
1
This document is copyright (C) Stanford Computer Science, Lisa Yan, Nick Troccoli and Katie Creel, licensed under Creative Commons Attribution 2.5 License.  All rights reserved.

Based on slides created by Cynthia Lee, Chris Gregg, Jerry Cain, Lisa Yan and others.

CS107 Lecture 12
C Generics and Function Pointers

Reading: K&R 5.11



2

Going Generic: swap_ends

Let’s write an int-specific version of a function called swap_ends_int that 
accepts an array and exchanges its two endpoints.

int main(int argc, char *argv[]) {
   int nums[] = {7, 2, 3, 4, 5, 6, 1};
   size_t len = sizeof(nums) / sizeof(nums[0]);
   swap_ends_int(nums, len);
   printf("nums[0] = %d, nums[%zu] = %d\n",
          nums[0], len - 1, nums[len - 1]); 
   return 0;
} // should print nums[0] = 1, nums[6] = 7

void swap_ends_int(int arr[], size_t len) {
   int tmp = arr[0];
   arr[0] = arr[len - 1];
   arr[len - 1] = tmp;
}

Algorithmically straightforward.

We, however, have already written a generic 
swap routine that can replace the three-

statement implementation of swap_ends_int.

Before we do that, let’s say some smart things:
• arr[0] is really *arr
• arr[len – 1] is really *(arr + len – 1).  

Restated, this computes the address that is 
(len – 1) integers—or rather
(len – 1) * sizeof(int) bytes—beyond 
the array’s base and dereferences it to access 
the last element.

• Array notation is syntactic sugar for pointer 
notation. We now understand even more so 
how elements in an array are located.



3

Going Generic: swap_ends

Let’s write an int-specific version of a function called swap_ends_int that 
accepts an array and exchanges its two endpoints.

int main(int argc, char *argv[]) {
   int nums[] = {7, 2, 3, 4, 5, 6, 1};
   size_t len = sizeof(nums) / sizeof(nums[0]);
   swap_ends_int(nums, len);
   printf("nums[0] = %d, nums[%zu] = %d\n",
          nums[0], len - 1, nums[len - 1]); 
   return 0;
}

void swap_ends_int(int arr[], size_t len) {
   swap(&arr[0], &arr[len – 1], sizeof(arr[0]));
}

Truth be told, the win here is largely an academic 
one, and most would be perfectly thrilled with the 

original three-statement version.

Still, it’s a victory to understand how the raw bit 
pattern exchange managed by swap exchanges 

the sizeof(int)-byte figures on behalf of 
swap_ends_int.

There’s very little about the implementation that 
feels all that int-specific.

What would swap_ends_short, 
swap_ends_float, and swap_ends_string 

look like?



4

Going Generic: swap_ends

What would swap_ends_short, swap_ends_float, and 
swap_ends_string look like?

void swap_ends_int(int arr[], size_t len) {
   swap(&arr[0], &arr[len – 1], sizeof(arr[0]));
}

void swap_ends_short(short arr[], size_t len) {
   swap(&arr[0], &arr[len – 1], sizeof(arr[0]));
}

void swap_ends_float(float arr[], size_t len) {
   swap(&arr[0], &arr[len – 1], sizeof(arr[0]));
}

void swap_ends_string(const char *arr[], size_t len) {
   swap(&arr[0], &arr[len – 1], sizeof(arr[0]));
}

All four versions are one-line wrappers 
around a call to swap, and the three 

expressions passed as prameters are 
precisely the same in all cases.

Of course, the sizeof expressions 
produce different numbers.  And the 
pointer arithmetic associated with 

&arr[len – 1] is computed by scaling 
len - 1 by the relevant element size.

Surely there’s some way to unify these 
four implementations to a single code 
base, much as we did for swap. Right?



5

Going Generic: swap_ends

Here’s our first attempt at a fully generic implementation of swap_ends.

void swap_ends(void *arr, size_t len, size_t size) {
   swap(arr, arr + len – 1, size);
}

What works? What doesn’t?
The base address of the array—whatever the 
element type—can be accepted as a void *.  

And provided the element size is passed 
through as an additional parameter to 

swap_ends, we know to pass that value on 
verbatim as the third parameter to swap.

