CS107 Lecture 14

Introduction to Assembly

Reading: B&0 3.1-3.4

This document is copyright (C) Stanford Computer Science, licensed under Creative Commons Attribution 2.5 License. All rights reserved.
Based on slides created by Cynthia Lee, Chris Gregg, Jerry Cain, Lisa Yan, Nick Troccoli, and others.

CS107 Topic 5: Assembly

How does a computer compile C programs to assembly code and then
execute them? And what does assembly code look like?

Why is answering this question important?
* Learning how our code is translated helps us write better code.
» We’ll understand how to reverse engineer programs given their assembly.

« We’ll understand how program logic is ultimately represented using
binary numbers, just as ints, strings, arrays, and records are.

gcc: Our Machine Code Duolingo

e gccis the compiler that converts your human-readable code into
machine-readable instructions.

* Cand many other languages define higher-level abstractions that we can
use to efficiently and elegantly implement complex programs.
* Hardware, however, doesn’t understand aggregate data structures, types, etc.
* Machine code is all 1’'s and 0’s. Truly everything is encoded using bits.
« We'll read it using an equivalent, human-readable called assembly.

 Often a single C statement compiles to a single assembly code instruction,
and other times it compiles to two or more assembly code instructions.

Central Processing Units (CPUs)

_ We are going to learn the x86-64
Intel 8086, 16-bit instruction set architecture. This is the

Egié:éogsroc;egs;g;r == !Il mr!' instruction set is used by Intel and AMD.

.m;nullAnl@ceﬁ
pherey Pi 2
s N - 7,_
z 2 [c2e
" —= »2
("

Raspberry Pi BCM2836 Intel Core i19-9900K 64-bit
32-bit ARM microprocessor 8-core multi-core processor
($35 for everything, 2015) ($449, 2018)

Why are we reading assembly?

| Il A | I
I Ccode 1] ssembly Machine code | I
:] code :

programmer generated gcc generated

Main goal: understanding what assembly code does
* We will not be writing assembly!
* Rather, we want to translate assembly back into equivalent C code.

* Knowing how our C programs are converted into assembly offers insight
into how me might write cleaner, more efficient code.

Demo: Looking at an Executable
(objdump -d)

Baby’s First Assembly

int sum_array(int arr[], int nelems) {
int sum = 0;

for (int i = 0; 1 < nelems; i++) { \hat does this look like in assembly?
sum += arr[i];
}

return sum;
} make
objdump -d sum
0000000000401136 <sum_array>:

401136: b8 00 00 00 00 mov $Ox0,%eax

40113b: ba 00 00 00 00 mov $Ox0,%edx

401140: 39 foO cmp %esi,%eax

401142: 7d 0b jge 40114f <sum_array+0x19>
401144: 48 63 c8 movslqg %eax,%rcx

401147: 03 14 8f add (%rdi,%rcx,4) ,%edx
40114a: 83 cO 01 add $Ox1,%eax

40114d: eb f1 jmp 401140 <sum_array+0xa>
40114f: 89 do mov %edx ,%eax

401151: c3 retq

Baby’s First Assembly

0000000000401136 <sum_array>:

401136: b8 00 00 00 00 mov SOX0,%eax

40113b: ba 00 00 00 00 mov $Ox0,%edx

401140: 39 fo cmp %esi,%eax

401142: 7d 0b jge 40114f <sum_array+0x19>
401144: 48 63 c8 movslqg %eax,%rcx

401147: 03 14 8f add %rdi,%rcx,4) ,%edx
40114a: 83 cO 01 add $Ox1,%eax

40114d: eb f1 jmp 401140 <sum_array+0xa>
40114f: 89 do mov %edx ,%eax

401151: c3 retq

Baby’s First Assembly

0000000000401136 <sum_array>:

This is the name of the function and
the address in memory where the
code for this function begins.

Baby’s First Assembly

0000000000401136 <sum_array>:

401136:

40113b:
401140:
401142:
401144:
401147 :
40114a:
40114d:
40114f:
401151:

These are the memory addresses where
each of the instructions live. Consecutive
instructions are sequential in memory.

