CS108, Stanford Handout #14
Fall, 2008-09 Osvaldo Jiménez

OOP Inheritance 2

Thanks to Nick Parlante for much of this handout

Here we look at a variety of more advanced inheciassues.

Is-a vs. Has-a

» Specifying a superclass-subclass relationship ksials a very strong constraint between the twssela.
The subclass is constrained to be an "isa" speatan of the superclass. The subclass is merely a
version of the superclass category. This relatipnishso constraining... that's one reason why
subclassing opportunities are rare.

* e.g. Boat isa Vehicle, Chicken isa Bird isa Animal
» Contrast to the much more common "has-a" relatipnshere one object has a pointer to another
* e.g. Boat has-a passenger, Game has-a Tetris pien@rsity has-a Student has-a Advisor

Student/Grad Memory Layout

» Implementation detail where each class has a ssuglerclass (such as in Java): in memory, the dfars
the subclass are layered on top of the ivars oftiperclass (that's the simplest scheme -- the Java
runtime may arrange things differently for perfonoa reasons, but your Java code will no be able to
know that.)

» Result:; if you have a pointer to the base addréas instance of the subclass &d), you can treat it as
if it were a superclass obje@t(udent) and it just works since the objects look the sénme the
bottom up. Again: you can treat an instance ofitliteclass as if it were the superclass, and it wokks
A G ad object looks like &t udent object.

» Here we have pointe®& udent s1, s2; The pointes1 points to &t udent while s2 points to a
G ad. Note how literally the samget Uni t s() code can execute against both memory structures,
since it just looks at the first 4 bytes for bothjexts -- that part of both tt& udent andG ad object
memory look the same and have the same layouteTibgust one copy of the code fp#t Uni t s()
up in theSt udent class, and that one copy is usedSondent andGr ad objects. Also, you can see
how it is that it does not make any sense togetriyOT() on aSt udent object.

Is1
units 10 |

St udent

[s2 yot 2
units 10

G ad

Abstract Super Class Strategy

» Suppose we have three bank-account type claBsedi ckl e andGanbl er that are similar, but differ
in their end-month-charge policy.

 Factor their common features up into an abstkacbunt class and make them subclasses

» Give Account an abstract methablst ract voi d endMont hChar ge() ; . "Abstract" because it has a
prototype but no code. A class with an abstrachoebts itself abstract. An abstract class cannot be

instantiated witmew, as it is incomplete (missing a method). Subckssast provide code for the
abstract method to avoid beiabst r act .

* InitsendMont h() method, thédccount class calls thendMont hChar ge() method -- knowing that
this will pop-down to do thendMont hChar ge() provided by the subclass.

e Theabstract superclass can set out logical methodsdikéMont hChar ge() so that subclasses can
override them.

public abstract class Account {
/*
Applies the end-of -nonth charge to the account.
This is "abstract" so subcl asses nmust override
and provide a definition. At run tine, this wll
"pop down" to the subclass definition.
*/

protected abstract void endMont hCharge();

public void endMonth() {
/1 Pop down to the subclass for their
/'l specific charge policy (abstract method)
endMont hChar ge() ;

transactions = 0;

/'l Fee.java
public class Fee extends Account {
public void endMont hCharge() {
wi t hdraw(5. 00);

Abstract Bird Analogy

* Like the word "bird" in English -- you cannot instete something which is exactly a bird, but yan c
for subclasses like mockingbird or chicken. Thedvtlird" is like an abstract superclass.

Method Override -- Cannot "Narrow" Params

* When overriding a method, the parameters must hetlgxhe same in the subclass method as in the
superclass method.

» Suppose we haveMeal class, and it supportssane(Food food) method (this is analogous to the
equal s() method in Java).

class Food {
bool ean sane(Food food) { ...

