
1
This document is copyright (C) Stanford Computer Science, licensed under Creative Commons Attribution 2.5 License. All rights reserved.

Based on slides created by Cynthia Lee, Chris Gregg, Jerry Cain, Lisa Yan, Nick Troccoli, and others.

CS107 Lecture 14
Introduction to Assembly

Reading: B&O 3.1-3.4

2

CS107 Topic 5: Assembly

How does a computer compile C programs to assembly code and then
execute them? And what does assembly code look like?

Why is answering this question important?
• Learning how our code is translated helps us write better code.
• We’ll understand how to reverse engineer programs given their assembly.
• We’ll understand how program logic is ultimately represented using

binary numbers, just as ints, strings, arrays, and records are.

3

gcc: Our Machine Code Duolingo

• gcc is the compiler that converts your human-readable code into
machine-readable instructions.
• C and many other languages define higher-level abstractions that we can

use to efficiently and elegantly implement complex programs.
• Hardware, however, doesn’t understand aggregate data structures, types, etc.

• Machine code is all 1’s and 0’s. Truly everything is encoded using bits.
• We’ll read it using an equivalent, human-readable called assembly.

• Often a single C statement compiles to a single assembly code instruction,
and other times it compiles to two or more assembly code instructions.

4

Central Processing Units (CPUs)

Intel 8086, 16-bit
microprocessor
($86.65, 1978)

Raspberry Pi BCM2836
32-bit ARM microprocessor
($35 for everything, 2015)

Intel Core i9-9900K 64-bit
8-core multi-core processor
($449, 2018)

We are going to learn the x86-64
instruction set architecture. This is the
instruction set is used by Intel and AMD.

5

Why are we reading assembly?

Main goal: understanding what assembly code does
• We will not be writing assembly!
• Rather, we want to translate assembly back into equivalent C code.
• Knowing how our C programs are converted into assembly offers insight

into how me might write cleaner, more efficient code.

C codeidea Assembly
code Machine code

programmer generated gcc generated

6

Demo: Looking at an Executable
(objdump -d)

7

Baby’s First Assembly

int sum_array(int arr[], int nelems) {
 int sum = 0;
 for (int i = 0; i < nelems; i++) {
 sum += arr[i];
 }
 return sum;
}

0000000000401136 <sum_array>:
 401136: b8 00 00 00 00 mov $0x0,%eax
 40113b: ba 00 00 00 00 mov $0x0,%edx
 401140: 39 f0 cmp %esi,%eax
 401142: 7d 0b jge 40114f <sum_array+0x19>
 401144: 48 63 c8 movslq %eax,%rcx
 401147: 03 14 8f add (%rdi,%rcx,4),%edx
 40114a: 83 c0 01 add $0x1,%eax
 40114d: eb f1 jmp 401140 <sum_array+0xa>
 40114f: 89 d0 mov %edx,%eax
 401151: c3 retq

make
objdump -d sum

What does this look like in assembly?

8

0000000000401136 <sum_array>:
 401136: b8 00 00 00 00 mov $0x0,%eax
 40113b: ba 00 00 00 00 mov $0x0,%edx
 401140: 39 f0 cmp %esi,%eax
 401142: 7d 0b jge 40114f <sum_array+0x19>
 401144: 48 63 c8 movslq %eax,%rcx
 401147: 03 14 8f add (%rdi,%rcx,4),%edx
 40114a: 83 c0 01 add $0x1,%eax
 40114d: eb f1 jmp 401140 <sum_array+0xa>
 40114f: 89 d0 mov %edx,%eax
 401151: c3 retq

Baby’s First Assembly

9

0000000000401136 <sum_array>:
 401136: b8 00 00 00 00 mov $0x0,%eax
 40113b: ba 00 00 00 00 mov $0x0,%edx
 401140: 39 f0 cmp %esi,%eax
 401142: 7d 0b jge 40114f <sum_array+0x19>
 401144: 48 63 c8 movslq %eax,%rcx
 401147: 03 14 8f add (%rdi,%rcx,4),%edx
 40114a: 83 c0 01 add $0x1,%eax
 40114d: eb f1 jmp 401140 <sum_array+0xa>
 40114f: 89 d0 mov %edx,%eax
 401151: c3 retq

This is the name of the function and
the address in memory where the

code for this function begins.

