
CS108, Stanford Handout #25

 Young

Thread 2 Interruption
Handout written by Nick Parlante

Interruption
 Interruption is about stopping the run of thread A with a command from thread B. This interaction is

always a little random, as thread A could be at any point, halfway through some operation, at the

moment that thread B decides to interrupt. Later on, we will use interruption to implement a "Stop"

button that halts a bunch of worker threads.

worker.interrupt()

 Send to a thread object to signal that it should stop, e.g. worker.interrupt() interrupts the run of the thread

object pointed to by "worker".

 Interruption does not stop the thread right away. There are two ways the thread can learn that it has been

interrupted:

 a. In most cases, interrupt() sets an "interrupted" boolean in the thread to true.

 b. Or, if the thread is blocked in a sleep(), join(), or file reading operation, it gets popped out of that

operation by an InterruptedException, but the interrupted boolean is not set. This exception mechanism

is necessary, since if the thread is not running, it cannot check actively check its interrupted boolean

(it's asleep!) -- InterruptedException takes care of those cases.

 The interrupted thread should notice, eventually, that it has been interrupted in one of those two ways,

and exit its run loop cleanly.

 Because there is a delay between when someone sets interrupted on a thread, and the thread itself notices

that it has been interrupted, we say that interrupt() is "asynchronous" -- interrupt() returns to its caller

immediately, and the actual exit of the worker happens sometime after that.

worker.isInterrupted() -- Check Interrupted Bit
 boolean isInterrupted(); in the Thread class

 Call isInterrupted() on a thread to check if it has been interrupted.

 Typically, a worker thread object sends this message to itself in its run loop periodically to see if it has

been interrupted.

 When interrupted, the worker should exit its run, leaving its data structures in a clean state.

 boolean interrupted() -- very similar to isInterrupted(), but clears the flag -- do not use.

isInterrupted() vs. InterruptedException -- Exclusive

 When a thread is interrupted, it will be informed either by having its isInterrupted boolean set, or if the

thread is blocked in sleep(), join(), etc. it will receive an InterruptedException, however a thread does

not get both forms of notification. The thread gets one or the other. Therefore, isInterrupted() will

return false if the thread was notified via an InterruptedException.

Old stop()/synchronous style

 Java used to feature "synchronous" thread control methods, including a stop() method, that affected the

thread immediately. The synchronous approach has been deprecated because it is practically

impossible to achieve the "exits leaving the data structures in clean state" condition in a program with

synchronous thread control. A thread could get stopped partway through a statement, and so leave a

data structure in a half-updated state in a way that makes it impossible for the program to continue

 2

reliably. e.g. Suppose code was part way through adding a new link to a doubly-linked list. For this

reason the whole synchronous "stop" style is being phased out (not just in Java)

StopWorker Example

/*

 Demonstrates creating a couple worker threads, running them,

 interrupting them, and waiting for them to finish.

 In run(), increments a counter, prints something,

 and sleeps. Checks for interruption on each iteration.

*/

public class StopWorker extends Thread {

 public void run() {

 long sum = 0;

 int count = 500;

 int i;

 for (i=0; i<count; i++) {

 sum = sum + i; // do some work

 System.out.println(getName() + " " + i);

 // 1. Check interrupted boolean -> break

 if (isInterrupted()) {

 // clean up, exit when interrupted

 // (getName() returns a default name for each thread)

 System.out.println(getName() + " interrupted");

 break;

 }

 // 2. Sleep a little (simulate doing something slow)

 // InterruptedException -> break

 try {

 Thread.sleep(1);

 }

 catch (InterruptedException ex) {

 break;

 }

 // We notice we are interrupted either

 // because isInterrupted() is true or because

 // we get an InterruptedException.

 }

 // Notice if we exited the loop due to interruption.

 if (i < count) {

 System.out.println(getName() + " interrupted " + i);

 }

 }

 public static void main(String[] args) {

 StopWorker a = new StopWorker();

 StopWorker b = new StopWorker();

 System.out.println("Starting...");

 a.start();

 b.start();

 try {

 Thread.sleep(100); // sleep a little, so they make some progress

 }

 catch (InterruptedException ignored) {}

 System.out.println("Sending interrupt()");

 a.interrupt();

 b.interrupt();

 try {

 a.join();

 b.join();

 }

 3

 catch (InterruptedException ignored) {

 // could get here if someone interrupted the main() thread

 }

 System.out.println("All done");

 }

/*

 Starting...

 Thread-0 0

 Thread-1 0

 Thread-0 1

 Thread-1 1

 Thread-0 2

 Thread-1 2

 Thread-0 3

 ...

 Thread-1 116

 Thread-0 117

 Thread-1 117

 Sending interrupt()

 Thread-0 interrupted 117

 Thread-1 118

 Thread-1 interrupted 118

 All done

*/

}