The expression arr + len - 1 is invalid.

Since arr is a void *, it can’t be dereferenced and 
can’t participate in pointer arithmetic. Pointer 
arithmetic requires a known pointed-to type so the 
compiler can scale addresses by sizeof(type).

Because that information is missing, expressions 
like *arr, arr[0], and arr + len - 1 don’t make 
sense an pure C-compliant compiler.



6

Let’s build up a generic implementation of swap_ends that truly works.

Numerically, the second argument to swap needs to be the address that is 
literally (len – 1) * size bytes beyond arr.  

The trick—standard in generic C code and referred to as the "char * hack" in CS107 
circles—is to cast the leading address to be a char *—regardless of what it truly 

addresses—so that pointer arithmetic is reduced to byte-by-byte arithmetic.

The expression (char *) + (len – 1) * size is of type char *, but swap’s second 
parameter is of type void * and therefore happy to accept it as a generic address.

void swap_ends(void *arr, size_t len, size_t size) {
   swap(arr, (char *) arr + (len – 1) * size, size);
}

Going Generic: swap_ends

void swap_ends(void *arr, size_t len, size_t size) {
   swap(arr, , size);
}



7

Let’s build up a generic implementation of swap_ends that truly works.

How should swap_ends be called? Check this out:

void swap_ends(void *arr, size_t len, size_t size) {
   swap(arr, (char *) arr + (len – 1) * size, size);
}

Going Generic: swap_ends

int numbers[] = {7, 2, 3, 4, 5, 6, 1};
size_t count = sizeof(numbers) / sizeof(numbers[0]);
swap_ends(numbers, count, sizeof(numbers[0]));

short primes[] = {23, 3, 5, 7, 11, 13, 17, 19, 2};
size_t count = sizeof(primes) / sizeof(primes[0]);
swap_ends(primes, count, sizeof(primes[0]));

const char *french[] = {"prie", "vous", "en”, "je"};
size_t count = sizeof(french) / sizeof(french[0]);
swap_ends(french, count, sizeof(words[0]));

float math[] = {4.6692, 2.7183, 3.1416, 1.6180};
size_t count = sizeof(math) / sizeof(math[0]);
swap_ends(math, count, sizeof(math[0]));

typedef struct {
   int num; 
   int denom;
} fraction;

fraction ratios[] = {{5, 7}, {11, 18}, {13, 27}}; 
size_t count = sizeof(ratios) / sizeof(ratios[0]);
swap_ends(ratios, count, sizeof(ratios[0]));



8

Let’s implement a C generic that rotates the byte range [front, end) so the subrange 
[front, separator) moves to the end. All pointers reach into the same contiguous 

memory block, and relative byte order must otherwise be preserved.

Generics Etude: rotate

void rotate(void *front, void *separator, void *end);

int array[] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};
rotate(array, array + 3, array + 10);
assert(array[0] == 4 && array[3] == 7 && array[7] == 1);

Here’s the general prototype.

Here’s some client code and 
some pretty diagrams to 
illustrate how rotate works.

1 2 3 4 5 6 7 8 9 10

front separator end

before rotation:

4 5 6 7 8 9 10 1 2 3after rotation:

Here’s Doris.



9

Let’s implement a C generic that rotates the byte range [front, end) so the subrange 
[front, separator) moves to the end. All three addresses point into the same 

contiguous memory block, and relative byte order must otherwise be preserved.

Generics Etude: rotate

void rotate(void *front, void *separator, void *end) {
   assert(front <= separator && separator <= end);
   size_t width = (char *)end - (char *)front;
   size_t prefix_width = (char *)separator - (char *)front;
   size_t suffix_width = width - prefix_width;

   if (prefix_width == 0 || suffix_width == 0) return; 

   char temp[prefix_width];
   memcpy(temp, front, prefix_width);
   memcpy(front, separator, suffix_width);
   memcpy((char *)end - prefix_width, temp, prefix_width);
}

Here we compute the width of the entire array and 
the sizes of the two figures that travel as a unit.

temp is just big enough to store a copy of the 
prefix to be pushed to the rear of the array.

There are three memory moves here for the same 
reason there were three in the generic swap.  The 

key difference here, of course, is that the two 
figures being exchanged are usually different sizes.

