
CS108, Stanford Handout #16
Fall, 2008-09 Osvaldo Jiménez

Swing GUI
Thanks to Nick Parlante for much of this handout

OOP GUI Systems
OOP Drawing vs Imperative Drawing
• In simple "imperative" drawing, you create a canvas of some sort, and start drawing on it.

• Most OOP drawing systems do not work that way.

• We will have objects that correspond to what's on screen. These objects are sent a "draw yourself"
message when they should draw.

• So to get something on screen, we create an object that knows how to draw itself and install it on screen.

Library Class Hierarchy
• There is a large, pre-built inheritance hierarchy of classes for common problems -- drawing, controls,

windows, scrolling.... These classes are engineered to work together and share a broad set of working
assumptions (i.e. to work with these classes, you will need to understand their design a little).

System: Event -> Notifications (Swing Thread)
• There is a background "system" that manages the basic bookkeeping and orchestration of windows and

events. AKA "the system"

• Once the frame is on screen we have "user events" -- clicking, typing, ... events that happen in real time.

• The system manages a queue of user events as they happen (realtime), and translates them to
"notification" messages sent, one at a time, to the appropriate GUI objects. The GUI objects draw
themselves, react to clicks, etc.

• The System has its own thread, known as the "swing thread" or the "event dispatch thread". Notifications
sent to your code -- telling it to draw, telling it that a button has been clicked -- are run on the swing
thread.

Programming Tasks...

1. Instantiate Library Classes (easy)
• Many tasks are as simple as constructing and installing system classes -- windows, buttons, labels, etc.

• This is the pretty easy -- requires some reading of the library class docs

• Pull a library object "off the shelf"

2. Subclass Library Classes (harder)
• To introduce custom behavior, subclass off a library class and use overriding to insert your custom code

• This is a trickier programming problem -- you need a deeper understanding of the superclass
implementation in order to do the override "in harmony" with its design. In general, the designer of the
subclass is responsible for understanding the superclass design, so that the design of the subclass fits in
with the superclass.

• At runtime, the code relies on the "pop-down" feature of overriding, so that our little bit of subclass code
gets called at the right moment.

 2

• e.g. Subclass off JButton so it beeps when clicked

• e.g. Subclass off JComponent and override the paintComponent() method to insert your own drawing
code (but keep the JComponent notions of geometry, painting schedule, etc.)

Java GUI History
AWT vs. Swing/JFC
• AWT

- Abstract Windowing Toolkit
- AWT provides simple GUI components. Not as rich as Swing.
- Had some implementation problems early on (1996)
- AWT drawing uses "native peers" -- creating an AWT button creates a native peer (Unix, Mac,

Win32) button to put on screen, and then tries to keep the AWT button and the peer in sync.
- Advantage: an AWT app has the "native" appearance for buttons etc. since there are in fact native

buttons on screen.
- Disadvantage: the peer design is difficult, keeping the Java object and its peer in sync, and acting

the same for all cases on all platforms.

• Swing
- Also known as JFC
- Implemented in Java -- its the same bytecode running on all platforms -- in that way, Swing really

acts the same on all platforms. Builds on only the simplest AWT classes -- frame, etc.
- Swing has 10x more classes, depth, and functionality than AWT
- Swing has pluggable look-and-feel feature where buttons, etc can look like native ones for that

platform. The look and feel is mostly coded in java, and updating it so it looks native is a chore
for the Swing maintainers.

• Most recent Java implementations call down to the native OS for rendering the button (e.g. Windows,
Mac), so the pixels of the buttons etc. really look right, while doing the logic of the GUI in java.

SWT -- Standard Widget Toolkit
• IBM's Eclipse project uses its own SWT layer, which is similar to the old AWT, but with a newer design.

Has the problem of keeping the peers up to date, but has AWT's advantage of looking better, and being
quicker.

• SWT provides some competition to Swing, but Swing is by far the dominant GUI system used.

AWT vs. Swing classes
• Some old AWT classes are still used, but mostly we will use the modern Swing versions.

• e.g. AWT Component is the superclass of JComponent

Swing -- Flexible Look And Feel
• Swing's "look and feel" feature can adjust the components to take on different looks. Your java code does

not need to do anything. The swing components have this capability automatically.

