CS107 Lecture 12

C Generics and Function Pointers

Reading: K&R 5.11

This document is copyright (C) Stanford Computer Science, Lisa Yan, Nick Troccoli and Katie Creel, licensed under Creative Commons Attribution 2.5 License. All rights reserved.
Based on slides created by Cynthia Lee, Chris Gregg, Jerry Cain, Lisa Yan and others.

Going Generic: swap_ends

Let’s write an int-specific version of a function called swap_ends_1int that
accepts an array and exchanges its two endpoints.

Tint main(int argc, char xargv(]) { Algorithmically straightforward.
int nums[] = {7, 2, 3, 4, 5, 6, 1}; We, however, have already written a generic
size_t len = sizeof(nums) / sizeof(nums[0]); swap routine that can replace the three-
swap_ends_int(nums, len); statement implementation of swap_ends_int.
printf("nums[0] = %d, nums[%zu] = %d\n", |
nums[0], len - 1, nums[len - 17); . Before we do that, let’s say some smart things:

* arr[0]isreally xarr

« arr[len-1]isreallyx(arr +1len-1).
Restated, this computes the address that is
(len - 1) integers—or rather

, return 0;
i} // should print nums[0] = 1, nums[6] = 7

void swap_ends_int(int arr[], size_t len) { (len-1) * sizeof(int) bytes—beyond
int tmp = arr[0]; the array’s base and dereferences it to access
arr[0] = arr[len - 1]; i the last element.

. arr[len - 1] = tmp; .+ Array notation is syntactic sugar for pointer

1 notation. We now understand even more so

D : how elements in an array are located.

Going Generic: swap_ends

Let’s write an int-specific version of a function called swap_ends_1int that
accepts an array and exchanges its two endpoints.

__

v . . Truth be told, the win here is largely an academic
. int main(int argc, char xargv[]) { gey

one, and most would be perfectly thrilled with the

int nums[] = {7, 2, 3, 4, 5, 6, 1}; : original three-statement version.

size_t len = sizeof(nums) / sizeof(nums[0]);

swap_ends_int(nums, len); Still, it’s a victory to understand how the raw bit

printf("nums[0] = %d, nums[%zu] = %d\n", pattern exchange managed by swap exchanges
nums[0], len - 1, nums[len - 1]); the sizeof (int)-byte figures on behalf of

return 0; swap_ends_int.

B

There’s very little about the implementation that
5 .) .] feels all that 1 nt-specific.

i void swap_ends_int(int arr[], size_t len) { .

' swap(&arr[0], &arr[len - 1], sizeof(arr[0])); | What would swap_ends_short,

} . swap_ends_float, and swap_ends_string
look like?

Going Generic: swap_ends

What would swap_ends_short, swap_ends_float, and
swap_ends_string look like?

__

. void swap_ends_int(int arr[], size_t len) {

swap(&arr[0], &arr[len - 1], sizeof(arr[0])); . All four versions are one-line wrappers
L} . around a call to swap, and the three
: i expressions passed as prameters are
' void swap_ends_short(short arr[], size_t len) { precisely the same in all cases.

swap(&arr[0], &arr[len - 1], sizeof(arr[0])); Of course, the sizeof expressions

¥ produce different numbers. And the

: pointer arithmetic associated with
void swap_ends_float(float arr[], size_t len) { i &arr[len -1] is computed by scaling
swap(&arr[0], &arr[len - 1], sizeof(arr[0])); . len - 1 by the relevant element size.
3 ’

Surely there’s some way to unify these

void swap_ends_string(const char rarr[], size_t lem) { | puimeenTienios el ol
swap(&arr[0], &arr[len - 1], sizeof(arr[0])); , p. Right?

Going Generic: swap_ends

Here’s our first attempt at a fully generic implementation of swap_ends.

' void swap_ends(void *arr, size_t len, size_t size) {
swap(arr, arr + len - 1, size);

What works? What doesn’t?