» Suppose we createCandy subclass ofFood.
* In Candy, suppose we change theme() argument to tak€andy instead ofood
» That looks reasonable, but it runs into logic peois.

cl ass Candy extends Food {
private int sugar;

/'l incorrect override .. Candy arg nore narrow than Food
bool ean sane(Candy candy) {

/1 Treat candy |ike a Candy object in here

return (this.sugar == candy. sugar);

}

» The problem is that there could be some client ¢edeh azat () below) that takes Bood compile
time type argument, but is passe@aady object -- that's allowed by the substitution rillat a
subclass may be used in place that calls for jielass. Ireat (), the prototype seen etne() is

the one from th€ood superclass which takes=aod argument, so the code can call
same(broccol i). However, it pops down to theame() in Candy which takes &andy arg, not a
Food arg.

voi d eat (Food food) {
if (food.sane(broccoli)) /1 broccoli is a Food, not a Candy
Systemout. println("yay broccoli!");

/1 Problem pass a Candy object into eat()
Candy candy = new Candy();
eat (candy) ;

» Therefore, when overriding a method, code cannatriw” the parameter type from the superclass.
Essentially, because clients will only see the p&tar type as specified in the superclass, ant that
what they will pass.

» One simple solution is to copy the prototype frém superclass, paste it into the subclass, andfoote
there. In Java 5, th@ver ri de annotation will check that the method does exautych a superclass
method.

 In Java 5, this rule was very slightly loosenethe subclass method can narrowthiurn type, just not
the parameters. Returning to the caller somethiogerapecific than what they asked for (returning a
St ri ng instead of aitbj ect) does not cause any problems.

instanceof

» Java includes ainnst anceof operator that may be used to check the run tipe ¢f a pointer -- is it a
subclass of the given class (or interface)

if (ptr instanceof Gad) { ...

* i nst anceof with anull pointer always returrisal se

* Usingi nst anceof is regarded as a possible sign of poor OOP déaismell"). Ideally, the
message/method resolution selects the right pieceds depending on the class of the receiver, so
furtheri f /swi t ch logic withi nst anceof should not be necessary. However, sometimes ihe@
a clean message solution, andgt anceof is required.

Incorrect I1f/Switch Logic Choosing Code

if (x instanceof Foo) {
/1 do sonething

} if (x instanceof Bar) {
/1 do sonething el se

}

Correct Logic Choosing Code

x. doSoret hing() // let message/ method pick the right code to run

Class getClass() -- "Introspection”

» For every java class, there is an "class objecthémory that represents that class. All Java abject
respond to get C ass() method that returns a pointer to that object'sscbject.

» Each class object is, somewhat confusingly, ofdhess class. This is a feature of "introspection” in
java -- that the classes, methods, etc. of the aoelavailable for inspection at run time.

* C ass objects have many features, including the metlgedslanme() andnew nst ance() .
new nst ance() makes a new object of that class, assuming iah@asblic zero-arg constructor.

» As withi nst anceof , we should avoid doing manuél/swi t ch logic with class objects.

Java Interface

» Method Prototypes
- Aninterface defines a set of method prototypes.
- Does not provide code for implementation -- just pinototypes.
- Can also define final constants.

 Class implements interface
- Aclass that implements an interface must impleraéirthe methods in the interface. The compiler
enforces this at compile time.
- AlJava class can only have one superclass, bwyitimplement any number of interfaces.

» "Responds To"
- The interface is a "responds to" claim about afatethods.
- If aclass implements tho interface, | know it responds to all the messagéise Foo interface.
- Inthis sense, an interface is very similar to pesalass.
- If an object implements thepo interface, a pointer to the object may be stoneglFoo variable.
(Just like storing a pointer to@ ad object in aSt udent variable.)

* Lightweight
- Interfaces allow multiple classes to respond toraroon set of messages, but without introducing
much complexity into the language.
- Interfaces are lightweight compared to superclasses

 This is similar to subclassing, however...
- Good news: A class can only have one superclaggveay it can implement any number of
interfaces. Interfaces are a simple, lightweightmagism.
- Bad news: An interface only gives the mesgag#totypes, no implementation code. The class
must implement the method from scratch.

