CS108, Stanford Handout #13
Fall, 2008-09 Osvaldo Jiménez

OOP Inheritance

Thanks to Nick Parlante for much of this handout

Previously we looked at basic OOP encapsulationfdriddesign. Here we start looking at inheritance.

Inheritance Warning
* Inheritance is a clever and appealing technology.

» However, it is best applied in somewhat rare cirstamces -- where you have several deeply similar
classes.

* Itis a common error for beginning OOP programntertsy to use inheritance for everything.

* In contrast, applications of modularity and encégtsan and API design may be less flashy, but ey
incredibly common.

» That said, for the cases where inheritance fiis, atfantastic solution.

Inheritance Vocabulary
e OOP Hierarchy

» Superclass / Subclass

* Inheritance

» Overriding

 "isa" -- an instance of a subclass isa instantheofuperclass. The subclass is just a refined édrtime
superclass. A subclass instance dathe properties that instances of the superclassiwgpposed to
have, and it may have some additional propertiegedis

General vs. Specific
» The "super" and "sub" terms can be a little counteitive...

» Superclass has fewer properties, is less consthaimenore general (confusingly, the word "superi c
suggests a class with more properties)

» Subclass has more properties, is more constraimethre specific

Grad Subclassing Example

» Suppose we have a Student class that encapsutaitgs'anits” variable, and responds to getUnits(),
setUnits() , andgetStress() . Stress is a function of units. (Source codetieiStudent example
is below)

» Suppose we want to addzaad class based on ti8udent class --Grad students are like students, but
with two differences...
* yearsOnThesis (yot) -- a grad has a count of the number of years vebdtethesis

- getStress() is different -- Grads are more stressed. The@sstig2* the Student stress)
+ yearsOnThesis

» Code Student and Grad is below. (The student exaogale is also available in the hw directory.)

Student/Grad Inheritance Design Diagram

» The following is a good sort of diagram to make witg@nking about an OOP inheritance design. Plan
the division of responsibility between a superckass subclass.

» (' = instance variable, -' = method)

St udent

Cunits

-ctor

-get/set Units
-getStress

G ad

[lyearsOnThesis
-ctor

-get/set YOT
-getStress (override)

Gradl SA Student

» Student is largely defined by theits ivar

» Grad is everything that 8tudent is + the idea ofearsOnThesis (yot)
* "isa" relationship with its superclassGrad isaStudent

e Grad hasall the properties of its superclass + a few
- Grad has a units ivar, like St©udent
- Grad responds tget /setUnits andgetStress , like Student
- Grad has the concept @bt , which is beyond whegtudent has

» (As opposed to a "has-a" relationship, where oneoblmnerely holds a pointer to another.)

Simple Inheritance Client Code
¢ Student s = new Student(10);

e Grad g = new Grad(10, 2); /I ctor takes units and y ot

« s.getStress(); /I (100) goes to Student.getStress()

* g.getUnits(); // (10) goes to Student.getUnits() - - INHERITANCE
« g.getStress(); 1/ (202) goes to Grad.getStress() - - OVERRIDING

Object Never Forgets its Class
 In Java, no matter what code is being executedeiteiver object never forgets its class.

* e.g. in the abovg.getUnits() example, the code executing against the recevertheStudent
class, but the receiver knows that it iGrad .

Semantics of "Student s;"

* What does a declaration lilgtudents; mean in the face of inheritance?

* NO: "s points to aStudent object"

* YES: "s points to an object that responds to all the ngessthat Students respond to"
* YES: "s points to &Student , or a subclass dtudent "

OOP Pointer Substitution

» A subclass object can be used in a context thkt foala superclass object
» This works because of the ISA propertyrad ISA Student , soGrad can be used in place 8fudent

» A pointer to aGrad object can be stored in a variable of t@wedent .
- Student s = new Student(10);

- Grad g = new Grad(10, 0);
- s =g;/l ok -- subclass may be used in place of su perclass
-/l what operations are allowed on s?

» The reverse is not allowed however
- Student s = new Student(10);
- Grad g = new Grad(10, 0);
- g=s; /I NO, does not compile

Compile-time and Run-time Types

» Every value that appears in your program has twedy- a compile-time time in the source code (CT)
and a run-time type as the code runs (RT)

Compile-Time types (CT, static)
» The compile-time type system is made simply ofdbelared types of the variables in the source code.

» Compile time types work in the source code, lonipteethe program actually runs. Compile time types
are also known in CS as "static" types, since thayt change -- unfortunate word choice since itstat
means so many other things in Java too.