• This feature is needed so that a java program can -- chameleon like -- take on the "native" appearance of
the OS where it is running. That's the theory anyway, although users may be sophisticated enough now
that apps that look different may be ok.

 3

• To change the look and feel dynamically, see UIManager.setLookAndFeel().

• At the top of main() , you can call setLookAndFeel() to tell Swing to try to use the "native" look for
whatever platform it is running on (example below)

• By default on most platforms, Swing uses a sort of plain, non-platform-specific look and feel called
"metal", but typically the native one looks better.

Theme: Things Draw Themselves
• We will have objects that draw themselves -- labels, buttons, etc.

• The system sends components "draw yourself" notifications as needed

Theme: Layout Manager
• A "layout manager" will arrange the size and position of the things on screen.

• We often do not specify the exact x,y where a component should be on screen r its exact size. The
LayoutManger does those things.

JComponent
• The Swing superclass of things that draw on screen.

• Defines the basic notions of geometry and drawing -- details below

• Things that appear on screen are generically called "components"

JLabel
• Built in JComponent that displays a little text string

• new JLabel("Hello there");

JFrame
• A single window

• Has a "content pane" JComponent that contains all components in the frame.

• Send frame.getContentPane() to get the content pane.

• By default, closing a frame just hides it. See the code below so that closing a frame actually quits the
application

Content Pane / Layout Manager
• Use the add() message to add components to the content pane.

• Content pane uses a "Layout Manager" to size and position its components

• (Java 5) Frame has a convenience add() and setLayout() that go to its content pane.

 4

Serializable Warning
• Eclipse gives a warning for a JFrame subclass about serialization -- you can ignore this warning. It only

applies when serializing out a JFrame , which we never do.

• A simple subclass of JFrame that puts 3 labels and a button in its content pane.

JComponent
JComponent Basics
• Drawable

- The superclass of all drawable, on screen things
- Has a size and position on screen -- defining a "bounds" rectangle
- Has a parent -- the component that contains it
- Draws itself, within its bounds
- The word "component" is generally used to refers to any sort of JComponent
- Warning: do not manipulate x, y, width etc. directly -- these are controlled up in the

JComponent superclass

• 227 public methods
- Go glance at the method documentation page for JComponent to get a sense of what's there

• Class Hierarchy
- JComponent's position in the inheritance hierarchy:

Object -- (AWT)Component -- (AWT)Container -- JComponent
- There are few times the AWT classes, intrude, but mostly we'll try to conceptually collapse

everything down to JComponent .

Layout Managers
Visual Hierarchy
• Components are placed inside other components which form a nesting hierarchy from outer to inner

components.

• Frames are the outermost component.

• We might have Frame : content : JPanel : Button1, Button2

• This is called the visual hierarchy

• This hierarchy is constructed at runtime, and may change over time.

• Contrast this to the compile time class hierarchy between the classes JComponent , JPanel , JButton ,
... -- it's easy to get the two hierarchies mixed up

Component Z-Order / Transparency
• There is a back-to-front order of the components

• Each container is "behind" the components it contains

• Where a component is transparent, whatever is behind it shows through.

Layout Manager Theory
• Like HTML -- policy, not exact pixels

• 1. Don't set explicit (pixel) sizes or positions of things

• 2. The layout managers knows the "intent" (policy) of the layout
- e.g. vertical list

• 3. The layout manager applies the intent to figure the correct size on the fly

 5

• Good: the GUI can work, even though different platforms have fonts with slightly different metrics

• Good: window re-sizing works (the layout manager policy guides how it fits components in to the new
window size)

• Good: internationalization (aka "i18n") -- layouts can adjust as the widths required for labels and buttons
change for different languages

• Bad: new paradigm, can be unwieldy when you just want to say where things are.

• In Java 6, there is a new GroupLayout to work with GUI editor/generator tools, so you can "draw" your
layout. Someday, this should enable good "draw the UI" tools.

Size Do/Don't -- setSize() vs. setMinimumSize() etc.
• Don't call setSize() -- the layout manager controls that

• Do call one or more of setMinimumSize() , setMaxiumumSize() , setPreferredSize() -- do this
to register a preference before the layout manager lays everything out (e.g. before
pack() /setVisible() is called).

Flow Layout
• Arranges components left-right, top-down like text.