* vs. Multiple Inheritance
- C++ multiple inheritance is more capable -- mustipperclasses -- but it introduces a lot of
compiler and language complexity, so maybe it iswarth it. Interfaces provide 80% of the
benefit for 10% of the complexity.

e.gq. Moodable Interface

e Suppose you are implementing some sort of simulatiad there are all sorts of different objectthim
program with different superclasses -- Cats, D&gsdents, Buildings,

» However, you want to add a "mood ring" feature, ighge can query the current color mood out an
object.

» Some classes will support mood and some won't

» We define thévbodabl e interface -- any class that wants to support tleed/ifeature, implements the
Mbodabl e interface

/1 Moodabl e. j ava
public interface Modable {

public Color getMod(); // interface defines getMod() prototype but no code
}

* If a class claims to implement tiMeodabl e interface, the compiler will enforce that the slasust
respond to thget Mbod(); message.

Student implements Moodable

» Here is what th&t udent class might look like, extended to implement thed¥able interface. The
class must provide code for all the messages mmadio the interface, in this case jyst Mood() .

* A class that implements multiple interfaces separ#dtem with commas after the "implements" keyword.

public class Student inplenments Modable {

public Col or getMod() {
if (getStress()>100) return(Color.red);
el se return(Col or. green);

/1 rest of Student class stuff as before...

Client Side Moodable

* Mbodabl e is like an additional superclass@fudent .

* Itis possible to store a pointer t®audent in a pointer of typ&bodabl e.

* The type system essentially wants to enforce thgptinds to" rules. It's ok to store a pointer Siaent
in aMbodabl e, sinceSt udent responds tget Mood() .

» So could say...
Student s = new Student (10);

Mbodable m = s; /1 Moodabl e can point to a Student
m get Mbod() ; /1 this works
m get Stress(); /1 NO does not conpile

Polymorphism -- Array example

* You could have &bodabl e[] array, storing pointers to all sortsMfodabl e objects. You could iterate
over the array, callinget Mood() on all the objects ... not worrying about theiesific types.

 This feature -- that you can cgkt Mbod() with confidence that it will pop-down and do thght code
depending on the class of the receiver -- is knffigially as "polymorphism".

"Comparable" Interface Example

« Example of Java interface -- t@enpar abl e interface

» Objects that work with Java's built in-sorting miaeiy implement th&€onpar abl e interface, which
defines the one metha@dnpar eTo() ...

public interface Conparable {
public int conpareTo (Object other);
}

» conpar eTo(Obj ect ot her) compares the receiver to other object, returning..
- negative if receiver is "less" (this same convant®used in C and other languages)
- Oifsame
- positive if receiver is "more"

» Trick -- use subtraction: rcvr - other

Java 5 Comparable<Type>
 In Java 5Conpar abl e has been made generic, so a ckgscan implemenConpar abl e<Foo>

» Then, the prototype isonpar eTo(Foo) instead otonpar eTo(Obj ect)
* (Seel ngr edi ent example below)

Collections.sort(List)

* Collections.sort() --works on d.i st (e.g.ArraylLi st) where the elements implement the
Conpar abl e interface. Throws a runtime exception if an elehtires not implemerttonpar abl e
during the sort.

"Comparator" Interface

* For a custom sort not based on the builtanpar abl e feature of the elements, any object can
implement theConpar at or interface which compares two objects.

e int conpare(QObject a, Cbject b) --returns nt, like Conpar abl e

e Collections.sort(List, Conparator) --variant that takes comparator as 2nd argument

» More flexible thanConpar abl e, since not necessarily implemented by the objeeitsg sorted -- can be
implemented by anybody, and sort in any way.

