes) {
 // store a copy of data1 in temporary storage
 // copy data2 to location of data1
 // copy data in temporary storage to location of data2
}

Let's start by making space for the temporary.
How can we allocate nbytes of temp space?

swap: Going Generic

22

void swap(void *data1ptr, void *data2ptr, size_t nbytes) {
 void temp; ???
 // store a copy of data1 in temporary storage
 // copy data2 to location of data1
 // copy data in temporary storage to location of data2
}

Let’s start by making space to store the temporary
value. How can we make nbytes of temp space?

swap: Going Generic

23

void swap(void *data1ptr, void *data2ptr, size_t nbytes) {
 char temp[nbytes];
 // store a copy of data1 in temporary storage
 // copy data2 to location of data1
 // copy data in temporary storage to location of data2
}

temp is nbytes of memory,
since each char is 1 byte!

swap: Going Generic

24

void swap(void *data1ptr, void *data2ptr, size_t nbytes) {
 char temp[nbytes];
 // store a copy of data1 in temporary storage
 // copy data2 to location of data1
 // copy data in temporary storage to location of data2
}

Now, how can we copy in what
data1ptr points to into temp?

swap: Going Generic

25

void swap(void *data1ptr, void *data2ptr, size_t nbytes) {
 char temp[nbytes];
 // store a copy of data1 in temporary storage
 temp = *data1ptr; ???
 // copy data2 to location of data1
 // copy data in temporary storage to location of data2
}

Now, how can we copy in what
data1ptr points to into temp?

swap: Going Generic

26

void swap(void *data1ptr, void *data2ptr, size_t nbytes) {
 char temp[nbytes];
 // store a copy of data1 in temporary storage
 temp = *data1ptr; ???
 // copy data2 to location of data1
 // copy data in temporary storage to location of data2
}

We can’t dereference a void * (or set an array
equal to something). C doesn’t know what it

points to! Therefore, it doesn’t know how many
bytes there it should be looking at.

swap: Going Generic

27

The Byte Replicator: memcpy

memcpy is a function that copies a specified number of bytes from one address
to another address.

void *memcpy(void *dest, const void *src, size_t n);

It copies the next n bytes that src points to to the location contained in dest. (It
also returns dest). It assumes the two regions of memory don't overlap.

int x = 5;
int y = 4;
memcpy(&x, &y, sizeof(x)); // like x = y

memcpy must take pointers to the bytes to work with to
know where they live and where they should be copied to.

28

void swap(void *data1ptr, void *data2ptr, size_t nbytes) {
 char temp[nbytes];
 // store a copy of data1 in temporary storage
 temp = *data1ptr; ???
 // copy data2 to location of data1
 // copy data in temporary storage to location of data2
}

We can’t dereference a void *. C doesn’t know
what it points to! Therefore, it doesn’t know how

many bytes there it should be looking at.

swap: Going Generic

29

void swap(void *data1ptr, void *data2ptr, size_t nbytes) {
 char temp[nbytes];
 // store a copy of data1 in temporary storage
 temp = *data1ptr; ???
 // copy data2 to location of data1
 // copy data in temporary storage to location of data2
}

How can memcpy help us here?
void *memcpy(void *dest, const void *src, size_t n);

swap: Going Generic

30

void swap(void *data1ptr, void *data2ptr, size_t nbytes) {
 char temp[nbytes];
 // store a copy of data1 in temporary storage
 memcpy(temp, data1ptr, nbytes);
 // copy data2 to location of data1
 // copy data in temporary storage to location of data2
}

swap: Going Generic

31

void swap(void *data1ptr, void *data2ptr, size_t nbytes) {
 char temp[nbytes];
 // store a copy of data1 in temporary storage
 memcpy(temp, data1ptr, nbytes);
 // copy data2 to location of data1
 // copy data in temporary storage to location of data2
}

We can copy the bytes ourselves into temp! This
is equivalent to temp = *data1ptr in non-generic
versions, but this works for any type of any size.

