CS108, Stanford Handout #16
Fall, 2008-09 Osvaldo Jiménez

Swing GUI

Thanks to Nick Parlante for much of this handout

OOP GUI Systems

OOP Drawing vs Imperative Drawing
* In simple "imperative" drawing, you create a canvfisome sort, and start drawing on it.

* Most OOP drawing systems do not work that way.

» We will have objects that correspond to what's@ren. These objects are sent a "draw yourself"
message when they should draw.

» So to get something on screen, we create an dbjgticknows how to draw itself and install it onesem.

Library Class Hierarchy

e There is a large, pre-built inheritance hierarchglasses for common problems -- drawing, controls,
windows, scrolling.... These classes are engineerawrk together and share a broad set of working
assumptions (i.e. to work with these classes, yilineed to understand their design a little).

System: Event -> Notifications (Swing Thread)

e There is a background "system" that manages the baskkeeping and orchestration of windows and
events. AKA "the system"

» Once the frame is on screen we have "user eventfitking, typing, ... events that happen in riake.

» The system manages a queue of user events asappgrh(realtime), and translates them to
"notification” messages sent, one at a time, tagpropriate GUI objects. The GUI objects draw
themselves, react to clicks, etc.

» The System has its own thread, known as the "sthirggad" or the "event dispatch thread". Notificatio
sent to your code -- telling it to draw, tellinglitat a button has been clicked -- are run oniliegs
thread.

Programming Tasks...

1. Instantiate Library Classes (easy)
» Many tasks are as simple as constructing and limgtalystem classes -- windows, buttons, labets, et

» This is the pretty easy -- requires some readirthefibrary class docs
 Pull a library object "off the shelf"

2. Subclass Library Classes (harder)

» To introduce custom behavior, subclass off a Iypdass and use overriding to insert your custodeco

 This is a trickier programming problem -- you needeeper understanding of the superclass
implementation in order to do the override "in hanyi' with its design. In general, the designerhaf t
subclass is responsible for understanding the slgssrdesign, so that the design of the subclessm i
with the superclass.

At runtime, the code relies on the "pop-down" featof overriding, so that our little bit of subdasode
gets called at the right moment.

 e.g. Subclass offButton so it beeps when clicked

* e.g. Subclass offComponent and override theaintComponent() method to insert your own drawing
code (but keep th&Component notions of geometry, painting schedule, etc.)

Java GUI History

AWT vs. Swing/JFEC

s AWT

- Abstract Windowing Toolkit

- AWT provides simple GUI components. Not as rictsasng.

- Had some implementation problems early on (1996)

- AWT drawing uses "native peers" -- creating an AWlfton creates a native peer (Unix, Mac,
Win32) button to put on screen, and then triessiepkthe AWT button and the peer in sync.

- Advantage: an AWT app has the "native" appearamcbittons etc. since there are in fact native
buttons on screen.

- Disadvantage: the peer design is difficult, keepirggJava object and its peer in sync, and acting
the same for all cases on all platforms.

* Swing

- Also known as JFC

- Implementedn Java -- its the same bytecode running on all platfornia that way, Swing really
acts the same on all platforms. Builds on onlydingplest AWT classes -- frame, etc.

- Swing has 10x more classes, depth, and functigrtain AWT

- Swing has pluggable look-and-feel feature wheréogt etc catook like native ones for that
platform. The look and feel is mostly coded in jaaad updating it so it looks native is a chore
for the Swing maintainers.

» Most recent Java implementations call down to @teva OS for rendering the button (e.g. Windows,
Mac), so the pixels of the buttons etc. really loaght, while doing the logic of the GUI in java.

SWT -- Standard Widget Toolkit

» IBM's Eclipse project uses its own SWT layer, whigkimilar to the old AWT, but with a newer design
Has the problem of keeping the peers up to datehdmIAWT's advantage of looking better, and being
quicker.

» SWT provides some competition to Swing, but Swiby far the dominant GUI system used.

AWT vs. Swing classes

» Some old AWT classes are still used, but mostlywlleuse the modern Swing versions.
* e.g. AWT Component is the superclasg©@dmponent

Swing -- Flexible Look And Feel

» Swing's "look and feel" feature can adjust the congmts to take on different looks. Your java codesl
not need to do anything. The swing components Hasecapability automatically.

* This feature is needed so that a java program-cetmameleon like -- take on the "native" appearasice
the OS where it is running. That's the theory anpywa#though users may be sophisticated enough now
that apps that look different may be ok.