Baby’s First Assembly

10

0000000000401136 <sum_array>:
 401136: b8 00 00 00 00 mov $0x0,%eax
 40113b: ba 00 00 00 00 mov $0x0,%edx
 401140: 39 f0 cmp %esi,%eax
 401142: 7d 0b jge 40114f <sum_array+0x19>
 401144: 48 63 c8 movslq %eax,%rcx
 401147: 03 14 8f add (%rdi,%rcx,4),%edx
 40114a: 83 c0 01 add $0x1,%eax
 40114d: eb f1 jmp 401140 <sum_array+0xa>
 40114f: 89 d0 mov %edx,%eax
 401151: c3 retq

These are the memory addresses where
each of the instructions live. Consecutive
instructions are sequential in memory.

Baby’s First Assembly

11

0000000000401136 <sum_array>:
 401136: b8 00 00 00 00 mov $0x0,%eax
 40113b: ba 00 00 00 00 mov $0x0,%edx
 401140: 39 f0 cmp %esi,%eax
 401142: 7d 0b jge 40114f <sum_array+0x19>
 401144: 48 63 c8 movslq %eax,%rcx
 401147: 03 14 8f add (%rdi,%rcx,4),%edx
 40114a: 83 c0 01 add $0x1,%eax
 40114d: eb f1 jmp 401140 <sum_array+0xa>
 40114f: 89 d0 mov %edx,%eax
 401151: c3 retq

This is the assembly code:
human readable versions of

each machine code instruction.

Baby’s First Assembly

12

0000000000401136 <sum_array>:
 401136: b8 00 00 00 00 mov $0x0,%eax
 40113b: ba 00 00 00 00 mov $0x0,%edx
 401140: 39 f0 cmp %esi,%eax
 401142: 7d 0b jge 40114f <sum_array+0x19>
 401144: 48 63 c8 movslq %eax,%rcx
 401147: 03 14 8f add (%rdi,%rcx,4),%edx
 40114a: 83 c0 01 add $0x1,%eax
 40114d: eb f1 jmp 401140 <sum_array+0xa>
 40114f: 89 d0 mov %edx,%eax
 401151: c3 retq

This is the machine code: raw
hexadecimal encodings that mean

something to the computer.
Different instructions require a

different number of bytes.

Baby’s First Assembly

13

0000000000401136 <sum_array>:
 401136: b8 00 00 00 00 mov $0x0,%eax
 40113b: ba 00 00 00 00 mov $0x0,%edx
 401140: 39 f0 cmp %esi,%eax
 401142: 7d 0b jge 40114f <sum_array+0x19>
 401144: 48 63 c8 movslq %eax,%rcx
 401147: 03 14 8f add (%rdi,%rcx,4),%edx
 40114a: 83 c0 01 add $0x1,%eax
 40114d: eb f1 jmp 401140 <sum_array+0xa>
 40114f: 89 d0 mov %edx,%eax
 401151: c3 retq

Baby’s First Assembly

14

0000000000401136 <sum_array>:
 401136: b8 00 00 00 00 mov $0x0,%eax
 40113b: ba 00 00 00 00 mov $0x0,%edx
 401140: 39 f0 cmp %esi,%eax
 401142: 7d 0b jge 40114f <sum_array+0x19>
 401144: 48 63 c8 movslq %eax,%rcx
 401147: 03 14 8f add (%rdi,%rcx,4),%edx
 40114a: 83 c0 01 add $0x1,%eax
 40114d: eb f1 jmp 401140 <sum_array+0xa>
 40114f: 89 d0 mov %edx,%eax
 401151: c3 retq

Each instruction has an
operation name, or opcode.