The base address of the array—whatever the The expression arr + len - 1 isinvalid.
element type—can be accepted as a void *.
Since arris avoid *, it can’t be dereferenced and

And provided the element size is passed can’t participate in pointer arithmetic. Pointer
through as an additional parameter to arithmetic requires a known pointed-to type so the
swap_ends, we know to pass that value on compiler can scale addresses by sizeof (type).

verbatim as the third parameter to swap.
Because that information is missing, expressions
like xarr,arr[0],and arr + Llen - 1 don’t make
sense an pure C-compliant compiler.

Going Generic: swap_ends

Let’s build up a generic implementation of swap_ends that truly works.

...

' void swap_ends(void *arr, size_t len, size_t size) { |
swap(arr, (char *) arr + (len - 1) * size, size); !

Numerically, the second argument to swap needs to be the address that is
literally (len - 1) x size bytes beyond arr.

The trick—standard in generic C code and referred to as the "char * hack" in CS107
circles—is to cast the leading address to be a char *—regardless of what it truly
addresses—so that pointer arithmetic is reduced to byte-by-byte arithmetic.

The expression (char *) + (len-1) x sizeisof type char x, but swap’s second
parameter is of type void * and therefore happy to accept it as a generic address.

Going Generic: swap_ends

Let’s build up a generic implementation of swap_ends that truly works.

' void swap_ends(void *arr, size_t len, size_t size) {
swap(arr, (char *) arr + (len - 1) * size, size);

rint numbers[] = {7, 2, 3, 4, 5, 6, 1}; i float math[] = {4.6692, 2.7183, 3.1416, 1.6180};
' size_t count = sizeof(numbers) / sizeof(numbers[0]); | ! size_t count = sizeof(math) / sizeof(math[0]);
iswap_ends(numbers, count, sizeof(numbers[0])); i \ swap_ends (math, count, sizeof(math[0]));

 short primes[] = {23, 3, 5, 7, 11, 13, 17, 19, 2}; | ! typedef struct {

' size_t count = sizeof(primes) / sizeof(primes[0]); E i int num;

iswap_ends(primes, count, sizeof(primes[0])); i i int denom;

'' 1} fraction;

i const char xfrench[] = {"prie", "vous", "en”, "je"}; | |))

' size_t count = sizeof(french) / sizeof(french[0]); i 1 fraction ratios[] = {{5, 7}, {11, 18}, {13, 27}};

| swap_ends (french, count, sizeof(words[0])); i 1 size_t count = sizeof(ratios) / sizeof(ratios[0]); .
--- " 1 swap_ends(ratios, count, sizeof(ratios[0])); ;

Generics Etude: rotate

Let’s implement a C generic that rotates the byte range [front, end) so the subrange
[front, separator) moves to the end. All pointers reach into the same contiguous
memory block, and relative byte order must otherwise be preserved.

Here’s the general prototype. | void rotate(void xfront, void *separator, void *end);

Here’ssomeclientcodeand | int array[] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};
some pretty diagrams to ' rotate(array, array + 3, array + 10);
illustrate how rotate works. iassert(array[@] == 4 && array[3] == 7 && array[?] == l);

front separator end

] |
before rotation: | 7] 2 3 4 5 6 7 S 9 10 Here’s Doris.

C/
after rotation: | /4 5 6 7 8 O 10 1 2 3 ‘@

Generics Etude: rotate

Let’s implement a C generic that rotates the byte range [front, end) so the subrange
[front, separator) moves to the end. All three addresses point into the same
contiguous memory block, and relative byte order must otherwise be preserved.

__

vo1d rotate(void *front, void *separator, void *end) { Here we compute the width of the entire array and
assert(front <= separator && separator <= end); the sizes of the two figures that travel as a unit.

size_t width = (char *)end - (char x*)front;

size_t prefix_width (char *)separator - (char *)front: tempisjustbigenough to store a copy of the

size_t suffix_width width - prefix_width; prefix to be pushed to the rear of the array.

if (prefix_width == 0 || suffix_width == 0) return; There are three memory moves here for the same
reason there were three in the generic swap. The

char temp[prefix_width]; key difference here, of course, is that the two

memcpy (temp, front, prefix_width); figures being exchanged are usually different sizes.

memcpy ((char *x)end - prefix_width, temp, prefix_width);

Sadness: there’s a logical flaw with the second of the three memcpy calls.
because the source and the destination might overlap.