Sadness: there’s a logical flaw with the second of the three memcpy calls, 
because the source and the destination might overlap.



10

Introducing memmove

memmove copies a specified number of bytes from one memory location 
to another, correctly handling scenarios where the source and destination 

ranges overlap.

void *memmove(void *dst, const void *src, size_t len);
• memmove behaves just like memcpy but is defined to 

work properly even when the source and destination 
regions overlap. It copies data in a safe direction to avoid 
overwriting data that has not yet been copied.

• If you know the two regions can't possibly overlap, the 
correct CS107 thing to do is to call memcpy instead.

• memmove and memcpy each return whatever dst is. The 
return value is almost always ignored.

• Hot Take: memmove and memcpy both operate much like 
strncpy, except they don’t stop when they encounter 
a zero byte. The number of bytes copied is dictated—in all 
cases—by the value of the third argument.

Quick Example: Here’s a function that converts a Pascal string of 
length 255 or less to a C string. Pascal strings aren’t terminated 
by a zero byte the way C strings are. Instead, they store their 
length in the 0th position, and the characters themselves start at 
position 1.  This version converts in place.

void pascal_to_c_string(char *s) {
   size_t len = s[0];
   memmove(s, s + 1, len);
   s[len] = '\0';
}



11

Let’s implement a C generic that rotates the byte range [front, end) so the subrange 
[front, separator) moves to the end. All three addresses point into the same 

contiguous memory block, and relative byte order must otherwise be preserved.

Generics Etude: rotate

void rotate(void *front, void *separator, void *end) {
   assert(front <= separator && separator <= end);
   size_t width = (char *)end - (char *)front;
   size_t prefix_width = (char *)separator - (char *)front;
   size_t suffix_width = width - prefix_width;

   if (prefix_width == 0 || suffix_width == 0) return; 

   char temp[prefix_width];
   memcpy(temp, front, prefix_width);
   memmove(front, separator, suffix_width);
   memcpy((char *)end - prefix_width, temp, prefix_width);
}

Unless the caller supplies bogus addresses, 
it’s impossible for the material in between 

front and end to overlap with the 
memory set aside for temp.

That means memcpy is perfectly valid for 
the first and third of the three moves.  
And yes, while we could call memmmove 
anyway, you shouldn’t call memmmove if 

memcpy works in all scenarios.

Whenever there’s a genuine threat of 
overlap as there is with the second of the 
three moves, you must call memmmove.



12

Motivating Example: Bubble Sort 
Let’s implement a function bubble_sort_int to sort a list of integers using 

the bubble sort algorithm.

Bubble sort repeatedly goes through the array, swapping any pairs of elements that are out 
of order.  When there are no more swaps needed, the array is sorted.

4 2 12 -5 56 14



13

4 2 12 -5 56 14

Motivating Example: Bubble Sort 
Let’s implement a function bubble_sort_int to sort a list of integers using 

the bubble sort algorithm.

Bubble sort repeatedly goes through the array, swapping any pairs of elements that are out 
of order.  When there are no more swaps needed, the array is sorted.



14

2 4 12 -5 56 14

Motivating Example: Bubble Sort 
Let’s implement a function bubble_sort_int to sort a list of integers using 

the bubble sort algorithm.

Bubble sort repeatedly goes through the array, swapping any pairs of elements that are out 
of order.  When there are no more swaps needed, the array is sorted.



15

2 4 12 -5 56 14

Motivating Example: Bubble Sort 
Let’s implement a function bubble_sort_int to sort a list of integers using 

the bubble sort algorithm.

Bubble sort repeatedly goes through the array, swapping any pairs of elements that are out 
of order.  When there are no more swaps needed, the array is sorted.



16

2 4 12 -5 56 14

Motivating Example: Bubble Sort 
Let’s implement a function bubble_sort_int to sort a list of integers using 

the bubble sort algorithm.

Bubble sort repeatedly goes through the array, swapping any pairs of elements that are out 
of order.  When there are no more swaps needed, the array is sorted.



17

2 4 -5 12 56 14

Motivating Example: Bubble Sort 
Let’s implement a function bubble_sort_int to sort a list of integers using 

the bubble sort algorithm.