» In Java, every variable and every expression lealledefined type in the source code -- basicdily t
type given where the variable or parameter is dedla

/I here we declare a few variables, each with a CT type...
Student s;

Grad g;

String str;

/I For any use of "s" down here, its compile-time t ype is Student

» Compile-time types are used for error-checkingoamgile time, making sure that various pieces ofecod
- variables, method, parameters -- match up with egher correctly.

Run-Time Types (RT)

» An object, created in the heap withw is given a true, run-time type -- the class of thitgiect -- e.gnew
Student() vyields aStudent object,new Grad() yields aGrad. The run-time type (the class) of an
object never changes once the object is createds-a fundamental part of the object.

Student s = new Student(10);
Grad g = new Grad(10, 2);

/I Store pointer to Grad in an Object variable (thi s is allowed)
Object obj = g;

Variables Objects in the heap, each

with their CT types with its true RT type
Is] > Junits 10 |
Student (CT) Student (RT)
lo
Grad (CT)
IObj_ T — kﬁfé 10
Object (CT) Grad (RT)

* Run-time types exist for every object, obvioushlyum-time. The main role of RT types is for "meagsa
resolution" -- when we send a message ddsStress() orequals() to an object, the RT type of
the receiver object is used to figure out whichhuodtto run.

* In particular, method overriding is resolved using true, RT type of the receiver object. The Qietpf
the variable holding the pointer to the objeatds used for message resolution in Java. (In some cases,
C++ uses CT type for message resolution, and iresathrer cases it uses RT type, which can make
interpreting source code quite tricky. Java is $dmmessage resolution always uses the RT type.)

Compile Time -- Error Check
» The compiler will only allow code where it is 100%ear that the receiver responds to the given nyessa

» The compiler's checking is all based on the contpite type system in the source code -- the dedlare
types of ivars and other variables
» Because we can store different types of objectsStudent pointer, the CT and RT type systems can
diverge. They do not conflict, but they differ. TB& system is looser, less precise, while the E ty
system is exact.
- e.g., with the following method, the compiler, oklyows that points to either &tudent object
or aGrad object

- void foo(Student s) {
-/l s points to Student or Grad -- don't know for sure.

 With this inexact information, the compiler will lyrallow code that works in all possible cases.

» Given aStudents; pointer, the compiler will allow thgetUnits() andgetStress() messages,
since those work for botbtudent andGrad. However getYearsOnThesis() is not allowed, since
that only works if the object is@rad, and that may or may not be the case wigltuaent s;
pointer.

Run Time -- Message Send, ("resolution")
 In Java, the run time type system is exact -- éleeiver object knows exactly what class it is.

» The run time type system is used to resolve messagds (i.e. "message-method resolution”) at the ti
of the call.

» This is also known as "late-binding", since theatxaethod to run is only figured out at the lasthment,
depending on the class of the receiver.

» The CT type of the variable holding the pointethte object is not used for message resolution.

Does The Right Thing -- DTRT

» A message send looks at the true class of thevexcebject in the heap at run time and does the
message/method resolution using that class.

* In CS jargon, we might say that it Does The Righing on message send -- DTRT.

Inheritance Client Code

» Same as before, but storing the Grad in a Stud#ntgy, so the CT and RT type systems diverge itand
all still works...

Student s = new Student(10);

Grad g = new Grad(10, 2);

s =g;/l ok
s.getStress(); // (202) ok -- goes to Grad.getStres s() (overriding)
s.getUnits(); // (10) ok -- goes to Student.getUni ts (inheritance)
s.getYearsOnThesis(); // NO -- does not compile (s is compile time type Student)
((Grad)s).getYearsOnThesis(); // ok, put in downcas t

/I only works if s, in fact, does point to a Grad object at runtime
Downcast

» We may place a cast in the code to give the compitee specific type information

* In the above example, the compiler knows that Hréable s is at leastudent , but does not know the
stronger (more specific) claim of ty@ad .

We could put gGrad) cast around s at the end of the above exampléhike.
- ((Grad)s).getYearsOnThesis();
- This does not permanently change the s varialdecdkt is just a part of that expression

e This is known as a "downcast", since it makes theenspecific, stronger claim, which is in the down
direction in the superclass/subclass diagram

In Java, all casts are checked at run time, atkebif are not correct, they throw a
ClassCastException

* In C or C++, if a cast turns out at run time towreng, horrible random crashing tends to resulie(Th
C++ dynamic_cast operator attempts to work arohigdgroblem)

Compile Time vs Run Time

» The compiler works with the compile-time type syst@nd only allows message sends that are
guaranteed to work at runtime. The programmer céatinpcasts to edit the compile-time types of
expressions.