.
"® O O LookNFeel Y "® O O LookNFeel 7 O 06 LookNFeel

(Metal) Metal . Metal

St ARk CDE/Motif
CDE/Motif | CDE/Motif —
f MacO5 X L]
Mar 05 X [1 Cloaking Device

_ |Cloaking Device

= Cloaking Device

Speed: |

% Speed:
- [[

Speed:

» To change the look and feel dynamically, séfanager.setLookAndFeel().

At the top ofmain() , you can calketLookAndFeel() to tell Swing to try to use the "native" look for
whatever platform it is running on (example below)

» By default on most platforms, Swing uses a soglain, non-platform-specific look and feel called
"metal”, but typically the native one looks better.

Theme: Things Draw Themselves

» We will have objects that draw themselves -- labmigtons, etc.

» The system sends components "draw yourself' natifios as needed

Theme: Layout Manager

» A "layout manager" will arrange the size and positdf the things on screen.

» We often do not specify the exact x,y where a camposhould be on screen r its exact size. The
LayoutManger does those things.

JComponent

» The Swing superclass of things that draw on screen.
 Defines the basic notions of geometry and drawirdgtails below
» Things that appear on screen are generically catlechponents”

JLabel

* Built in JComponent that displays a little text string

* new JLabel("Hello there");

JFrame

A single window

» Has a "content pandComponent that contains all components in the frame.
» Sendframe.getContentPane() to get the content pane.

» By default, closing a frame just hides it. Seedbde below so that closing a frame actually qubi¢s t
application

Content Pane / Layout Manager

e Use theadd() message to add components to the content pane.

» Content pane uses a "Layout Manager" to size asifi@o its components
» (Java 5) Frame has a convenieade() andsetLayout() that go to its content pane.

Serializable Warning

 Eclipse gives a warning fordrame subclass about serialization -- you can ignore warning. It only
applies when serializing outi&rame , which we never do.

» A simple subclass afFrame that puts 3 labels and a button in its contenepan

JComponent
JComponent Basics

* Drawable
- The superclass of all drawable, on screen things
- Has asize andposition on screen -- defining a "bounds" rectangle
- Has aparent -- the component that contains it
- Draws itself, within its bounds
- The word "component" is generally used to referartp sort ofilComponent
- Warning: do not manipulate, y, width etc. directly -- these are controlled up in the
JComponent superclass

e 227 public methods
- Go glance at the method documentation pag@édomponent to get a sense of what's there

 Class Hierarchy
- JComponent's position in the inheritance hierarchy:
Object -- (AWT)Component -- (AWT)Container -- JComponent
- There are few times the AWT classes, intrude, gty we'll try to conceptually collapse
everything down tdComponent .

Layout Managers
Visual Hierarchy

» Components are placed inside other components Vitniioha nesting hierarchy from outer to inner
components.

» Frames are the outermost component.

We might have Frame : content : JPanel : Butt@utton2

This is called theisual hierarchy
 This hierarchy is constructed at runtime, and ni@nge over time.

Contrast this to the compile tinokass hier ar chy between the class@Somponent , JPanel , JButton
... -- it's easy to get the two hierarchies mixpd u

Component Z-Order / Transparency

e There is a back-to-front order of the components

» Each container is "behind" the components it costai
» Where a component is transparent, whatever is dehghows through.

Layout Manager Theory
 Like HTML -- policy, not exact pixels

« 1. Don't set explicit (pixel) sizes or positionstlaihgs

2. The layout managers knows the "intent" (polizfhe layout
- e.g. vertical list

» 3. The layout manager applies the intent to figheecorrect size on the fly

Good: the GUI can work, even though different giatfs have fonts with slightly different metrics

» Good: window re-sizing works (the layout managdigyayuides how it fits components in to the new
window size)

» Good: internationalization (aka "i1l8n") -- layow®n adjust as the widths required for labels artbbs
change for different languages

» Bad: new paradigm, can be unwieldy when you justtw@ say where things are.

In Java 6, there is a new GroupLayout to work \@thl editor/generator tools, so you can "draw" your
layout. Someday, this should enable good "drawJtigools.

Size Do/Don't -- setSize() vs. setMinimumSize() etc
» Don't callsetSize() -- the layout manager controls that

» Do call one or more ofetMinimumSize() , setMaxiumumSize() , setPreferredSize() -- do this
to register a preferendfor e the layout manager lays everything out (e.g. leefor
pack() /setVisible() is called).

