
1
This document is copyright (C) Stanford Computer Science, licensed under Creative Commons Attribution 2.5 License. All rights reserved.

Based on slides created by Cynthia Lee, Chris Gregg, Jerry Cain, Lisa Yan, Nick Troccoli, and others.

CS107 Lecture 13
C Generics and Function Pointers, Take II

Reading: K&R 5.11

2

Standard Comparator Paradigm
Function pointers are often used to compare two values of the same type.

These are called comparison functions.
The standard comparison function typically provides more information than

match-versus-no-match in the form of a bool. More often, it returns:
• < 0 if the first value is less than the second
• > 0 if the first value is greater than the second
• 0 if the first value and the second value are equal

To conform to industry standard, our callback function—that is, our
comparator—should be of type:

int (*compare_fn)(int, int)

3

The bubble_sort_int presented below is the most general we can be,
assuming of course we know we’re sorting ints.

void bubble_sort_int(int arr[], size_t n, int (*cmp_fn)(int, int)) {
 while (true) {
 bool swapped = false;
 for (size_t i = 1; i < n; i++) {
 if (cmp_fn(arr[i – 1], arr[i]) > 0) {
 swap(&arr[i - 1], &arr[i], sizeof(int));
 swapped = true;
 }
 }
 if (!swapped) return;
 }
}

Integer Bubble Sort: Going Generic

As the implementation is specific to ints, it
passes copies of adjacent ints to the supplied
comparison function to learn whether they are

out of order.

The comparison function returns 0 whenever the
two elements are equal. It returns a positive

value whenever the first element is larger than
the second, and it returns a negative value

whenever the second is larger than the first.

The comparison function gets to decide what
equal, larger, and smaller mean. #deep

Obvious next question: What about other
element types?

4

To write one generic bubble sort function, we need a single prototype that
interfaces cleanly with all array element types, ints or otherwise.

Integer Bubble Sort: Going Generic

void bubble_sort(int arr[], size_t n,
 int (*cmp_fn)(int, int));

void bubble_sort(void *arr, size_t n, size_t elem_size,
 int (*cmp_fn)(int, int));

void bubble_sort(void *arr, size_t n, size_t elem_size,
 int (*cmp_fn)(void *, void *));

Version 1:

Version 2:

Version 3:

This prototype is the one we’ve coded to thus far. Our implementation
can sort any integer array, provided cmp_fn is clear what it means for

one int to be larger or smaller than another.

This now accepts an array of any type but requires we
supply the element size, much as was required for

swap and swap_ends. The comparison function is still
int-specific, so we’re not done just yet.

This is what we want! A fully generic implementation
won’t know the element type, so it can’t pass element

copies to cmp_fn. It can, however, pass the addresses
of neighboring elements as generic pointers. Because
cmp_fn is written as a callback, it’ll know what those
pointers really are (and how to cast them properly J).

5

Here’s an implementation of a fully generic bubble_sort.

void bubble_sort(void *arr, size_t n, size_t elem_size,
 int (*cmp_fn)(void *, void *)) {
 while (true) {
 bool swapped = false;
 for (size_t i = 1; i < n; i++) {
 void *first = (char *) arr + (i – 1) * elem_size;
 void *second = (char *) arr + i * elem_size;
 if (cmp_fn(first, second) > 0) {
 swap(first, second, elem_size);
 swapped = true;
 }
 }
 if (!swapped) return;
 }
}

Integer Bubble Sort: Going Generic

The implementation knows where the
array begins and how large each

element is, but it doesn’t know what
the elements themselves are. The best
we can do is compute the addresses of
the elements at positions i – 1 and i.

Note we’re now passing element addresses to the client-supplied
comparison function. Again, that’s the best we can do, as we aren’t
permitted to dereference void *s when we lack type information.

