CS107 Lecture 13

C Generics and Function Pointers, Take Il

Reading: K&R 5.11

This document is copyright (C) Stanford Computer Science, licensed under Creative Commons Attribution 2.5 License. All rights reserved.
Based on slides created by Cynthia Lee, Chris Gregg, Jerry Cain, Lisa Yan, Nick Troccoli, and others.

Standard Comparator Paradigm

Function pointers are often used to compare two values of the same type.
These are called comparison functions.

The standard comparison function typically provides more information than
match-versus-no-match in the form of a bool. More often, it returns:
* < 0if the first value is less than the second
* >0 if the first value is greater than the second
* 0 if the first value and the second value are equal

To conform to industry standard, our callback function—that is, our
comparator—should be of type:

int (*compare_fn) (int, 1int)

Integer Bubble Sort: Going Generic

The bubble_sort_1int presented below is the most general we can be,
assuming of course we know we’re sorting ints.

' void bubble_sort_int(int arr[], size_t n, int (*cmp_fn)(int, int)) {
while (true) {

As the implementation is specific to ints, it
bool swapped = false; P P

passes copies of adjacent ints to the supplied

for (size_t i = 1; 1 < nj; i++) { comparison function to learn whether they are
if (emp_fn(arr[i - 1], arr[i]) > 0) { out of order.
swap(&arr[i - 1], &arr[i], sizeof(int))
swapped = true; The comparison function returns 0 whenever the
} two elements are equal. It returns a positive
} value whenever the first element is larger than

if (1swapped) return: the second, and it returns a negative value

) PP ’ whenever the second is larger than the first.

} __ The comparison function gets to decide what
equal, larger, and smaller mean. #deep

Obvious next question: What about other
element types? F

Integer Bubble Sort: Going Generic

To write one generic bubble sort function, we need a single prototype that
interfaces cleanly with all array element types, ints or otherwise.

Version 1:
void bubble_sort(int arr[], size_t n, This prototype is the one we’ve coded to thus far. Our implementation
int (*cmp_fn) (int, int)); can sort any integer array, provided emp_fn is clear what it means for
one int to be larger or smaller than another.
Version 2:

This now accepts an array of any type but requires we
supply the element size, much as was required for
swap and swap_ends. The comparison function is still
int-specific, so we’re not done just yet.

void bubble_sort(void *arr, size_t n, size_t elem_size,
int (xcmp_fn) (int, int));

This is what we want! A fully generic implementation

. ' . _ _ won’t know the element type, so it can’t pass element
void bubble_sort(void *arr, size_t n, size_t elem_size, copiestocmp_fn. Itcan, however, pass the addresses

int (*xcmp_fn) (void *, void *x));

Version 3:

of neighboring elements as generic pointers. Because
cmp_fnis written as a callback, it’ll know what those
pointers really are (and how to cast them properly @)4

Integer Bubble Sort: Going Generic

Here’s an implementation of a fully generic bubble_sort.

 void bubble_sort(void *arr, size_t n, size_t elem_size,

int (xcmp_fn) (void *, void %)) {
while (true) {

bool swapped = false;

E for (size_t i = 1; 1 < nj i++) { The implementation knows where the
| void *first = (char %) arr + (i - 1) % elem_size; 2rraybeginsandhow largeeach

| . . - > element s, but it doesn’t know what
! void *second = (char *) arr + i *x elem_size; ’

; if (cmp_fn(first, second) > 0) { - the elements themselves are. The best
! P) ? g we can do is compute the addresses of
5 swap(first, second, elem_size); the elements at positions i - 1 and 1.
; swapped = true; :

; } |

5 } Note we’re now passing element addresses to the client-supplied

if (!swapped) return; comparison function. Again, that’s the best we can do, as we aren’t

} permitted to dereference void *s when we lack type information.

N -

Integer Bubble Sort: Going Generic

Before we can properly use our generic bubble sort, we need to understand
what bubble_sort knows about the array it’s sorting.