- panel.setLayout(new FlowLayout())

Box Layout
• Aligns components in a line -- either vertically or horizontally

• Can set an existing JPanel to use a Box layout...
- panel = new JPanel()
- panel.setLayout(new BoxLayout(panel, BoxLayout.Y_AX IS));

• There are older convenience methods Box.createVerticalBox() and
Box.createHorizontalBox() . In rare cases, the boxes created this way will not erase things
correctly, so they are no longer recommended. Creating a JPanel and giving it a BoxLayout avoids
this problem.

• Use Box.createVerticalStrut(pixels) to create a little spacer component that be added to the box
between components.

Border Layout
• Main content in the center

- e.g. the spreadsheet cells
- Window size changes mostly go to the center

• Decorate with 4 things around the outsize -- north, south, east, west
- e.g. the controls around the spreadsheet cells

• 2nd parameter to add() controls where things go
- border.add(comp, BorderLayout.CENTER); // add comp to center

Nested JPanel
• JPanel is a simple component that you can put other components in

• Use to group other components -- put them both in a JP©anel, and put the JPanel where you want

• If you want to control the size taken up by a group of elements, put them in a JPanel and
setPreferredSize on the panel

• e.g. group a label with a control

• e.g. set the layout of the panel to vertical box, put lots of buttons in it, put the panel in the EAST of a
border layout

 6

Standard Frame Initialization
• Typically you create a frame and add components to it

• The pack() call tells the layout manager to size and position everything after all the components are
added

• By default, the "close" box on a frame just hides it. However, the setDefaultCloseOperation() can
program various actions when the frame is closed, such as exiting the whole program.

• Last, setVisible(true) brings the frame on screen

• Often the last three lines of a frame setup look like...

 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLO SE);
 frame.pack();
 frame.setVisible(true);

add() and revalidate()
• Normally you add() things to the frame, and then a final pack() /setVisible() lays it out and puts it

on screen. If, later on, you add() or remove() to change the structure of what components are inside
other components, call revalidate() to trigger the layout manager to lay things out again
(revalidate() is for Swing components, or use validate() for older AWT components). This is
not necessary for simple size/width/height changes which work automatically.

Layout Examples

 7

// Layouts.java
/*
 Demonstrates some basic layouts.
*/
import java.awt.*;
import javax.swing.*;

public class Layouts {

 public static void main(String[] args) {
 // Here we setup each frame right from main() --
 // alternately, could do setup in the ctor of eac h frame.

 // GUI Look And Feel
 // Do this incantation at the start of main() to tell Swing
 // to use the GUI LookAndFeel of the native platf orm. It's ok
 // to ignore the exception.
 try {
 UIManager.setLookAndFeel(UIManager.getSystemLook AndFeelClassName());
 } catch (Exception ignored) { }

 // ------
 // 1. Flow Layout
 // Flow layout arranges Left-right top-bottom, li ke text
 JFrame frame1 = new JFrame("Flow Layout");
 frame1.setLayout(new FlowLayout());

 // Use frame.add() to install components
 frame1.add(new JLabel("Hello World."));
 frame1.add(new JLabel("Another Label."));
 frame1.add(new JLabel("Klaatu Barada Nikto!"));
 frame1.add(new JButton("ok"));

 // Force the frame to size/layout its components
 frame1.pack();
 frame1.setVisible(true);

 // ------
 // 2. Box Layout
 JFrame frame2 = new JFrame("Box Layout");

 // Create a component with vertical Box layout,
 // and install it in the frame
 JComponent content2 = new JPanel();
 content2.setLayout(new BoxLayout(content2, BoxLay out.Y_AXIS));
 frame2.setContentPane(content2);

 // add a few components
 frame2.add(new JLabel("Homer"));
 frame2.add(new JLabel("Marge"));

 8

 // add a little spacer
 frame2.add(Box.createVerticalStrut(12));

 frame2.add(new JLabel("Lisa"));
 frame2.add(new JLabel("Bart"));
 frame2.add(new JLabel("Maggie"));

 frame2.pack();
 frame2.setVisible(true);

 // ------
 // 3. Border Layout + nested box panel
 JFrame frame3 = new JFrame("Border Layout");

 // Border layout
 frame3.setLayout(new BorderLayout());