Flow Layout

» Arranges components left-right, top-down like text.
- panel.setLayout(new FlowLayout())

Box Layout

 Aligns components in a line -- either verticallylmrizontally

» Can set an existingPanel to use @Box layout...
- panel = new JPanel()
- panel.setLayout(new BoxLayout(panel, BoxLayout.Y_AX 1S));

» There are older convenience methBds.createVerticalBox() and
Box.createHorizontalBox() . In rare cases, the boxes created this way wilerase things
correctly, so they are no longer recommended. (iggatiPanel and giving it 8BoxLayout avoids
this problem.

» UseBox.createVerticalStrut(pixels) to create a little spacer component that be atlwéte box
between components.

Border Layout

* Main content in the center
- e.g. the spreadsheet cells
- Window size changes mostly go to the center

» Decorate with 4 things around the outsize -- nathuth, east, west
- e.g. the controls around the spreadsheet cells

» 2nd parameter tadd() controls where things go
- border.add(comp, BorderLayout. CENTER); // add comp to center

Nested JPanel

» JPanel is a simple component that you can put other corapts in

» Use to group other components -- put them bothJR@anel, and put th¥anel where you want

« If you want to control the size taken up by a grofiplements, put them inJ®@anel and
setPreferredSize on the panel

* e.g. group a label with a control

 e.g. set the layout of the panel to vertical bax,lpts of buttons in it, put the panel in thaSTof a
border layout

Standard Frame Initialization
» Typically you create a frame and add componenis to

* Thepack() call tells the layout manager to size and posigeerything after all the components are
added

By default, the "close" box on a frame just hidesiowever, thesetDefaultCloseOperation() can
program various actions when the frame is closech as exiting the whole program.

Last,setVisible(true) brings the frame on screen
Often the last three lines of a frame setup loké.li

frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLO SE);
frame.pack();
frame.setVisible(true);

add() and revalidate()

» Normally youadd() things to the frame, and then a fipatk() /setVisible() lays it out and puts it
on screen. If, later on, yauld() orremove() to change the structure of what components argans
other components, calvalidate() to trigger the layout manager to lay things owiag
(revalidate() is for Swing components, or ugaidate() for older AWT components). This is
not necessary for simple size/width/height changash work automatically.

Layout Examples
e e ﬂ Flow Layout

Hello World. Another Label. Klaatu Barada Nikto! | ok)

& O O Flow Layout
Hello World. Another Label.

Klaatu Barada Nikto! (ok |

Bﬁﬂ Box

Hamer
Marge

Lisa
Bart
Maggie

SdO6e Border Layout

Wes

North

__| Ignore Warning Signs
A

South

/I Layouts.java
/*

Demonstrates some basic layouts.

*

import java.awt.*;
import javax.swing.*;

public class Layouts {

public static void main(String[] args) {

/I Here we setup each frame right from main() --
/I alternately, could do setup in the ctor of eac

/I GUI Look And Feel

/I Do this incantation at the start of main() to

/ to use the GUI LookAndFeel of the native platf

/I to ignore the exception.

try {
UIManager.setLookAndFeel(UIManager.getSystemLook

} catch (Exception ignored) { }

I —-----

/l 1. Flow Layout

/I Flow layout arranges Left-right top-bottom, li
JFrame framel = new JFrame("Flow Layout");
framel.setLayout(new FlowLayout());

/I Use frame.add() to install components
framel.add(new JLabel("Hello World."));
framel.add(new JLabel("Another Label."));
framel.add(new JLabel("Klaatu Barada Nikto!));
framel.add(new JButton("ok"));

/I Force the frame to size/layout its components
framel.pack();
framel.setVisible(true);

I --=---
/I 2. Box Layout
JFrame frame2 = new JFrame("Box Layout");

/I Create a component with vertical Box layout,

/l and install it in the frame

JComponent content2 = new JPanel();
content2.setLayout(new BoxLayout(content2, BoxLay
frame2.setContentPane(content2);

/I add a few components
frame2.add(new JLabel("Homer"));
frame2.add(new JLabel("Marge"));

h frame.

tell Swing
orm. It's ok

AndFeelClassName());

ke text

out.Y_AXIS));

/I add a little spacer
frame2.add(Box.createVerticalStrut(12));

frame2.add(new JLabel("Lisa"));
frame2.add(new JLabel("Bart"));
frame2.add(new JLabel("Maggie"));

frame2.pack();
frame2.setVisible(true);

e
/l 3. Border Layout + nested box panel
JFrame frame3 = new JFrame("Border Layout");

// Border layout
frame3.setLayout(new BorderLayout());

/I Add labels around the edge

frame3.add(new JLabel("North"), BorderLayout. NORT H);
frame3.add(new JLabel("West"), BorderLayout. WEST) ;

frame3.add(new JLabel("South"), BorderLayout.SOUT H);

/I Add a FaceComponent in the center (draws as so rt of face in a rect)
frame3.add(new FaceOld(200, 200), BorderLayout.CE NTER);

/I Create a little vertical box JPanel

/I and put it in the EAST with our controls.