Introducing memmove

memmove copies a specified number of bytes from one memory location
to another, correctly handling scenarios where the source and destination
ranges overlap.

void *memmove(void *dst, const void *src, size_t len);

* memmove behaves just like memcpy but is defined to Quick Example: Here’s a function that converts a Pascal string of
work properly even when the source and destination length 255 or less to a C string. Pascal strings aren’t terminated
regions overlap. It copies data in a safe direction to avoid by a zero byte the way C strings are. Instead, they store their
overwriting data that has not yet been copied. length in the 0" position, and the characters themselves start at

* Ifyou know the two regions can't possibly overlap, the position 1. This version converts in place.
correct CS107 thing to do is to call memcpy instead. L

* memmove and memcpy each return whatever dst is. The 1 void pascal_to_c_string(char *s) {
return value is almost always ignored. size_t len = s[0];

* Hot Take: memmove and memcpy both operate much like memmove(s, s + 1, len);
strncpy, except they don’t stop when they encounter i s[len] = '"\0';

a zero byte. The number of bytes copied is dictated—in all }

cases—by the value of the third argument.
10

Generics Etude: rotate

Let’s implement a C generic that rotates the byte range [front, end) so the subrange
[front, separator) moves to the end. All three addresses point into the same
contiguous memory block, and relative byte order must otherwise be preserved.

__

vo1d rotate(void *front, void *separator, void *end) {
assert(front <= separator && separator <= end);

size_t width = (char *)end - (char x*)front;

size_t prefix_width (char x)separator - (char *)front;
size_t suffix_width width - prefix_width;

if (prefix_width == 0 || suffix_width == 0) return;

char temp[prefix_width];

memcpy (temp, front, prefix_width);

memmove (front, separator, suffix_width);

memcpy ((char *x)end - prefix_width, temp, prefix_width);

Unless the caller supplies bogus addresses,
it’s impossible for the material in between
front and end to overlap with the
memory set aside for temp.

That means memcpy is perfectly valid for
the first and third of the three moves.

And yes, while we could call memmmove
anyway, you shouldn’t call mnemmmove if
memcpy works in all scenarios.

Whenever there’s a genuine threat of

overlap as there is with the second of the
three moves, you must call memmmove.

11

Motivating Example: Bubble Sort

Let’s implement a function bubble_sort_int to sort a list of integers using
the bubble sort algorithm.

4 2 12 | -5 | 56 | 14

Bubble sort repeatedly goes through the array, swapping any pairs of elements that are out
of order. When there are no more swaps needed, the array is sorted.

12

Motivating Example: Bubble Sort

Let’s implement a function bubble_sort_int to sort a list of integers using
the bubble sort algorithm.

Bubble sort repeatedly goes through the array, swapping any pairs of elements that are out
of order. When there are no more swaps needed, the array is sorted.

13

Motivating Example: Bubble Sort

Let’s implement a function bubble_sort_int to sort a list of integers using
the bubble sort algorithm.

Bubble sort repeatedly goes through the array, swapping any pairs of elements that are out
of order. When there are no more swaps needed, the array is sorted.

14

Motivating Example: Bubble Sort

Let’s implement a function bubble_sort_int to sort a list of integers using
the bubble sort algorithm.

Bubble sort repeatedly goes through the array, swapping any pairs of elements that are out
of order. When there are no more swaps needed, the array is sorted.

15

Motivating Example: Bubble Sort

Let’s implement a function bubble_sort_int to sort a list of integers using
the bubble sort algorithm.

Bubble sort repeatedly goes through the array, swapping any pairs of elements that are out
of order. When there are no more swaps needed, the array is sorted.

16

Motivating Example: Bubble Sort

Let’s implement a function bubble_sort_int to sort a list of integers using
the bubble sort algorithm.

