CS106A, Stanford Handout #38
Fall, 2004-05 Nick Parlante

Strings and Chars

The char type (pronounced "car") represents a single character. A char literal value can
be written in the code using single quotes (') like 'A' or 'a' or '6'. Java supports the
unicode character set, so the characters can also be non-roman letters such as 'e' or 'n'.
The char type is a primitive, like int, so we use == and ! = to compare chars. Rather than
dealing with individual characters, we mostly deal with sequences of characters called
strings.

A string is a sequence of characters, such as the string "Hello" or the string "What hath
god wrought". A string could store a single word or the text of an entire book.

Java's powerful built-in String class provides great support for string operations. Each
String object stores a sequence of chars, such as "Hello", and responds to methods that
operate on those chars. We can create a String object the usual way with the new
operator...

String greet = new String("hello");

[l efr]1]o]

String object

String objects are so common that there is a shorthand literal syntax to create them. We
can create a String object simply by writing the desired text within double quotes "like
this". The shorter version of the code below creates a new String object exactly as above.

String greet = "hello";

It's valid to create a string made of zero characters — the quotes are right next to each
other with nothing in between. This is known as the empty string. The empty string is a
valid string object, and the many operations described below work correctly on the empty
string where it makes sense.

String empty = ""; // creates an empty string (zero chars)

Special Characters

What if we want to create a string with a double quote (") in it? Java uses backslash
"escape" codes to insert special chars just as they are, such as \" to get a double quote
character. Many computer languages use these same special backslash escape codes.

\" — a double quote char
\\ — a backslash char
\t — a tab char

\n — a newline char (the common end-of-line char, like the return key on the
keyboard)

\r — a carriage return (a less common end-of-line char)

String Concatenation +
When used between two int values, the + operator does addition. When used between two
or more strings, the + operator appends them all together to form a new string.

String start = "Well";
String end = "hungry";
String result = start + ", I'm " + end; // result is "Well, I'm hungry!"

In computer science, the verb "concatenate" is used for this situation — appending
sequences together to make one big sequence.

This special feature of the + operator also works when a string is combined with a
primitive such as an int or double or char. The int or double value is automatically
converted to string form, and then the strings are appended together. This feature of the +
is very a convenient way to mix int and double values into a string...

int count = 123;
char end = '!"';

String result = "I ate " + count + " donuts"™ + end; // "I ate 123 donuts!"

String Immutable Style

String objects use the "immutable" style, which means that once a string object is created,
it never changes. For example, notice that the above uses of + concatenation do not
change existing strings. Instead, the + creates new strings, leaving the originals intact. As
we study the many methods that strings respond to below, notice that no method changes
an existing string. The immutable style is popular since it keeps things simple.

String Comparison

If we have two string objects, we use the equals() method to check if they are the same.
In Java, we always use the equals() message to compare two objects — strings are just an
example of that rule. For example, we used equals() to compare Color objects earlier in
the quarter. The == operator is similar but is used to compare primitives such as int and
char. Use equals() for objects, use == for primitives.

Unfortunately, using == with string objects will compile fine, but at runtime it will not
actually compare the strings. It's easy to accidentally type in == with objects, so it is a
common error.

The equals() method follows the pointers to the two String objects and compares them
char by char to see if they are the same. This is sometimes called a "deep" comparison —
following the pointers and looking at the actual objects. The comparison is "case-
sensitive" meaning that the char 'A' is considered to be different from the char 'a'.

String a = "hello"™;

String b = "there";

// Correct -- use the .equals() method
if (a.equals("hello")) {

System.out.println("a is \"hello\"");
}

// NO NO NO -- do not use == with Strings
if (a == "hello") {
System.out.println ("oops");

.equals(b) -> false

.equals ("there") -> true

.equals ("There") -> false
.equalsIgnoreCase ("THERE") -> true

~
~
o0 o0

There is a variant of equals() called equalsIignoreCase() that compares two strings,
ignoring uppercase/lowercase differences.

String Methods

The Java String class implement many useful methods.

int length() —returns the number of chars in the receiver string. The
empty string "" returns a length of 0.
String a = "Hello";
int len = a.length(); // len is 5

String toLowerCase() — returns a new string which is a lowercase copy of

the receiver string. Does not change the receiver.
String a "Hello";
String b a.toLowerCase(); // b is "hello"

String toUppercCase() — like toLowerCase(), but returns an all uppercase
copy of the receiver string. Does not change the receiver.
String a = "Hello";
String b = a.toUpperCase(); // b is "HELLO"

String trim() — returns a copy of the receiver but with whitespace chars
(space, tab, newline, ...) removed from the start and end of the String.
Does not remove whitespace everywhere, just at the ends. Does not

change the receiver.
String a = " Hello There "
String b = a.trim(); // b is "Hello There"

Using String Methods

Methods like trim() and toLowerCase() always return new string objects to use; they
never change the receiver string object (this is the core of immutable style — the receiver
object never changes). For example, the code below does not work...