10

Baby’s First Assembly

0000000000401136 <sum_array>:

mov $0x0,%eax
mov $0x0, %edx
cmp %esi,%eax
This is the assembly code: jge 40114F <sum_array+0x19>
human readable versions of movslq %eax,%rcx
add %rdi,%rcx,4) ,%edx
each machine code instruction. add $Ox1,%eax
jmp 401140 <sum_array+0xa>
mov %edx ,%eax

retq

11

Baby’s First Assembly

0000000000401136 <sum_array>:
b8 00 00 00 0606

ba 00 00 00 00 This is the machine code: raw
39 f0 : :

7d 0b hexadecimal encodings that mean
48 63 c8 something to the computer.
03 14 8f ” : :]

33 c0 01 Different instructions require a
eb f1 different number of bytes.

89 do

c3

12

Baby’s First Assembly

0000000000401136 <sum_array>:

401136: b8 00 00 00 00 mov SOX0,%eax

40113b: ba 00 00 00 00 mov $Ox0,%edx

401140: 39 fo cmp %esi,%eax

401142: 7d 0b jge 40114f <sum_array+0x19>
401144: 48 63 c8 movslqg %eax,%rcx

401147: 03 14 8f add %rdi,%rcx,4) ,%edx
40114a: 83 cO 01 add $Ox1,%eax

40114d: eb f1 jmp 401140 <sum_array+0xa>
40114f: 89 do mov %edx ,%eax

401151: c3 retq

13

Baby’s First Assembly

0000000000401136 <sum_array>:

40114a: 83 cO 01 add $Ox1,%eax

Each instruction has an
operation name, or opcode.

14

Baby’s First Assembly

0000000000401136 <sum_array>:

40114a: 83 cO 01 add SOx1,%eax

Each instruction can also have
arguments, or operands.

15

Baby’s First Assembly

0000000000401136 <sum_array>:

40114a: 83 cO 01 add $Ox1,%eax

S$S[number] denotes a constant
value, or an immediate (e.g., 1).

16

Baby’s First Assembly

0000000000401136 <sum_array>:

40114a: 83 cO 01 add $Ox1,%eax

%[name] identifies a register on the
CPU (e.g., %eaXx).

L7

Assembly Abstraction

C abstracts away machine-level details.

* Instead of manipulating registers and raw bytes, we program with variables, types, functions, and control
structures. The compiler translates those higher-level constructs into the specific instructions and data
layouts required by the hardware.

Cis largely portable across machines.

* Ccode can be compiled for many different processor architectures and operating systems, and the
compiler manages the machine-specific translation. Provided you code in standard C and avoid system-
specific features, your code can run on most machines.

Machine code is just bytes.

* A program is a sequence of instruction encodings and data values stored in memory. There are no variable
names, no types, no safety checks—only raw opcodes and operands interpreted directly by the processor.

Assembly is processor-specific and very close to the hardware.

* Each assembly instruction maps closely to a particular machine instruction and exposes registers, memory
addresses, and calling conventions explicitly. Because every processor has its own instruction set,

assembly programs generally only run on one architecture.
18

Registers

Aregister is a fast read/write memory slot right on the CPU that can hold variable values.
Registers are not located in memory.

_-—

%rax

19

|
|
|
|

%rax

|
|
|
|

%rbx

|
|
|
|

%rcx

|
|
|
|

%rdx

Registers

%rsi

%rdi

%rbp

%rsp

%18

%r9

%r10

%r11

%r12

%r13

%r14

%Tr15

20

Registers

* Aregister is a 64-bit slot on the processor.
* There are 16 such registers, each with its own name.

* Registers operate like scratch paper. Data items being accessed by your
programs are generally moved into registers.
* Most ALU operations—that is, arithmetic logic unit operations—require operands be
stored in registers first.
* Registers are used to pass values to functions and return values from them.

* Once avalueis loaded into a register, it can be accessed by the ALU very,
very quickly—typically in a single clock cycle.

* Processor instructions typically load values into registers, perform any
necessary operations on them there, and store results back to memory.

* No matter how clever the original C code is, it ultimately executes in this form.
21

gcc and Assembly

gcc compiles your program - it decides how stack frames should be built up
and torn down and generates assembly code instructions to read and
update memory reachable from those stack frames.

Here’s what the assembly abstraction of C code might look like:

C

Assembly Abstraction

int sum =

X Y5

)
)
)
4)

Copy x into register 1

Copy y into register 2

Add register 2 to register 1

Write register 1 to memory for sum

22