Bubble sort repeatedly goes through the array, swapping any pairs of elements that are out
of order. When there are no more swaps needed, the array is sorted.

17

Motivating Example: Bubble Sort

Let’s implement a function bubble_sort_int to sort a list of integers using
the bubble sort algorithm.

Bubble sort repeatedly goes through the array, swapping any pairs of elements that are out
of order. When there are no more swaps needed, the array is sorted.

18

Motivating Example: Bubble Sort

Let’s implement a function bubble_sort_int to sort a list of integers using
the bubble sort algorithm.

2

A4

-5

1 [

Bubble sort repeatedly goes through the array, swapping any pairs of elements that are out
of order. When there are no more swaps needed, the array is sorted.

19

Motivating Example: Bubble Sort

Let’s implement a function bubble_sort_int to sort a list of integers using
the bubble sort algorithm.

2

A4

-5

2 [2adss.

Bubble sort repeatedly goes through the array, swapping any pairs of elements that are out
of order. When there are no more swaps needed, the array is sorted.

20

Motivating Example: Bubble Sort

Let’s implement a function bubble_sort_int to sort a list of integers using
the bubble sort algorithm.

Bubble sort repeatedly goes through the array, swapping any pairs of elements that are out
of order. When there are no more swaps needed, the array is sorted.

21

Motivating Example: Bubble Sort

Let’s implement a function bubble_sort_int to sort a list of integers using
the bubble sort algorithm.

Bubble sort repeatedly goes through the array, swapping any pairs of elements that are out
of order. When there are no more swaps needed, the array is sorted.

22

Motivating Example: Bubble Sort

Let’s implement a function bubble_sort_int to sort a list of integers using
the bubble sort algorithm.

Bubble sort repeatedly goes through the array, swapping any pairs of elements that are out
of order. When there are no more swaps needed, the array is sorted.

23

Motivating Example: Bubble Sort

Let’s implement a function bubble_sort_int to sort a list of integers using
the bubble sort algorithm.

Bubble sort repeatedly goes through the array, swapping any pairs of elements that are out
of order. When there are no more swaps needed, the array is sorted.

24

Motivating Example: Bubble Sort

Let’s implement a function bubble_sort_int to sort a list of integers using
the bubble sort algorithm.

Bubble sort repeatedly goes through the array, swapping any pairs of elements that are out
of order. When there are no more swaps needed, the array is sorted.

25

Motivating Example: Bubble Sort

Let’s implement a function bubble_sort_int to sort a list of integers using
the bubble sort algorithm.

Bubble sort repeatedly goes through the array, swapping any pairs of elements that are out
of order. When there are no more swaps needed, the array is sorted.

In general, bubble sort requires up to n = 1 passes to sort an array of length n, though it may end soonerif a
pass doesn’t swap anything at all.

26

Motivating Example: Bubble Sort

Let’s implement a function bubble_sort_int to sort a list of integers using
the bubble sort algorithm.

-5 2 4 12 | 14 | 56

Bubble sort repeatedly goes through the array, swapping any pairs of elements that are out
of order. When there are no more swaps needed, the array is sorted.

Only two more passes are needed to arrive at the what you see above. The first of those two additional
passes exchanges the 2 and the -5, and the second leaves everything as is.

27

Integer Bubble Sort: Going Generic

Let’s implement a function bubble_sort_int to sort a list of integers using
the bubble sort algorithm.

' void bubble_sort_int(int arr[], size_t n) { R .
| while (true) { Thewhile (true) loop gives the

bool swapped = false; impression that we could in theory loop

for (size.t 4 = 13 4 < n; i+4) { foreveir, but that’s not true.

i if (arr[i - 1] > arr[i]) { :

swap (&arr[i - 1], &arr[i], sizeof(int)); The largestelementbubbletstc?thec'end of the
5 ~) ’ > array via the while loop’s first iteration. That’s
) swapped = true; guaranteed.

} The second largest bubbles to sit to the left of
if (!swapped) return; the largest element by the end of thewhile

} loop’s second iteration.

3

o oooooolloooollooooolloooooolooooooooooooes A lainduction, the smallest element occupies
index 0 after at most n - 1 iterations.