6

Before we can properly use our generic bubble sort, we need to understand
what bubble_sort knows about the array it’s sorting.

void bubble_sort(void *arr, size_t n, size_t elem_size,
 int (*cmp_fn)(void *, void *)) {
 while (true) {
 bool swapped = false;
 for (size_t i = 1; i < n; i++) {
 void *first = (char *) arr + (i – 1) * elem_size;
 void *second = (char *) arr + i * elem_size;
 if (cmp_fn(first , second) > 0) {
 swap(first, second, elem_size);
 swapped = true;
 }
 }
 if (!swapped) return;
 }
}

Integer Bubble Sort: Going Generic

Assume the client declares and initializes an int
array of length 6 as above. The client, of course, has

near perfect information.

The bubble_sort implementation does not! It only knows
the array’s base address, the number of elements, and the

element size. From this trio of facts, bubble_sort can
compute the addresses of the array elements, but that’s it.

arr

client view

implementation view

7

Let’s reproduce the client program that sorts an integer array from low to high. The
difficult part is understanding what the void *s passed to the comparator really are.

void bubble_sort(void *arr, size_t n, size_t elem_size,
 int (*cmp_fn)(void *, void *));

int sort_ascending(void *first, void *second) {
 return *(int *)first - *(int *)second;
}

int main(int argc, char *argv[]) {
 int nums[] = {4, 2, 12, -5, 56, 14};
 size_t count = sizeof(nums) / sizeof(nums[0]);
 bubble_sort(nums, count, sizeof(int), sort_ascending);
 ...
 return 0;
}

Integer Bubble Sort: Going Generic

The comparison function is required to
take two void *s. That’s part of the

contract we have with a bubble_sort
that’s capable of sorting all array types.

Because the client knows the element
addresses are int *s, it knows those int
*s are disguised as void *s—necessarily

so, cause, contract—when passed to the
comparator.

The implementation of
sort_ascending must cast each of the

two void *s to be the int *s it knows
them to be. It uses the int * cast to tell

the truth about what data elements are
being compared to one another for this

specific call to bubble_sort.

8

And what about C string arrays? What does a comparison function look like for those?

void bubble_sort(void *arr, size_t n, size_t elem_size,
 int (*cmp_fn)(void *, void *));

int string_cmp(void *first, void *second) {
 char *one = *(char **) first;
 char *two = *(char **) second;
 return strcmp(one, two);
}

int main(int argc, char *argv[]) {
 char *words[] = {
 "sabotage", "bumfuzzle", "winsome", "ablution", "gravamen", "crepuscular"
 };
 size_t count = sizeof(words) / sizeof(words[0]);
 bubble_sort(words, count, sizeof(char *), string_cmp);
 ...
 return 0;
}

Integer Bubble Sort: Going Generic

arr implementation view

The base address of the words array is of
type char **, since each of its elements are
char *s. In fact, all addresses computed by
bubble_sort are char **s disguised as
void *s. That means the void *s passed to
string_cmp should be cast as char **s.

The casts within string_cmp
must always expose the truth

about what the incoming
void *s really are.

9

Generic C Standard Library Functions

• qsort: I can sort an array of any type! To do that, I need a
function that can compare two elements of the kind you are
asking me to sort.

• bsearch: I can use binary search to search for a key in an array
of any type! To do that, I need a function that can compare two
elements of the kind you are asking me to search.

• lfind: I can use linear search to search for a key in an array of
any type! To do that, I need a function that can compare two
elements of the kind you are asking me to search.

• lsearch: I can use linear search to search for a key in an array
of any type! I will also add the key for you if I can’t find it. To do
that, I need a function that can compare two elements of the
kind you are asking me to search.

void qsort(void *base, size_t nmemb, size_t size,
 int (*compar)(const void *, const void *));

void *bsearch(const void *key, const void *base,
 size_t nmemb, size_t size,
 int (*compar)(const void *, const void *));

void *lfind(const void *key, const void *base,
 size_t nmemb, size_t size,
 int (*compar)(const void *, const void *));

void *lsearch(const void *key, void *base,
 size_t nmemb, size_t size,
 int (*compar)(const void *, const void *));

The C standard libraries include many generic search and sort routines, the most
frequently used being qsort and bsearch. You’ll use both in assign4.