Baby’s First Assembly

15

0000000000401136 <sum_array>:
 401136: b8 00 00 00 00 mov $0x0,%eax
 40113b: ba 00 00 00 00 mov $0x0,%edx
 401140: 39 f0 cmp %esi,%eax
 401142: 7d 0b jge 40114f <sum_array+0x19>
 401144: 48 63 c8 movslq %eax,%rcx
 401147: 03 14 8f add (%rdi,%rcx,4),%edx
 40114a: 83 c0 01 add $0x1,%eax
 40114d: eb f1 jmp 401140 <sum_array+0xa>
 40114f: 89 d0 mov %edx,%eax
 401151: c3 retq

Each instruction can also have
arguments, or operands.

Baby’s First Assembly

16

0000000000401136 <sum_array>:
 401136: b8 00 00 00 00 mov $0x0,%eax
 40113b: ba 00 00 00 00 mov $0x0,%edx
 401140: 39 f0 cmp %esi,%eax
 401142: 7d 0b jge 40114f <sum_array+0x19>
 401144: 48 63 c8 movslq %eax,%rcx
 401147: 03 14 8f add (%rdi,%rcx,4),%edx
 40114a: 83 c0 01 add $0x1,%eax
 40114d: eb f1 jmp 401140 <sum_array+0xa>
 40114f: 89 d0 mov %edx,%eax
 401151: c3 retq

$[number] denotes a constant
value, or an immediate (e.g., 1).

Baby’s First Assembly

17

0000000000401136 <sum_array>:
 401136: b8 00 00 00 00 mov $0x0,%eax
 40113b: ba 00 00 00 00 mov $0x0,%edx
 401140: 39 f0 cmp %esi,%eax
 401142: 7d 0b jge 40114f <sum_array+0x19>
 401144: 48 63 c8 movslq %eax,%rcx
 401147: 03 14 8f add (%rdi,%rcx,4),%edx
 40114a: 83 c0 01 add $0x1,%eax
 40114d: eb f1 jmp 401140 <sum_array+0xa>
 40114f: 89 d0 mov %edx,%eax
 401151: c3 retq

%[name] identifies a register on the
CPU (e.g., %eax).

Baby’s First Assembly

18

Assembly Abstraction

C abstracts away machine-level details.
• Instead of manipulating registers and raw bytes, we program with variables, types, functions, and control

structures. The compiler translates those higher-level constructs into the specific instructions and data
layouts required by the hardware.

C is largely portable across machines.
• C code can be compiled for many different processor architectures and operating systems, and the

compiler manages the machine-specific translation. Provided you code in standard C and avoid system-
specific features, your code can run on most machines.

Machine code is just bytes.
• A program is a sequence of instruction encodings and data values stored in memory. There are no variable

names, no types, no safety checks—only raw opcodes and operands interpreted directly by the processor.

Assembly is processor-specific and very close to the hardware.
• Each assembly instruction maps closely to a particular machine instruction and exposes registers, memory

addresses, and calling conventions explicitly. Because every processor has its own instruction set,
assembly programs generally only run on one architecture.

19

Registers

%rax

A register is a fast read/write memory slot right on the CPU that can hold variable values.
Registers are not located in memory.

20

Registers

%rax

%rbx

%rcx

%rdx

%rsi

%rdi

%rbp

%rsp

%r8

%r9

%r10

%r11

%r12

%r13

%r14

%r15

21

Registers

• A register is a 64-bit slot on the processor.
• There are 16 such registers, each with its own name.
• Registers operate like scratch paper. Data items being accessed by your

programs are generally moved into registers.
• Most ALU operations—that is, arithmetic logic unit operations—require operands be

stored in registers first.

• Registers are used to pass values to functions and return values from them.
• Once a value is loaded into a register, it can be accessed by the ALU very,

very quickly—typically in a single clock cycle.
• Processor instructions typically load values into registers, perform any

necessary operations on them there, and store results back to memory.
• No matter how clever the original C code is, it ultimately executes in this form.

22

gcc and Assembly

gcc compiles your program – it decides how stack frames should be built up
and torn down and generates assembly code instructions to read and

update memory reachable from those stack frames.

Here’s what the assembly abstraction of C code might look like:

C Assembly Abstraction

int sum = x + y; 1) Copy x into register 1
2) Copy y into register 2
3) Add register 2 to register 1
4) Write register 1 to memory for sum