» At run-time, the message-method resolution usesutitime type of the receiver, not the compiledim
type -- this is a feature. Some languages use dettipie types for message resolution, but thatrogdi
style is very unintuitive. C++ will use either coitaptime or run-time information, depending on
whether a method is declared "virtual" (run-timehot. In Java, and most modern languages, "vitrtual
is the only behavior.

Inheritance Syntax and Features

Subclass Ctor
» |n almost all cases, each subclass needs a caiestruc

» A subclass ctor has two problems...
- Construct the part of the object that is inheriteging the superclass ctor (eugits)
- Construct the part of the object due to the clesdfi(e.g. pt)

* The ctor should take as arguments the data need¢dkf class itself, and also any arguments nebged
the superclass ctor.

» On its first line, the subclass ctor can invokeghperclass ctor using thaper keyword...

public class Grad extends Student {

public Grad(int units, int yot) {
super(units); /I invoke the Student ctor
yearsOnThesis = yot; // init our own state

}
.

 If nosuper ctor is specified, the default (zero-argument)esalass ctor will be called. Some superclass
constructomust be called -- something has to set up those sugssrdlars.

» Typically, each subclass needs its own ctor corapiégth all its arguments spelled out. The ctor ningst
present, even if it just one line that calls thpesalass ctor. In this sense, ctors are not irdkrit the
subclass has to define its own.

this Ctor

» One ctor in a class can call another ctor in thegscusing "this" on the first line.
* In the following code, the default ctor calls thargjument ctor

Il two-arg ctor
public Grad(int units, int yot) {

}

/I default ctor calls the above ctor
public Grad() {
this(10, 0);

» Java does not have C++ default parameter argunimritgou can get some of the same the effect by
having multiple constructors or methods with vasiemguments that all call over to one
implementation.

Grad getStress() Override -- Classic Inheritancengiat

» TheStudent class contains a bagjetStress().

 For grads, the definition of stress is: it's double value for regular students + the yearsOnThesis
e To accomplish this, overridgetStress() in theGrad class.

» Important: we do not copy/paste the code fromStwdent class. We call th8tudent version using
super.getStress() (described below).

Grad getStress() Code
/*

getStress() override

Grad stress is 2 * Student stress + yearsOnThesis

*

@Override()

public int getStress() {
/I Use super.getStress() to invoke the Student
Il version of getStress() instead of copy/pasting that
/I code down here. The whole point of inheritance
/I is not duplicating code.
int stress = super.getStress();

return(stress*2 + yearsOnThesis);

}
Method Override

» To override a method, a subclass just defines hadewithexactly the same prototype -- same name and
arguments. With Java 5, you can provide an @Oweaithotation just before the method, and the
compiler will check for you that it matches sompexnclass method.

« If the method differs by name or by its argumestgh as uppercase GetStress() , or
getStress(int arg), overriding does not happen. Instead, we have eéfannew method

GetStress() or getStress(int arg) that is different frongetStress() . The compiler does not
provide any warning about this by default (but @@de provides a warning).

« If your subclass method is not getting called, dewheck that the prototype is exactly right, ot ipu
@Override so the compiler checks.

super.getStress()

» Thesuper keyword is used in methods and ctors to refeotteaup in the superclass or higher in the
hierarchy.

In theGrad code, the message sengber.getStress(); means...
- Send thayetStress() message
- In the message/method resolution, do not usgdtstress() method in thérad class.
- Instead, search for a matching method beginning thi¢ superclass, Student.

This syntax is necessary so that an override methath agetStress() , can still refer to the original
version up in the superclass.

» Often, an override method is not written from sdnatnstead, it is built on the superclass version.

» In C++, a method can be named at compile timedgl#ss, e.g. Student::getStress(), but there is no
equivalent in Java. "Super" does the full runtimessage-method resolution, just starting the search
one class higher.

Student.java

public class Student {
protected int units;

/I Constructor for a new student
public Student(int initUnits) {
units = initUnits;

/I NOTE this is example of "Receiver Relative" ¢ oding --
/I "units” refers to the ivar of the receiver.
/I OOP code is written relative to an implicitly present receiver.

}

/I Standard accessors for units
public int getUnits() {
return units;

public void setUnits(int units) {
if ((units < 0) || (units > MAX_UNITS)) {
return;
/I Could use a number of strategies here: throw an
/I exception, print to stderr, return false

this.units = units;
/I NOTE: "this" trick to allow param and ivar to use same name

}

/*

Stress is units *10.