/I Make the panel RED. It is front of the window content (light gray)
/1 but behind the JButtons

JPanel panel = new JPanel();

panel.setLayout(new BoxLayout(panel, BoxLayout.Y_ AXIS));
panel.setBackground(Color.RED);

panel.add(new JLabel("Warp Core Breach"));

panel.add(new JButton("Panic!"));

panel.add(new JButton("Retry"));

panel.add(new JButton("Ignore"));

panel.add(Box.createVerticalStrut(20)); // 20 pi xel spacer
panel.add(new JCheckBox("Ignore Warning Signs"));

frame3.add(panel, BorderLayout.EAST);
frame3.setDefaultCloseOperation(JFrame.EXIT_ON_CL OSE);

frame3.pack();
frame3.setVisible(true);

Swing Controls/Listeners
Listener Pattern

» In many places, Java uses the "listener" patteafid@ classes to notify each other about events.

e The "patterns" community seeks to identify and gimenes to common coding patterns. In that
community, this pattern is called "Observer/Obsbkl®a It's a commonly used pattern.

 For controls, we will use listeners to "wire up&tbontrol to an object that wants to know when the
control is clicked.

Anonymous Inner Class Recap

« An "anonymous" inner class is a type of inner classated on the fly in the code with a quick-andydi
syntax.

» Convenient for creating small inner classes --retslly these will play the role of callback funoti
pointers as we'll see below.

» As a matter of style, the anonymous inner clasppgopriate for small sections of code. If the €las
requires non-trivial ivars or methods, then a frur class is a better choice.

» When compiled, the inner classes are given nartke®liter$1l , Outer$2 by the compiler.
» An anonymous inner class cannot have a ctor. It nelgon the default constructor of its superclass

» An anonymous inner class does not have a namé, ioay be stored in a Superclass type pointer. The
inner class has access to the outer class ivausuas for an inner class.

» The anonymous inner class does not have accessatostack vars from where it is declared, unlksy t
are declared final.

Controls and Listeners

Control Source-Listener Theory

e Source
- Buttons, controls, etc.

o Listener
- An object that wants to know when the control ism@ped

 Notification message
- A message sent from the source to the listenemasifecation that the event has occurred.
- The listener puts the code they want to run imibigfication method

1. Listener Interface

* ActionListener interface
» Objects that want to listen toJ8utton must implement th@ctionListener interface.
ActionListener defines the messagetionPerformed () which is the notification that the button

sends when clicked.

/I ActionListener.java
public interface ActionListener extends EventListen er {

/**

* Invoked when an action occurs.
*

public void actionPerformed(ActionEvent e);

2. Notification Method

* The notification message is protoyped in Me@ionListener interface.

 The listener implements this notification methodltowhatever they want to do when the control sends
the notification. (The natification is sent on theing thread).

e TheActionEvent parameter includes extra information about thenewecase the listener cares -- a
pointer to the source obje@.detSource()), when the event happened, modifier keys held down
etc,

public void actionPerformed(ActionEvent e) {
/I code that runs when the control is clicked or w hatever
}

3. source.addXXX(listener)

» To set up the listener relationship, the listenastmegister with the source by sending it an é&tdrer
message.

* e.g.button.addActionListener(listener)

» The listener must implement tiAetionListener interface
- i.e. it must respond to the message that the butibsend

4. Event -> Notification

» When the action happens (button is clicked, etc.) .

» The source iterates through its listeners
» Sends each the notification (the notification isel@n the swing thread)
e e.g.JButton sends thectionPerformed() message to each listener

Using a Button and Listener

* There are 3 ways, but technigue (3) below is thetrmommon...