» Seel ngr edi ent example below

Object Class

» Universal superclass in Java -- every object ispate distance, a subclass of Object

* Object methods:
- bool ean equal s(Ohject other); [/ deep conparison

- int hashCode(); /1 int hash sumary of object
- String toString(); /1 String form of object
- Cass getdass(); /1 Ask an object what its class is

String toString()

» Default definition inObj ect , prints object's class and address

» Provide a customoSt ri ng() that produces &t ri ng summary of an object ... its ivars

e println() and theStri ng “+” operator know to calf oSt ri ng() automatically
- Systemout. println(x) will call x.toString()
- ("hello" + x) --callsx.toString()

e Acustomt oString() can be handy for debugging
- Canjust sprinkl&Syst em out . printl n("about to do foo:" + x) calls around to print the
state of an object over time.

boolean equals(Obiject other)

» Returns r ue if the receiver object is "deep" the same as #ws@d in argument object

* Much of the built-in collection machinenar(r ayLi st, Set, ...) usesqual s() to test pairs of objects.
* Test for== this case -- fast true

» Testi nst anceof other object
- if the object is not the right class, it certairdynot equal
- instanceof test omul | always yields al se, what we want in this case

» Cast other to your class, do a deep comparisonbivavar

» Can access .ivar of other object, thopghvat e, since we are the same class. (so called "sibling"
access)

» Probably better to go through message send anyweaid unnecessary dependency

» Note that the argument is tygbj ect , and you should not make it narrower (in accordamith the
general rule that the subclass cannot change guenants as set out in the superclass prototype).

* Warning:equal s() does not do the right thing with two arrays; ied@ shallow= comparison. Call
the static methodar r ays. equal s() orArrays. deepEqual s() for deep array comparisons.

int hashCode()

* Not talking about this in much detail today. Giwes nt "hash" summary of the object

« If two objects are deeply the samedqual s()) then their hashes must be the same. Rule: if
a. equal s(b), then itis required that hashCode() == b. hashCode()

» hashCode() allows an object to be a key itHashMap. HashCode should be fast to compute.

« If a class does not implememishCode() then it cannot be a key inHashMap (it can still be a value).
String, | nteger, ... allimplementashCode(), so they can be used as keys fine.

 For production quality code, équal s() is overridden, thehashCode() should also be overridden to
be consistent witkqual s() .

Ingredient Code

/'l Ingredient.java
import java.util.*;

/**

* The Ingredient class encapsul ates the nanme of the ingredient

* and its quantity in grams. Used to denonstrate standard overrides:
* toString(), equals(), hashCode(), and conpareTo().

* Al so denonstrates sorting and Javadoc.

*/

public class Ingredient inplements Conparabl e<l ngredi ent> {
private String nane;
private int grans;

| **

* Constructs a new | ngredient.
*

* @aram nanme nane of ingredient
* @aramgranms quantity of ingredient in granms
*/
public Ingredient(String nane, int grans) {
this. name = nane;
this.grans = grans;

}
| **

* CGets the name of the Ingredient.

*

* @eturn name of ingredient
*/
public String getNane() {
return nang;
}

| **

* Gets the grans of the I|ngredient.

*

* @eturn granms val ue
*/
public int getGans() {
return grans;
}

| **

* Sets the grans of the I|ngredient.

*

* @aram grans new grans val ue
*/
public void setGans(int grans) {
this.grans = grans;
}

/**

* Returns a String formof the |ngredient.
* Uses the format <code>"<i>nane</i> (<i>grans-val ue</i> grans)"</code>
*

* @eturn string formof ingredient
*/
@verride
public String toString() {
return name + " (" + grams + " grams)";
}

/**

* Compares this ingredient to the given object (standard override).
*

* @eturn true if ingredient has the same value as the given object
*/
@verride
publ i c bool ean equal s(Obj ect obj) {
/1 Note: our argument mnust be Cbject, not |ngredient,
/1 to match the equal s() prototype up in the Object class.