NOTE another example of "Receiver Relative" codin g
*/

public int getStress() {
return(units*10);
}

<rest of code snipped>

Grad.java
/l Grad.java

/*

Grad is a subclass of Student -- a simple example of subclassing.
-adds the state of yearsOnThesis
-overrides getStress() to provide a Grad specific version
*
/
public class Grad extends Student {
private int yearsOnThesis;

/*
Ctor takes an initial units and initial years on thesis.
*
public Grad(int units, int thesis) {
/I we use "super" to invoke the superclass ctor
/l to init that part of ourselves
super(units);

/I init our own ivars
yearsOnThesis = thesis;

}
/*
Default ctor builds a Grad with 10 units and O yo t.
*/
public Grad() {
this(10, 0); // "this" on firstline ofa c tor calls
/I a different ctor in the sam e class
}
/*

getStress() override

Grad stress is 2 * Student stress + yearsOnThesis

*/

@Override()

public int getStress() {
/I Use super.getStress() to invoke the Student
/I version of getStress() instead of copy/pasting that
/I code down here. The whole point of inheritance
/l'is not duplicating code.
int stress = super.getStress();

return(stress*2 + yearsOnThesis);

}

/I Standard accessors

public void setYearsOnThesis(int yearsOnThesis) {
this.yearsOnThesis = yearsOnThesis;

}

public int getYearsOnThesis() {
return(yearsOnThesis);

/*
Example client code of Student and Grad, demonstr ating
inheritance concepts.
*
public static void main(String[] args) {
Student s = new Student(13);
Grad g = new Grad(13, 2);
Student x = null;

System.out.printin("s " + s.getStress());
System.out.printin("g " + g.getStress());

/I Note how g responds to everything s responds t o]

/l with a combination of inheritance and overridi ng...
s.dropUnits(3);

g.dropUnits(3);

System.out.printin("s " + s.getStress());

System.out.printin("g " + g.getStress());

/*

OUTPUT...
s 130

g 262
5100
g 202
%

Il s.getYearsOnThesis(); // NO does not compile
g.getYearsOnThesis(); // ok

/I Substitution rule -- subclass may play the rol e of superclass
x=g; /Il ok

/I At runtime, this goes to Grad.getStress()

/I Point: message/method resolution uses the RT ¢ lass of the receiver,
/I not the CT class in the source code.

/I This is essentially the objects-know-their-cla ss rule at work.

x.getStress(); // returns 202

/g =x; /I NO -- does not compile,
/I substitution does not work that direction

Il x.getYearsOnThesis(); // NO, does not compile

((Grad)x).getYearsOnThesis(); // insert downcast
/I Ok, so long as x really does point to a Grad a t runtime

}

/*
Example .equals() method in the Grad class --
true if two Grad objects have the same state.
*
@Override
public boolean equals(Object other) {

/I Common optimization for == case

if (this == other) return true;

/I 1s the other object the right class?
/I (instanceof is false for null)
if (!(other instanceof Grad)) return false;

/I Look inside the other object

/I (example of "sibling" access -- can access "pr ivate" here.
/I Any Grad can look in any other Grad object)

Grad grad = (Grad)other;

return(grad.units==units && grad.yearsOnThesis==y earsOnThesis);
}

}
/*

Things to notice...

-The ctor takes both Student and Grad state -- the Student state is passed up
to the Student ctor by the first "super"” line in t he Grad ctor.

-getStress() is a classic override. Note that it d oes not _repeat_ the code

from Student.getStress(). It calls it using super , and fixes the result.

The whole point of inheritance is to avoid code r epetition.

-Grad responds to every message that a Student res ponds to -- either

a) inherited such as getUnits()
b) overridden such as getStress()

-Grad also responds to things that Students do not ,
such as getYearsOnThesis().
*

islrate() Example

» Suppose we define asirate() method in theStudent class that returns true if the receiver has a
stress over 100.

* (In Java, messages that dboalean test on the receiver often start with the word tis"has".)

public class Student {

10

public boolean islrate() {
return(getStress() >= 100);
/Il POPS DOWN to Grad.getStress()
/I if the receiver is a Grad

}
» Question: how does this work if we send the is[jateessage to a Grad object?