String word = " hello ";
word.trim(); // ERROR, this does not change word
// word is still " hello ";

When calling trim() (or any other string method) we must use the result returned by the
method, assigning into a new variable with = for example...

String word = " hello ";
String trimmed = word.trim(); // Ok, trimmed is "hello"

If we do not care about keeping the old value of the string, we can use = to assign the
new value right into the old variable...

String word = " hello ";
word = word.trim(); // Ok, word is "hello" (after the assignment)

This works fine. The trim() method returns a new string ("hello") and we store it into our
variable, forgetting about the old string.

Garbage Collector - GC

This is a classic case where the "Garbage Collector" (GC) comes in to action. The GC
notices when heap memory is no longer being used, the original " hello " string in this
case, and recycles the memory automatically. The languages C and C++ do not have
built-in GC, and so code written in C/C++ must manually manage the creation and
recycling of memory, which make the code more work to build and debug. The downside
of GC is that it imposes a small cost, say around 10%, on the speed of the program. The
cost of the GC is highly variable and depends very much on the particular program. As
computers have gotten faster, and we want to build larger and more complex programs,
GC has become a more and more attractive feature. Modern programmer efficient
languages like Java and Python have GC.

String Comparison vs. Case
Suppose a program wants to allow the user to type in a word with any capitalization they
desire ("summer" or "Summer" or "SUMMER"). How can the program check if the user

typed in the word "summer"? There are two reasonable strategies. One strategy is to use
equalsignoreCase()...

String word = <typed by user>

if (word.equalsIgnoreCase ("summer")) { ... // this works

Another strategy is to use toLowerCase() (above) once to create a lowercase copy of the
word, and then knowing that it is lowercase, just use equals() for comparisons...

String word = <typed by user>
word = word.toLowerCase () ; // convert to lowercase

if (word.equals ("summer")) { ... // now can just use equals()

String Indexing
The chars in a String are each identified by an index number, from 0 .. length-1. The
leftmost char is at index 0, the next at index 1, and so on.

0 1 2 3 4

[olefr]1]o]

String object

This "zero-based" numbering style is pervasive in computer science for identifying
elements in a collection, since it makes many common cases a little simpler. The method
charAt(int index) returns an individual char from inside a string. The valid index numbers
are in the range 0..length-1. Using an index number outside of that range will raise a
runtime exception and stop the program at that point.

String string = "hello";

char a = string.charAt(0); // a is 'h'

char b = string.charAt(4); // b is 'o'

char ¢ = string.charAt (string.length() - 1); // same as above line
char d = string.charAt(99); // ERROR, index out of bounds

Substring
The substring() method is a way of picking out a sub-part of string. It uses index numbers
to identify which parts of the string we want.

The simplest version of substring() takes a single int index value and returns a new string
made of the chars starting at that index...

String string = "hello";
String a = string.substring(2); // a is "llo"
String b = string.substring(3); // b is "lo"

A more complex version of substring() takes both start and end index numbers, and
returns a string of the chars between start and one before end...

o 1 2 3 4
h el 1] 1]o

String string = "hello";
String a = string.substring (2, 4)

= // a is "11" (not "1llo")
String b = string.substring(0, 3)

; // b is "hel"
Remember that substring() stops one short of the end index, as if the end index represents
the start of the next string to get. In any case, it's easy to make off-by-one errors with

index numbers in any algorithm. Make a little drawing of a string and its index numbers
to figure out the right code.

As usual, substring() leaves the receiver string unchanged and returns its result in a new
string. Therefore, code that calls substring() must capture the result of the call, as above.

String Method Chaining

It's possible to write a series of string methods together in a big chain. The methods
evaluate from left to right, with each method using the value returned by the method on
its left....

String a ="hello There ";
String b = a.substring(5).trim() .toLowerCase(); // b is "there"

This technique works with Java methods generally, but it works especially well with
string methods since most (substring, trim, etc.) return a string as their result, and so
provide a string for the next method to the right to work on.

indexOf()

The indexOf() method searches inside the receiver string for a "target" string. IndexOf()
returns the index number where the target string is first found (searching left to right), or
-1 if the target is not found.

int indexOf (String target) — searches for the target string in the
receiver. Returns the index where the target is found, or -1 if not found.

The search is case-sensitive — upper and lowercase letters must match exactly.