Can we generalize this version just a bit? 8

Integer Bubble Sort: Going Generic

Here’s a slightly more elaborate (though still 1nt-specific) implementation,
that allows the client to choose ascending versus descending order.

' void bubble_sort_int(int arr[], size_t n, bool ascending) {

while (true) {
bool swapped = false;
for (size_t i = 15 i < nj i++) {
if ((ascending && arr[i - 1] > arr[i]) ||
(!ascending && arr[i - 1] < arr[i])) {
swap(&arr[i - 1], &arr[i], sizeof(int));
swapped = true;
}
}

if (!swapped) return;

Here we rely on a single Boolean
value—a bool called ascending—to
brute-force decide between one of two

comparisons.

What about different orderings? Odd
before even? Distance from 0?

We could replace the bool with anint
code or some enumerated type to
dispatch between one of several

comparisons instead of just two, but
that won’t scale very well.

29

Integer Bubble Sort: Going Generic

What we really want is a version where the decision to swap or not is made
by some predicate function, here called should_swap.

T oo oooooooooooooooooooooo- Here, should_swap is a standalone
. void bubble_sort_int(int arr[], size_t n) { function that returns true if and only if
while (true) { the two elements being compared are
bool swapped = false; out of order.
for (size_t i = 1; i < n; i++) {
if (should_swap(arr[i - 1], arr[i])) { The problem is that should_swap has

no access to call-specific intent. Its
behavior is fixed for the entire
program, so there’s no easy way to sort

swap(&arr[i - 1], &arr[i], sizeof(int));
swapped = true;

¥ one int array from low to high, another
}: by decreasing absolute value, and a third
if (!swapped) return; using some other custom ordering.
| b
'} A well-decomposed function isn’t the

"" sameasa generic one.

30

Integer Bubble Sort: Going Generic

The solution here is to require the client pass a function that accepts two
ints and returns true if and only if the two are out of order.

i void bubble_sort_int(int arr[], size_t n, bool (*should_swap)(int, 1int)) {E
! while (true) { '

The third parameter is of type function pointer,
bool S"Yapped .: false.; . which means it accepts a function that, in this
for (size_t i = 1; i < nj; i++) { case, itself takes two ints and returns a boo'l.

if (should_swap(arr[i - 1], arr[i])) {
swap(&arr[i - 1], &arr[i], sizeof(int)) Afunctionnameisinternally recognized asthe
swapped = true; address of the first assembly code instruction
1 associated with the function. That’s why a
1 function name can be used as a function pointer.
if (iswapped) return; The name of any function can be passed in as the
5) ¥ third parameter here, provided it takes two ints

A and returns a boo'l.

31

Integer Bubble Sort: Going Generic

Look at just how versatile bubble_sort_1intis now.

' bool sort_ascending(int one, int two) {
return one > two;

L}

rint main(int argc, char *argv[]) { |
i int nums[] = {4, 2, -5, 1, 12, 56}; |
: size_t count = sizeof(nums) / sizeof(nums[0]);
| bubble_sort_int(nums, count, sort_ascending); !

return 0;

__

bool sort_abs(int one, int two) {
return abs(one) > abs(two);

}

int main(int argc, char *xargv([]) {
int nums[] = {4, 2, -5, 1, 12, 56}; |
size_t count = sizeof(nums) / sizeof(nums[0]);
bubble_sort_int(nums, count, sort_abs);

return 0;

__

i bool sort_descending(int one, int two) {
return one < two;

B :
iint main(int argc, char xargv[]) {

| int nums[] = {4, 2, -5, 1, 12, 56};

: size_t count = sizeof(nums) / sizeof(nums[0]);

! bubble_sort_int(nums, count, sort_descending);

;ééurn 0;
When writing a generic function, if we don’t know how to do
something and the decision about what to do should be left to the

client, we can require the client to pass a function that can do it for
us.

Functions passed as parameters are often called callback functions,
because they call back into client-specific, context-aware code.

Next time, we’ll work to upgrade this to work for any element types;2