Student s = new Student(10);
Grad g = new Grad(10, 2);
s.islrate(); // false

g.islrate(); // true

» Short answer: the code Does The Right Thing. iSlingte() code is up irstudent . However, the
receiver object knows that it isGrad , and on thejetStress() message send, it correctly pops down
to theGrad getStress() override.

g.islrate() Series

* Where does the code flow go when sendsigte() to aGrad object?

¢ 1. Student.islrate()

e 2. Grad.getStress() // pop-down

¢ 3. Student.getStress() // the super.getStress() cal lin Grad.getStress

"Pop-Down" Rule
» The receiver object knows its class
* The code being executed comes from different ctaasehe program proceeds

* No matter where the code is executing, the recéivews its class and does message-to-method
resolution correctly for each message send.

* e.g. Receiver is a subclagadd), executing a method up in the supercl&ssdent), a message send
thatGrad overrides will "pop-down" to th&rad definition @etStress()).

» The logic also applies with asirate2(Student s) method that takes@tudent argument. We can
call islrate2() passing in &rad object. Passing in@rad object for aStudent argument works
because of the substitution rule.

Inheritance / Notification Style

* Here is an illustration of how all this inheritarsteiff is actually used...

» Suppose there is@ar class withgo() , stop() , andturn() methods

e Suppose there isduiveTowork() method inCar that sends lots of messages to the car over time:
go() ,stop() ,go() , ...

» You want to create your own subclassCaf , but that turns differently, it beeps every tirhtuins, ...

class MyCar extends Car {
/IOverride turn()...
public void turn() {
beep();
super.turn();

* You make aviyCar object and pass it to the system, which storesirgqr to it in a variable typ€ar.

e The system can calliveTowork() , which callsgo() , stop() , etc. and it all works without any
change foMyCar.

« Aturn() message will pop down to use yourn() override, and then pop back up and continue
using the standardar code.

11

Applied Notification Style

* Inheritance is frequently used to integrate yowtecwith library code -- subclass off a library da80%
inherit the standard behavior, and 10% overridevakey methods. This is the most common use of
inheritance.

» This works best if the superclass code is delileérdactored into methods to support overridingclass
written the most obvious way will not just autonsatly support inheritance well.

* e.g.JComponent (the drawable class) -- subclass3bmponent to inherit the ability to fit in on
screen, resize, and so on. OverpdatComponent() to provide custom drawing of the component.

* e.g. Collections -- subclass @fbstractList to inheritaddAll() , toString() , .. and lots of other
methods. It pops down to use your implementatiotihefcore functionadd() , iterator()) e

* e.g. Servlets -- inherit the standard HTTP Sefwédtavior and define custom behavior in a few key
method overrides.

Subclassing vs. Client Coding Strategy

» Being a client of a class is fairly easy
- Use public ctor and methods -- read the docs wéigihain how to use them
- The implementation of the class handles most ottmplexity internally

» Writing a subclass off an existing superclass islike that

Authoring a subclass correctly often requires samgerstanding of the superclass implementation in
order for the subclass to "fit in" correctly withet superclass --
- Which methods should it override precisely?
- When are those methods called, what are the pte¢poditions?
- What variables make up the object implementatiad,trow are they maintained?
- The subclass may be exposed to some or all of theisds -- the relationship is not as clean as
with ordinary class/client

Things declaregrivate in the superclass are not exposed to the submtdesclients

» Things declareg@rotected (ivars or methods) are for the use of subcladsgiscfients cannot see them)
Things declareg@ublic are available to the subclass and to everyoneasisesl

Ideally, the superclass is designed and documesptecifically to identify what a subclass needsdo d

Subclass Implementation Themes
 The first step in writing a subclass is understagdhe superclass
» Write the subclass to fit in with the design, nagniand assumptions set out by the superclass

 Avoid duplicating code from the superclass -- ugeritance and usiper.foo() to call the code up
in the superclass as much as possible.

* i.e. avoid copy/paste code from the superclassobably you should be calling superclass methods
instead. May require the superclass to break tig dmm one big method into smaller methods, sb tha
subclasses can override just one part of the slagsrbehavior.

Horse/Zebra -- Key Example

» With inheritance, we define classes in terms oéptilasses. This can be a great shortcut if we have
family of classes with common aspects. Supposehgoe a hierarchy of all the animals, except the
zebra was omitted and you have been asked to &ud it

» Wrong: define the zebra from scratch

» Right: locate thedorse class. Introduc&ebra as a subclass éforse
- Zebra inherits 90% of its behavior (no coding required)
- Inthezebra class, see howorse works, and then define (override) the few thirus tare
features of Zebras but not Horses

 This is the key feature of inheritance -- arranigsses to factor out code duplication