/1 Standard equal s() tests...
if (this == obj) return true;
if (!(obj instanceof Ingredient)) return fal se;

/1 Now do deep conpare
I ngredi ent other = (Ingredient)obj;
return (grans==ot her.get G ans() && nane. equal s(other.getNanme()));
}
/**
* Returns an int hashcode for this ingredient (standard override).
*
* @eturn int hashcode of ingredient
*/
@verride
public int hashCode() {
/1 if two objects are deeply the same, their
/1 hash codes nust be the same
return (grans + nane.length()*11);
/'l coul d use nane. hashCode() instead of name.|length()

}

/**
* Conmpares the ingredient to the given object for sort order.
* (This is the standard sorting override, inplenmented here
* since we inplenent the "Conparable" interface.)
* Orders increasing by nanme, and for the same nane, increasing by grans.
* This is the Java 5 version, generic for Conparabl e<lngredient> so
* the arg is type Ingredient.
*
* @eturn negative/0/positive to indicate ordering vs. given object
*

~

public int conpareTo(lngredient other) {

int strConpare = nane.conpareTo(other.getNanme());

if (strConpare != 0) return strConpare;

el se {
if (granms < other.getGrans()) return -1;
else if (granms > other.getGans()) return 1;
el se return O;
/1 trick: could just return (grans - other.getG ans())
/1 could access .grans directly ("sibling" access)

}
/**
* A d, non-generic conpareTo(), where arg is type Object.
*
* @eturn negative/0/positive to indicate ordering vs. given object
*/
private int conpareTod d(Object obj)
I ngredient other = (Ingredient)obj; // cast to sibling
int strConpare = nane.conpareTo(other.getNanme());
if (strConpare != 0) return strConpare;
el se {
if (grans < other.granms) return -1;
else if (grams > other.grans) return 1;
el se return O;
/'l note: here we refer to sibling ivars just as .grans
/1 since we are in the sane class, although using nessage
/1 send is a slihgtly better OOP de-coupling style.

public static void main(String args[]) {
Ingredient a = new I ngredient("Apple", 112);
I ngredient b = new I ngredient("Bannana", 236);
I ngredi ent b2 = new I ngredient("Bannana", 236); // deeply the sane as b

Systemout.printin(a); // calls toString()

System out. println(b);

Systemout. println("Apple eq Bannana:" + (a.equals(b))); [/ false
System out. println("Bannana eq Bannana2:" + (b.equals(b2))); [// true

Systemout. println("Apple hash:" + a.hashCode()); // 167
System out. println("Bannana hash:" + b. hashCode()); // 313
System out. println("Bannana2 hash:" + b2. hashCode()); // 313 (!)

col I ecti onDeno();

/1 Conparator class, new Java 5 form
/1 Conparator int conpare(T, T) takes two argunents
/1 Returns neg/O/pos if first arg is |ess/eq/greater
/'l than second arg.
private static class SortByG ans inplenments Conparator<I ngredi ent> {
public int conmpare(lngredient a, Ingredient b) {
/1 trick: formthe neg/0/pos by subtraction
return (a.getGans() - b.getGans());

}

/1 OLD, non generic Conparator, takes Object args
private static class SortByG ansd d inpl enents Conparator {
public int conpare(Object a, Object b) {
Ingredient il = (Ingredient)a;
Ingredient i2 = (Ingredient)b;
return (il.getGans() - i2.getGans());

}

public static void collectionDeno() {
Ingredient a = new I ngredient("Apple", 112);
Ingredient b = new I ngredient("Bannana", 236);
I ngredient b2 = new I ngredient("Bannana", 100);

Li st<Ingredi ent> ingredients = new Arrayli st<lngredient>();
i ngredi ents. add(b2);

i ngredi ents. add(a);

i ngredi ents. add(b);