 // Add labels around the edge
 frame3.add(new JLabel("North"), BorderLayout.NORT H);
 frame3.add(new JLabel("West"), BorderLayout.WEST) ;
 frame3.add(new JLabel("South"), BorderLayout.SOUT H);

 // Add a FaceComponent in the center (draws as so rt of face in a rect)
 frame3.add(new FaceOld(200, 200), BorderLayout.CE NTER);

 // Create a little vertical box JPanel
 // and put it in the EAST with our controls.
 // Make the panel RED. It is front of the window content (light gray)
 // but behind the JButtons
 JPanel panel = new JPanel();
 panel.setLayout(new BoxLayout(panel, BoxLayout.Y_ AXIS));
 panel.setBackground(Color.RED);
 panel.add(new JLabel("Warp Core Breach"));
 panel.add(new JButton("Panic!"));
 panel.add(new JButton("Retry"));
 panel.add(new JButton("Ignore"));

 panel.add(Box.createVerticalStrut(20)); // 20 pi xel spacer

 panel.add(new JCheckBox("Ignore Warning Signs"));

 frame3.add(panel, BorderLayout.EAST);

 frame3.setDefaultCloseOperation(JFrame.EXIT_ON_CL OSE);
 frame3.pack();
 frame3.setVisible(true);
 }
}

Swing Controls/Listeners
Listener Pattern
• In many places, Java uses the "listener" pattern to allow classes to notify each other about events.

• The "patterns" community seeks to identify and give names to common coding patterns. In that
community, this pattern is called "Observer/Observable". It's a commonly used pattern.

• For controls, we will use listeners to "wire up" the control to an object that wants to know when the
control is clicked.

Anonymous Inner Class Recap
• An "anonymous" inner class is a type of inner class created on the fly in the code with a quick-and-dirty

syntax.

• Convenient for creating small inner classes -- essentially these will play the role of callback function
pointers as we'll see below.

 9

• As a matter of style, the anonymous inner class is appropriate for small sections of code. If the class
requires non-trivial ivars or methods, then a true inner class is a better choice.

• When compiled, the inner classes are given names like Outer$1 , Outer$2 by the compiler.

• An anonymous inner class cannot have a ctor. It must rely on the default constructor of its superclass.

• An anonymous inner class does not have a name, but it may be stored in a Superclass type pointer. The
inner class has access to the outer class ivars, as usual for an inner class.

• The anonymous inner class does not have access to local stack vars from where it is declared, unless they
are declared final.

Controls and Listeners
Control Source-Listener Theory
• Source

- Buttons, controls, etc.

• Listener
- An object that wants to know when the control is operated

• Notification message
- A message sent from the source to the listener as a notification that the event has occurred.
- The listener puts the code they want to run in the notification method

1. Listener Interface
• ActionListener interface

• Objects that want to listen to a JButton must implement the ActionListener interface.
ActionListener defines the message actionPerformed() which is the notification that the button
sends when clicked.

// ActionListener.java
public interface ActionListener extends EventListen er {

 /**
 * Invoked when an action occurs.
 */
 public void actionPerformed(ActionEvent e);

}

2. Notification Method
• The notification message is protoyped in the ActionListener interface.

• The listener implements this notification method to do whatever they want to do when the control sends
the notification. (The notification is sent on the swing thread).

• The ActionEvent parameter includes extra information about the event in case the listener cares -- a
pointer to the source object (e.getSource()), when the event happened, modifier keys held down,
etc,

public void actionPerformed(ActionEvent e) {
 // code that runs when the control is clicked or w hatever
}

3. source.addXXX(listener)
• To set up the listener relationship, the listener must register with the source by sending it an add listener

message.

 10

• e.g. button.addActionListener(listener)

• The listener must implement the ActionListener interface
- i.e. it must respond to the message that the button will send

4. Event -> Notification
• When the action happens (button is clicked, etc.) ...

• The source iterates through its listeners

• Sends each the notification (the notification is done on the swing thread)

• e.g. JButton sends the actionPerformed() message to each listener

Using a Button and Listener
• There are 3 ways, but technique (3) below is the most common...