swap: Going Generic

32

void swap(void *data1ptr, void *data2ptr, size_t nbytes) {
 char temp[nbytes];
 // store a copy of data1 in temporary storage
 memcpy(temp, data1ptr, nbytes);
 // copy data2 to location of data1
 // copy data in temporary storage to location of data2
}

How can we copy data2 to the location of data1?

swap: Going Generic

33

void swap(void *data1ptr, void *data2ptr, size_t nbytes) {
 char temp[nbytes];
 // store a copy of data1 in temporary storage
 memcpy(temp, data1ptr, nbytes);
 // copy data2 to location of data1
 *data1ptr = *data2ptr; ???
 // copy data in temporary storage to location of data2
}

How can we copy data2 to the location of data1?

swap: Going Generic

34

void swap(void *data1ptr, void *data2ptr, size_t nbytes) {
 char temp[nbytes];
 // store a copy of data1 in temporary storage
 memcpy(temp, data1ptr, nbytes);
 // copy data2 to location of data1
 memcpy(data1ptr, data2ptr, nbytes);
 // copy data in temporary storage to location of data2
}

How can we copy data2 to the location of data1?
memcpy!

swap: Going Generic

35

void swap(void *data1ptr, void *data2ptr, size_t nbytes) {
 char temp[nbytes];
 // store a copy of data1 in temporary storage
 memcpy(temp, data1ptr, nbytes);
 // copy data2 to location of data1
 memcpy(data1ptr, data2ptr, nbytes);
 // copy data in temporary storage to location of data2
}

How can we copy temp’s data to the location of
data2?

swap: Going Generic

36

void swap(void *data1ptr, void *data2ptr, size_t nbytes) {
 char temp[nbytes];
 // store a copy of data1 in temporary storage
 memcpy(temp, data1ptr, nbytes);
 // copy data2 to location of data1
 memcpy(data1ptr, data2ptr, nbytes);
 // copy data in temporary storage to location of data2
 memcpy(data2ptr, temp, nbytes);
}

How can we copy temp’s data to the location of
data2? memcpy!

swap: Going Generic

37

void swap(void *data1ptr, void *data2ptr, size_t nbytes) {
 char temp[nbytes];
 // store a copy of data1 in temporary storage
 memcpy(temp, data1ptr, nbytes);
 // copy data2 to location of data1
 memcpy(data1ptr, data2ptr, nbytes);
 // copy data in temporary storage to location of data2
 memcpy(data2ptr, temp, nbytes);
}

int x = 2;
int y = 5;
swap(&x, &y, sizeof(x));

swap: Going Generic

38

void swap(void *data1ptr, void *data2ptr, size_t nbytes) {
 char temp[nbytes];
 // store a copy of data1 in temporary storage
 memcpy(temp, data1ptr, nbytes);
 // copy data2 to location of data1
 memcpy(data1ptr, data2ptr, nbytes);
 // copy data in temporary storage to location of data2
 memcpy(data2ptr, temp, nbytes);
}

short x = 2;
short y = 5;
swap(&x, &y, sizeof(x));

swap: Going Generic

39

void swap(void *data1ptr, void *data2ptr, size_t nbytes) {
 char temp[nbytes];
 // store a copy of data1 in temporary storage
 memcpy(temp, data1ptr, nbytes);
 // copy data2 to location of data1
 memcpy(data1ptr, data2ptr, nbytes);
 // copy data in temporary storage to location of data2
 memcpy(data2ptr, temp, nbytes);
}

char *x = "2";
char *y = "5";
swap(&x, &y, sizeof(x));

swap: Going Generic

40

void swap(void *data1ptr, void *data2ptr, size_t nbytes) {
 char temp[nbytes];
 // store a copy of data1 in temporary storage
 memcpy(temp, data1ptr, nbytes);
 // copy data2 to location of data1
 memcpy(data1ptr, data2ptr, nbytes);
 // copy data in temporary storage to location of data2
 memcpy(data2ptr, temp, nbytes);
}

mystruct x = {…};
mystruct y = {…};
swap(&x, &y, sizeof(x));

swap: Going Generic

41

Demo: void *s Gone Wrong

swap.c