String string = "Here there everywhere";

int a = string.indexOf ("there"); // a is 5
int b = string.indexOf ("er"); // b is 1
int ¢ = string.indexOf ("eR"); // ¢ is -1, "eR" is not found

// There is an indexOf () variant that searches for a target char
// instead of a target String
int d = string.indexOf('r'"); // d is 2

indexOf() Variants
There are a few variant versions of indexOf() that do the search in slightly different
ways...

int indexOf (String target, int fromIndex) — searches left-to-right
for the target as usual, but starts the search at the given fromIndex in the
receiver string and only finds targets that are at the fromIndex or greater.
The fromIndex does not actually need to be valid. If it is negative, the
search happens from the start of the string. If the fromIndex is greater than
the string length, then -1 will be returned.

int lastIndexof(String target) — does the search right-left starting at
the end of the receiver string

int lastIndexof (String target, int fromIndex) — does the search
right-left starting at the given index in the receiver string

String Parsing Strategies

"Parsing" is the process of taking a string from a file or typed by the user, and processing
it to extract the information we want. A common strategy is to use a few calls to
indexOf() to figure out the index numbers of something interesting inside the string. Then
use substring() to pull out the desired part of the string. After processing the data, we can
use + to reassemble the parts to make a new string.

Suppose we have a string that contains some text with some parenthesis somewhere
inside of it, like this: "It was hot (darn hot!) I'm telling you". Suppose we want to fix the
string so that the part in parenthesis is in all upper case. We can use two calls to
indexOf() to find the '(' and ')', and substring to extract the text.

String string = "It was hot out (so hot!) I'm telling you.";
int left = string.indexOf (" (");
int right = string.indexOf(")");

// pull out the text inside the parens
String sub = string.substring(left+l, right); // sub is "so hot!"

sub = sub.toUpperCase(); // sub is "SO HOT!"

// Put together a new string

String result =
string.substring (0, left+l) + // It was hot (
sub + // SO HOT!
string.substring(right) ; //) I'm telling you.

// result is "It was hot (SO HOT!) I'm telling you."

String Code Examples
// Given a string, returns a string made of
// repetitions of that string
public String repeat(String string, int count) {
String result = "";
for (int i=0; i<count; i++) {
result = result + string;
}

return result;

// Given a string, returns a string made of
// repetitions of that string, separated by commas.
public String repeat2(String string, int count) {

String result = "";
for (int 1i=0; i<count; i++) {
String comma = "";
if (4 !'= 0) {
comma = ",";

}

// either way, "comma" is now correct to go forward
result = result + comma + string;

}

return result;

// Variant that tries to deal with the comma case
// by priming the result with the first string, making the
// loop body much simpler. Bug: does not work for count==
public String repeat3(String string, int count) {

String result = string;
for (int i=1; i<count; 1i++) {
result = result + "," + string;

}

return result;

Given a text, improves it by changing all

the occurrences of "is" to "is not"

This version works on "is" even if in the
middle of a word.

"That is missing" -> "That is not mis notsing"

public String improve (String string) {

//

int start = 0; // search for "is" from here on
while (true) {
int is = string.indexOf ("is", start):;
if (is == -1) {
break;

}

// make a new string, splicing in the "is not"
string = string.substring(0, is) + "is not" +
string.substring(is + 2);

// update start to loop around, past the "is not"
start = is + 6;

}

// note: no longer points to the original string
// points to the new string we put together with substring/+
return string;

Variant that avoids "is" in the middle of words

public String improve2 (String string)

int start = 0;
while (true) {
int is = string.indexOf ("is", start);
if (is == -1) {
break;

}

// check char before and after "is"
// 1if a letter, then skip it

if ((is>0 && Character.isLetter (string.charAt (is-1))) ||
(is+2 < string.length() &&
Character.isLetter (string.charAt (is+2)))) {

start = is + 2;

}

else {
// make a new string, splicing in the "is not"
string = string.substring (0, is) + "is not" +

string.substring(is + 2);

// update start, past the "is not"
start = is + 6;

}

return string;

// Given a text like "Yo foo@bar.com blah, blah user@stanford ho ho"
// Find and print the usernames from the email addresses,

// e.g. "foo" and "user"

// Demonstrates using indexOf () /loop parsing

public void findEmails (String text) {

int start = 0; // search for an "Q@" from here forward
while (true) {
// flnd "@"

int at = text.indexOf ("@", start);

// done if none found
if (at == -1) {
break;

}

// left is on letter to left of @
// move it left, until out of letters
int left = at-1;
while (left>=0) {
char ch = text.charAt(left);

if (! Character.isLetter (ch)) {
break;

}

left--;

}
// left is to the left of the letters
// tricky: could be -1, if letter is at 0

String email = text.substring(left+l, at);
System.out.println(email) ;

// move start forward for next iteration
start = at + 1;

10