1. Component implements ActionListener
• The component or frame could implement the interface (ActionListener) directly, and register this

as the listener object. This is simple and avoids the whole concept of inner classes. This is the way I
used to do it in CS106A -- have the Frame listen to all the buttons.

class MyComponent extends JComponent implements Act ionListener {
 ...
 ...
 public MyComponent() { // in the JComponent ctor
 button.addActionListener(this);
 ...
 }

 ...
 public void actionPerformed(ActionEvent e) {
 // do something
 }

2. Create an inner class to be the listener
• Like the ChunkIterator strategy.

• Create a MyListener inner class that implements ActionListener

• Create a new MyListener object and add it via button addXXX(listener)

• This works fine, but is not the most common technique.

// in the JComponent ctor
ActionListener listener = new MyActionListener();
button.addActionListener(listener);

3. Anonymous inner class
• Variant of above technique.

• Create an "anonymous inner class" that implements the listener interface

• Like an inner class (option 2 above), but does not have a name

• Can be created on the fly inside a method

 button = new JButton("Beep");

 11

 panel.add(button);
 button.addActionListener(
 new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 Toolkit.getDefaultToolkit().beep();
 }
 }
);

Listener Switch Logic
• It is possible to use a single listener object for multiple controls

• In that case, the listener can test e.getSource() to see which control was the source of the notification.

• If we have one listener per control, we won't need that logic

Button Listener Example

/*
 Demonstrates bringing up a frame with a couple of buttons in it.
 One button uses a named inner class listener, and one
 uses an anonymous inner class listener
*/
public class ListenerFrame extends JFrame {
 private JLabel label;

 /*
 When the Yay button is clicked, we append a "!" t o
 the JLabel. This inner class expresses that code.
 */
 private class YayListener implements ActionListener {
 public void actionPerformed(ActionEvent e) {

 String text = label.getText();
 label.setText(text + "!");
 // note that we can access ivars like 'label'
 }
 }

 public ListenerFrame() {
 super("ListenerFrame");
 setLayout(new FlowLayout());

 /*
 Example 1 --
 Create a Yay button and a label in a little pane l.
 Connect the button to a YayListener.
 */
 JPanel panel = new JPanel();
 add(panel); // Add the panel to the frame conten t

 // Add some things to the panel
 JButton yay = new JButton("Yay!");
 label = new JLabel("Woo Hoo");
 panel.add(yay);
 panel.add(label);

 12

 ActionListener listener = new YayListener(); // create listener
 yay.addActionListener(listener); / / register it with button

 /*
 Example 2 --
 Create a button that beeps.
 Similar effect to above, but does it all in one step
 using an anonymous inner class.
 */
 JButton beep = new JButton("Beep!");
 add(beep);

 beep.addActionListener(
 // Create anon inner class ActionListener on th e fly
 new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 label.setText("Beep!");
 System. out.println("beep!");
 Toolkit. getDefaultToolkit().beep();

 // Can access outer ivars like "label" here.

 // but not stack vars like "panel" and "beep"
 // (unless they are final)
 // beep.setEnabled(false); // no compile wit hout "final"

 // What exceptions look like on the Swing thr ead
 //String a = null;
 //a.length();
 }
 }
);

 setDefaultCloseOperation(JFrame. EXIT_ON_CLOSE);
 pack();
 setVisible(true);
 }

 public static void main(String[] args) {
 new ListenerFrame();
 }
}

 13

Misc Listeners
JCheckBox
• Uses ActionListener , like JButton

• Responds to boolean isSelected() to see if it's currently checked

JSlider
• JSlider -- component with min/max/current int values

• JSlider uses the StateChangeListener interface -- the notification is called
stateChanged(ChangeEvent e)

• Use e.getSource() to get a pointer to the source object

• JSlider responds to int getValue() to get its current value

JTextField
• Implements ActionListener like JButton

• Triggers when the user hits return

• Then use getText() / setText()

• Also supports a more complex DocumentListener interface that signals individual edits on the text

Listener Strategy
• The technique shown above.

• Get notifications from the button, slider, etc. at the time of the change

Poll Strategy
• Polling technique -- do not listen to the control. Instead, check the control's value at the time of your

choosing

• Polling is simpler if you can get away with it.

• e.g. checkbox.isSelected()

• Avoids having two copies of the control's state -- just use the one copy in the control itself.

• Polling does not work if you need to do something immediately on control change, since you want to hear
of the change right when it happens.

