CS108, Stanford Handout #9
Fall, 2008-09 Osvaldo Jiménez

OOP Encapsulation

Thanks to Nick Parlante for much of this handout

OOP Design #1 -- Encapsulation

The most basic idea in OOP is that each objectpmutates some data and code. The object takesstsque
from other client objects, but does not exposediails of its data or code to them. The objechals
responsible for its own state, exposing public mgss for clients, and declaring private the ivard a
methods that make up its implementation. The cliepends on the (hopefully) simple public interfeaed
does not know about or depend on the details ohtpéementation.

For example, alashTable object will takeget() andset() requests from other objects, but does not
expose its internal hash table data structurefi®icode strategies that it uses. The theme hevaeiof
separation — trying to keep the complexity inside @bject from interfering with other objects. Qrtp
another way, trying to keep the various objectsndependent from each other as possible (aka "lpose
coupled” classes).

Each object provides some service or "interface'tlie other objects. Ideally, the service is exdasea
way that is simple for the other objects to underdt The complexity of the implementation stillssj but
it is isolated inside the implementing class. Thisrks because for most problems there are all sdrts
details of the implementation that the clients timrally care about -- how the hash buckets a@nged for
example. The interface can capture just the isslegant to the client, and so be much simpler tharfull
implementation.

Looking at a whole program, we have many objeashexposing a simple interface to the other object
and keeping the details of its own implementatiadén. With all the objects following this strategye
build up a divide-and-conquer solution to the whptegram. Instead of a 1000 line program, we have a
bunch of 200 line objects with minimal dependenciesach other. In this way, we escape the n*2dfap
writing and debugging large programs.

Public Interface/API Design

In its simplest form, encapsulation is expressettian't expose internal data structures,” but tearmre to

it than that. For good OOP design, an object mhisiktof an interface (or "API") to expose that most
succinctly meets the needs of its clients. The lestign is oriented towards the client's needs and
vocabulary. What do the clients want to accompligft?at problem do they want solved, and what is the
minimum set of details necessary to express thblgmo and its solution? The client of tBmaryTree

class doesn't wagetLeft() andinsertRight() messages, they waadd() andfind().

Suppose an object has ivarsy, andz. It's not an interesting OOP design if the exposgdrface is
getX() , setX() , getY() , setY(), and so on. A real OOP design is not just a 1-fistedion of the
implementation. A good OOP design invents an iatefthat meets the needs of the client in termg the
understand.

There's the old story of the drill bit salespersdm was much more successful once they realizadhba
clients didn't want to talk about drill bits, theeats wanted to talk about holes. By the samertpKeyou
find yourself making accessors fgetNumElements() and getElement() , you have to think of the
underlying problem the client wants solved— prolgaBbmething more likefindElement() or
writeElements() . Think about what the client wants a@complish not the details and mechanism of
doing the computation.

3 Examples

Often, the first rule that people learn for encdgison is that instance variables should be dedlgrévate.
Client objects should not "reach in" to accessdht inside an object. Here are three examplesstast
with that simple sense of encapsulation and enliatgeexpress the larger goals of OOP.

For this example, suppose we are writing clientectmdaBinky object that contains some integers, and we
want to know the sum of those integers.

Example 1 - Reach In

This first example is bad code, since the clieathes into the Binky object to access the dates Vibilates
the simplest notion of encapsulation. Typically@®P design prevents this by keeping instance Viasab
private.

/I client side code
private int computeSum(Binky binky) {

int sum = 0;

for (int i=0; i<binky.length; i++) { // NO-- reaching in
sum += binky.datali]; 1 NO-- reaching in

return sum;

Example 2 - Letter But Not the Spirit

This example is also bad. The code follows theetetif the law of encapsulation, but not its spirit.
AccessorgjetLength() andgetitem() have been added to tBinky interface, so the client does not
technically access the data directly. However, dioiss not look like good OOP design. The cliemiLiting

all the data out of the object to do an operatiath wt. Ideally, an operation using an object's data
should be performed by the object itself

/I client side code
private int computeSum(Binky binky) {

int sum = 0;
for (int i=0; i<binky.getLength(); i++) {/ NO-- external entity doing
sum += binky.getltem(i); // too much work on o bject's data
}
return sum;

Example 3 - Right

If you find yourself wanting to do sonfeo() operation that uses a lot of data from some objeen
consider addindoo() as a method of the object aitccan do the operation on itself In this case, we
move thesum() code to be a method of tBinky class. Notice how easy it is to write the codesfon()
once it's been moved to the right class. No pamanigtnecessary since tBinky is the receiver and the
required ivars are right at harféush the code to the data

/I Give Binky the capability
/I (this is a method in the Binky class)
public int sum() {
int sum = 0;
for (int i=0; i<length; i++) {
sum += datali];

return sum;

/I Now on the client side we just ask the object to perform the operation
[/ on itself which is the way it should be!

|nt sum = binky.sum();

Reality

In reality not all cases have a tidy solution whekerything fits the encapsulation ideal. However,
general we want to move the operation to the oliff@ttcontains the data. Sometimes an operatianres
significant access to data that is split across &wanore objects. In that case, you end up makiray i
method of one object and passing in the other tbpes parameters. Many times though, you can aué so
helper methods to one or more of the objects spdha interact to get the job done while maintairiine
spirit encapsulation.