1. Component implements ActionListener

» The component or frame could implement the interfactionListener) directly, and registethis
as the listener object. This is simple and avdigsiwthole concept of inner classes. This is the lway
used to do it in CS106A -- have the Frame listealltthe buttons.

class MyComponent extends JComponent implements Act ionListener {

@blic MyComponent() { // in the JComponent ctor
button.addActionListener(this);

Hublic void actionPerformed(ActionEvent €) {
/l do something

}

2. Create an inner class to be the listener
* Like theChunkiterator strategy.

e Create aMyListener inner class that implememstionListener

» Create a newWlyListener object and add it via buttaudXXX(listener)
» This works fine, but is not the most common techaiq

/I in the JComponent ctor

ActionListener listener = new MyActionListener();
button.addActionListener(listener);

3. Anonymous inner class

 Variant of above technique.

» Create an "anonymous inner class" that impleméetéistener interface
« Like an inner class (option 2 above), but doeshaee a name
» Can be created on the fly inside a method

button = new JButton("Beep");

10

panel.add(button);
button.addActionListener(
new ActionListener() {

public void actionPerformed(ActionEvent e) {

Toolkit.getDefaultToolkit().beep();
}
}

Listener Switch Logic

* Itis possible to use a single listener objectfoiltiple controls

« In that case, the listener can tesfetSource() to see which control was the source of the natiifoa.

« If we have one listener per control, we won't negwed logic

Button Listener Example

B O O ListenerFrame

* Beep!

Yay! Woo Hoollliiiii

/*

Demonstrates bringing up a frame with a couple of
One button uses a named inner class listener, and
uses an anonymous inner class listener

*/

public cl ass ListenerFrame ext ends JFrame {
pri vat e JLabel label;

/*
When the Yay button is clicked, we append a "!" t
the JLabel. This inner class expresses that code.
*

buttons in it.
one

private cl ass Yaylistener i npl enent s ActionListener {

publ i ¢ voi d actionPerformed(ActionEvent e) {

String text = label.getText();
label.setText(text + "I");
/I note that we can access ivars like ‘label’

}

publ i c ListenerFrame() {
super ("ListenerFrame");
setLayout(new FlowLayout());

/*

Example 1 --

Create a Yay button and a label in a little pane
Connect the button to a YayListener.

*

JPanel panel = new JPanel();

add(panel); // Add the panel to the frame conten

/I Add some things to the panel

JButton yay = new JButton("Yay!");
label = new JLabel("Woo Hoo");
panel.add(yay);

panel.add(label);

11

| register it with button

ActionListener listener = new YayListener(); // create listener
yay.addActionListener(listener); /

/*

Example 2 --

Create a button that beeps.

Similar effect to above, but does it all in one
using an anonymous inner class.

*/

JButton beep = new JButton("Beep!");
add(beep);

beep.addActionListener(
/I Create anon inner class ActionListener on th
new ActionListener() {
publ i ¢ voi d actionPerformed(ActionEvent e) {
label.setText("Beep!");
System. out .printin("beep!");
Toolkit. get Def aul t Tool ki t ().beep();

/I Can access outer ivars like "label" here.

/I but not stack vars like "panel" and "beep"
/I (unless they are final)
/I beep.setEnabled(false); // no compile wit

/I What exceptions look like on the Swing thr
/IString a = null;
/la.length();

);

setDefaultCloseOperation(JFrame. EXI T_ON_CLCSE);
pack();
setVisible(true);

}

public static voi d main(String[] args) {
new ListenerFrame();
}

step

efly

hout "final"

ead

12

13

Misc Listeners

JCheckBox

» UsesActionListener , like JButton

» Responds tboolean isSelected() to see if it's currently checked
JSlider

 JSlider -- component with min/max/current int values

» JSlider uses the&tateChangelListener interface -- the notification is called

stateChanged(ChangeEvent e)
» Usee.getSource() to get a pointer to the source object

» JSlider responds tint getValue() to get its current value
JTextField
» ImplementsActionListener like JButton

 Triggers when the user hits return
* Then usegetText() /setText()
« Also supports a more compl&ocumentListener interface that signals individual edits on thet tex

Listener Strategy

» The technique shown above.

» Get notifications from the button, slider, etctta time of the change

Poll Strategy

 Polling technique -- do not listen to the conttoktead, check the control's value at the timeooiry
choosing

Polling is simpler if you can get away with it.
* e.g.checkbox.isSelected()
 Avoids having two copies of the control's statpist use the one copy in the control itself.

Polling does not work if you need to do somethimgnediately on control change, since you want to hea
of the change right when it happens.