Systemout.println("ingredients:" + ingredients);
/'l ingredients:[Bannana (100 grans), Apple (112 grans), Bannana (236 grans)]
/1 note: uses the collection [...] built-in toString()

Col | ections. sort (ingredients);
Systemout.printin("sorted:" + ingredients);
/1 sorted:[Apple (112 grans), Bannana (100 grans), Bannana (236 grans)]

Col | ections. sort(ingredients, new SortByG ans());

Systemout.println("sorted by granms:" + ingredients);

/'l sorted by grans:[Bannana (100 grans), Apple (112 grans), Bannana (236 grans)]
Systemout.println("max:" + Collections. max(ingredients));

/1 max: Bannana (236 grans)
/1 Al'so have built-in mn(), max()

Javadoc

* Generate HTML documentation from markup in the code

10

« http://java.sun.com/j2se/javadoc/writingdoccomménts

 This is how all the standard class API docs aregead

» JavaDoc sections start with two stars /** */

» Explain the exposed interface of the class toentli

 Eclipse code-complete/hover uses javadoc -- a graato expose timely info to the client.

» For good examples, see ther i ng or HashiMap Javadoc pages

* In Eclipse, usé@roject > Generate Javadoc, and you can just leave all the defaults and gegeer
* HTML markup can be used -- <p> <code>

» Javadoc provides a nice, standard solution to plsiand unglamorous but very important problem -- a
standard way to document a class for clients.

Class Overview Javadoc

* At the top of the class, summarize what the clasajgsulates and its operational theory for thentlie
Imagine that the person coming to the page doeknmw what the class does -- give them a 2 sentence
summary.

» For alarge class, include <code>...</code> sesttnowing typical client code.
» Many classes do not do a good job on the class/@werbut it's a quality touch to add.

Method Javadoc

* First sentence should summarize the whole thingadlzc uses the first sentence as a summary in the
table of methods.

» What does it do, what effect is there on the rezreiand what are the roles of the parameters.

» Use the "s" form verb -- "Adds...", "Computes."Returns...". Ok to just start with the verb, leaybut
the implicit "This method..." at the start.

@param

* Mention each parameter by name
» Will be redundant with the main sentence, but iffie is helpful in the HTML form for the client.

* For a methodnt search(String target)
- (@©ar amtarget the string to search for

@return

» For methods that return something
» Will also be a bit redundant with the summary secee
* For a methodnt search(String target)
- @eturn index of target string if found, or -1
Example Bad Docs -- signum()
» Here's the javadoc for tle gnun() method inl nt eger ...
* "signum(int i) -- Returns the signum function oétepecified int value."
» Wow, it's amazing that this "doc" has a sentendk words, and yet conveys no information.
A better version would be dense but meaningfukuhres the -1/0/1 sign of the given int value."

Ingredient Example

e The previous ngr edi ent example follows the javadoc style.

* Running theEclipse -> Produce Javadoc command, produces javadoc like this...

Package [HETTdUse Tree Deprecated Index Help

PREW CLASE MEXT CLASES ERAMES MO FRAMES Al Classes
SUMMARY: NESTED | FIELD | COMETR | METHOL: DETAIL: FIELD | CONETR | METHOD

Class Ingredient

java.lang.Object
k. Ingredient

All Implemented Interfaces:
java.lang.Comparable

public class Ingredient
extends java.lang.Object
implements java.lang.Comparable

The Ingredient class encapsulates the name of the ingredient and its quantity in grams. Used to demonstrate
Jjavadoc, and implementing standard overrides: toString(), equals(), hashCode(), and compareTo().

Constructor Summary

Ingredient(java.lang.5tring name, int grams)
Constructs a new |I'Igl’Ed ient.

int|compareTo(java.lang.Object obj)
Compares the ingredient to the given object.

boolean|equals(java.lang.Object obj)
Compares this ingredient to the given object (standard override).

int |getGrams ()
Gets the grams of the Ingredient.

e]

PR

11