Bubble sort repeatedly goes through the array, swapping any pairs of elements that are out 
of order.  When there are no more swaps needed, the array is sorted.



18

2 4 -5 12 56 14

Motivating Example: Bubble Sort 
Let’s implement a function bubble_sort_int to sort a list of integers using 

the bubble sort algorithm.

Bubble sort repeatedly goes through the array, swapping any pairs of elements that are out 
of order.  When there are no more swaps needed, the array is sorted.



19

2 4 -5 12 56 14

Motivating Example: Bubble Sort 
Let’s implement a function bubble_sort_int to sort a list of integers using 

the bubble sort algorithm.

Bubble sort repeatedly goes through the array, swapping any pairs of elements that are out 
of order.  When there are no more swaps needed, the array is sorted.



20

2 4 -5 12 14 56

Motivating Example: Bubble Sort 
Let’s implement a function bubble_sort_int to sort a list of integers using 

the bubble sort algorithm.

Bubble sort repeatedly goes through the array, swapping any pairs of elements that are out 
of order.  When there are no more swaps needed, the array is sorted.



21

2 4 -5 12 14 56

Motivating Example: Bubble Sort 
Let’s implement a function bubble_sort_int to sort a list of integers using 

the bubble sort algorithm.

Bubble sort repeatedly goes through the array, swapping any pairs of elements that are out 
of order.  When there are no more swaps needed, the array is sorted.



22

2 4 -5 12 14 56

Motivating Example: Bubble Sort 
Let’s implement a function bubble_sort_int to sort a list of integers using 

the bubble sort algorithm.

Bubble sort repeatedly goes through the array, swapping any pairs of elements that are out 
of order.  When there are no more swaps needed, the array is sorted.



23

2 -5 4 12 14 56

Motivating Example: Bubble Sort 
Let’s implement a function bubble_sort_int to sort a list of integers using 

the bubble sort algorithm.

Bubble sort repeatedly goes through the array, swapping any pairs of elements that are out 
of order.  When there are no more swaps needed, the array is sorted.



24

2 -5 4 12 14 56

Motivating Example: Bubble Sort 
Let’s implement a function bubble_sort_int to sort a list of integers using 

the bubble sort algorithm.

Bubble sort repeatedly goes through the array, swapping any pairs of elements that are out 
of order.  When there are no more swaps needed, the array is sorted.



25

2 -5 4 12 14 56

Motivating Example: Bubble Sort 
Let’s implement a function bubble_sort_int to sort a list of integers using 

the bubble sort algorithm.

Bubble sort repeatedly goes through the array, swapping any pairs of elements that are out 
of order.  When there are no more swaps needed, the array is sorted.



26

2 -5 4 12 14 56

Motivating Example: Bubble Sort 
Let’s implement a function bubble_sort_int to sort a list of integers using 

the bubble sort algorithm.

Bubble sort repeatedly goes through the array, swapping any pairs of elements that are out 
of order.  When there are no more swaps needed, the array is sorted.

In general, bubble sort requires up to n - 1 passes to sort an array of length n , though it may end sooner if a 
pass doesn’t swap anything at all.



27

-5 2 4 12 14 56 ✅

Motivating Example: Bubble Sort 
Let’s implement a function bubble_sort_int to sort a list of integers using 

the bubble sort algorithm.

Bubble sort repeatedly goes through the array, swapping any pairs of elements that are out 
of order.  When there are no more swaps needed, the array is sorted.

Only two more passes are needed to arrive at the what you see above. The first of those two additional 
passes exchanges the 2 and the -5, and the second leaves everything as is.



28

Integer Bubble Sort: Going Generic

Let’s implement a function bubble_sort_int to sort a list of integers using 
the bubble sort algorithm.

void bubble_sort_int(int arr[], size_t n) {
   while (true) {
      bool swapped = false;
      for (size_t i = 1; i < n; i++) {
         if (arr[i - 1] > arr[i]) {
            swap(&arr[i - 1], &arr[i], sizeof(int));
            swapped = true;
         }
      }
      if (!swapped) return;
    }
}

The while (true) loop gives the 
impression that we could in theory loop 

forever, but that’s not true.  

The largest element bubbles to the end of the 
array via the while loop’s first iteration. That’s 

guaranteed.  