___ client view
1 void bubble_sort(void *arr, size_t n, size_t elem_size, i
int (xcmp_fn) (void %, void %)) { - 4 2 12 | -5 | 56 | 14
while (true) { !
bool swapped = false; | Assume the client declares and initializes an int
for (size_t i = 1; i < nj; i++) { ; array of length 6 as above. The client, of course, has

void *second = (char %) arr + i * elem_size;
if (cmp_fn(first , second) > 0) {
swap(first, second, elem_size);

>) . The bubble_sort implementation does not! It only knows
swapped = true; !

1 the array’s base address, the number of elements, and the
} | element size. From this trio of facts, bubble_sort can
if (!swapped) return; i compute the addresses of the array elements, but that’s it.

} i T T T T T

__

e R

arr implementation view 6

Integer Bubble Sort: Going Generic

Let’s reproduce the client program that sorts an integer array from low to high. The
difficult part is understanding what the vo1id *s passed to the comparator really are.

. void bubble_sort(void *arr, size_t n, size_t elem_size,
int (*xcmp_fn) (void *, void x));

The comparison function is required to
take two vo1id *s. That’s part of the
contract we have with a bubble_sort

.)))) that’s capable of sorting all array types.
1 int sort_ascending(void xfirst, void #*second) {

. return *x(int x)first - *x(int *)second; Because the client knows the element

L} addresses are int *s, it knows those int
: xs are disguised as void *s—necessarily
int main(int argc, char *argv[]) { so, cause, contract—when passed to the

int nums[] = {4, 2, 12, -5, 56, 14}; comparator.

size_t count = sizeof(nums) / sizeof(nums[0]);

g) . The implementation of
bubble_sort(nums, count, sizeof(int), sort_ascending);

sort_ascending must cast each of the
ce two void *s to be the int *s it knows
return 0; them to be. It uses the int * cast to tell
) the truth about what data elements are
''' being compared to one another for this
specific call to bubble_sort.

V4

Integer Bubble Sort: Going Generic

And what about C string arrays? What does a comparison function look like for those?

The base address of the words array is of
s RRRREEEEEEEEELEE Semmemmemmemeeeeees ST type char **, since each of its elements are
i void bubble_sort(void *arr, size_t n, size_t elem_size, char *s. In fact, all addresses computed by
int (xcmp_fn) (void *, void x)); bubble_sort are char x*s disguised as
void *s. That means the void *s passed to

Eint string_cmp(void *first, void *second) { string_cmp should be cast as char *xs.

char *one = x(char x*x) first;
char *two = x(char *x) second}
return strcmp(one, two);

S B

iint main(int argc, char *argv[]) { arr implementation view
char *words[] = {
"sabotage", "bumfuzzle", "winsome'", "ablution", "gravamen", '"crepuscular"

3
size_t count = sizeof(words) / sizeof(words[0]);
bubble_sort(words, count, sizeof(char *), string_cmp);

The casts within string_cmp
must always expose the truth
about what the incoming
void *s really are.

Generic C Standard Library Functions

The C standard libraries include many generic search and sort routines, the most
frequently used being qsort and bsearch. You’ll use both in assign4.
gsort:|cansort an array of any type! To do that, | need a void gsort(void *base, size_t nmemb, size_t size,

function that can compare two elements of the kind you are int (*compar)(const void *, const void x));
asking me to sort.

bsearch: | can use binary search to search fora keyinan array vo+id xbsearch(const void *key, const void *base,

of any type! To do that, | need a function that can compare two size_t nmemb, size_t size,

elements of the kind you are asking me to search. int (*compar) (const void *, const void x));
1find: | can use linear search to search fora keyinan array of void *1lfind(const void *key, const void x*base,

any type! To do that, | need a function that can compare two size_t nmemb, size_t size,

elements of the kind you are asking me to search. int (*compar) (const void *, const void x));
1search: | can use linear search to search fora keyinanarray void *lsearch(const void *key, void xbase,

of any type! I will also add the key for you if | can’t find it. To do size_t nmemb, size_t size,

that, I need a function that can compare two elements of the int (*compar) (const void *, const void *));

kind you are asking me to search.

When you find a library implementation
of quicksort so you don't have
to write bubble sort anymore