The second largest bubbles to sit to the left of 
the largest element by the end of the while 

loop’s second iteration.  

A la induction, the smallest element occupies 
index 0 after at most n – 1 iterations.

Can we generalize this version just a bit?



29

Here’s a slightly more elaborate (though still int-specific) implementation, 
that allows the client to choose ascending versus descending order.

void bubble_sort_int(int arr[], size_t n, bool ascending) {
   while (true) {
      bool swapped = false;
      for (size_t i = 1; i < n; i++) {
         if ((ascending && arr[i - 1] > arr[i]) ||
             (!ascending && arr[i - 1] < arr[i])) {
            swap(&arr[i - 1], &arr[i], sizeof(int));
            swapped = true;
         }
      }
      if (!swapped) return;
    }
}

Here we rely on a single Boolean 
value—a bool called ascending—to 
brute-force decide between one of two 

comparisons.

What about different orderings? Odd 
before even? Distance from 0?

We could replace the bool with an int 
code or some enumerated type to 
dispatch between one of several 

comparisons instead of just two, but 
that won’t scale very well.

Integer Bubble Sort: Going Generic



30

What we really want is a version where the decision to swap or not is made 
by some predicate function, here called should_swap.

void bubble_sort_int(int arr[], size_t n) {
   while (true) {
      bool swapped = false;
      for (size_t i = 1; i < n; i++) {
         if (should_swap(arr[i – 1], arr[i])) {
            swap(&arr[i - 1], &arr[i], sizeof(int));
            swapped = true;
         }
      }
      if (!swapped) return;
    }
}

Here, should_swap is a standalone 
function that returns true if and only if 
the two elements being compared are 

out of order.

The problem is that should_swap has 
no access to call-specific intent. Its 

behavior is fixed for the entire 
program, so there’s no easy way to sort 
one int array from low to high, another 
by decreasing absolute value, and a third 

using some other custom ordering.

A well-decomposed function isn’t the 
same as a generic one.

Integer Bubble Sort: Going Generic



31

The solution here is to require the client pass a function that accepts two 
ints and returns true if and only if the two are out of order. 

void bubble_sort_int(int arr[], size_t n, bool (*should_swap)(int, int)) {
   while (true) {
      bool swapped = false;
      for (size_t i = 1; i < n; i++) {
         if (should_swap(arr[i – 1], arr[i])) {
            swap(&arr[i - 1], &arr[i], sizeof(int));
            swapped = true;
         }
      }
      if (!swapped) return;
    }
}

The third parameter is of type function pointer, 
which means it accepts a function that, in this 
case, itself takes two ints and returns a bool.

A function name is internally recognized as the 
address of the first assembly code instruction 

associated with the function. That’s why a 
function name can be used as a function pointer.

The name of any function can be passed in as the 
third parameter here, provided it takes two ints 

and returns a bool.

Integer Bubble Sort: Going Generic



32

Look at just how versatile bubble_sort_int is now.
bool sort_ascending(int one, int two) {
   return one > two;
}

int main(int argc, char *argv[]) {
   int nums[] = {4, 2, -5, 1, 12, 56};
   size_t count = sizeof(nums) / sizeof(nums[0]);
   bubble_sort_int(nums, count, sort_ascending);
   ...
   return 0;
}

bool sort_descending(int one, int two) {
   return one < two;
}

int main(int argc, char *argv[]) {
   int nums[] = {4, 2, -5, 1, 12, 56};
   size_t count = sizeof(nums) / sizeof(nums[0]);
   bubble_sort_int(nums, count, sort_descending);
   ...
   return 0;
}

bool sort_abs(int one, int two) {
   return abs(one) > abs(two);
}

int main(int argc, char *argv[]) {
   int nums[] = {4, 2, -5, 1, 12, 56};
   size_t count = sizeof(nums) / sizeof(nums[0]);
   bubble_sort_int(nums, count, sort_abs);
   ...
   return 0;
}

When writing a generic function, if we don’t know how to do 
something and the decision about what to do should be left to the 

client, we can require the client to pass a function that can do it for 
us.

Functions passed as parameters are often called callback functions, 
because they call back into client-specific, context-aware code.

Next time, we’ll work to upgrade this to work for any element type.

Integer Bubble Sort: Going Generic


