Debugging Intuition

- How to calculate the probability of at least k successes in n trials?
 - X is number of successes in n trials each with probability p
 - $P(X \ge k) =$ $\binom{n}{k} p^k \quad \text{the rest}$

ways to choose slots for success

Probability that each is success

First clue that something is wrong. Think about p = 1

Not mutually exclusive...

Correct:
$$P(X \ge k) = \sum_{i=k}^{n} \binom{n}{i} p^k (1-p)^{n-k}$$

Is Peer Grading Accurate Enough?

Peer Grading on Coursera HCI.

31,067 peer grades for 3,607 students.

Today's Topics

Last time:

Random Variables Expectation + PDF

Today:

Variance

Bernoulli + Binominal RVs

Next time:

All the other discrete RVs

St Petersburg

- Game set-up
 - We have a fair coin (come up "heads" with p = 0.5)
 - Let n = number of coin flips ("heads") before first "tails"
 - You win \$2ⁿ
- How much would you pay to play?
- Solution
 - Let X = your winnings

$$= \mathbb{E}[X] = \left(\frac{1}{2}\right)^{1} 2^{0} + \left(\frac{1}{2}\right)^{2} 2^{1} + \left(\frac{1}{2}\right)^{3} 2^{2} + \left(\frac{1}{2}\right)^{4} 2^{3} + \dots = \sum_{i=0}^{\infty} \left(\frac{1}{2}\right)^{i+1} 2^{i}$$

$$= \sum_{i=0}^{\infty} \frac{1}{2} = \infty$$

I'll let you play for \$1 thousand... but just once! Takers?

St Petersburg + Reality

- What if Chris has only \$65,536?
 - Same game
 - If you win over \$65,536 I leave the country.
- Solution
 - Let X = your winnings

•
$$E[X] = \left(\frac{1}{2}\right)^1 2^0 + \left(\frac{1}{2}\right)^2 2^1 + \left(\frac{1}{2}\right)^3 2^2 + \left(\frac{1}{2}\right)^4 2^3 + \dots$$

 $= \sum_{i=0}^k \left(\frac{1}{2}\right)^{i+1} 2^i \text{ s.t. } k = \log_2(65, 536)$
 $= \sum_{i=0}^{16} \frac{1}{2} = 8$

Utility

- Utility is value of some choice
 - 2 options, each with n consequences: c₁, c₂,..., c_n
 - One of c_i will occur with probability p_i
 - Each consequence has some value (utility): U(c_i)
 - Which choice do you make?
- Example: Buy a \$1 lottery ticket (for \$1M prize)?
 - Probability of winning is 1/10⁷
 - **Buy**: $c_1 = win$, $c_2 = lose$, $U(c_1) = 10^6 1$, $U(c_2) = -1$
 - **Don't Buy**: $c_1 = lose$, $U(c_1) = 0$
 - E(buy) = $1/10^7 (10^6 1) + (1 1/10^7) (-1) \approx -0.9$
 - E(don't buy) = 1(0) = 0
 - "You can't lose if you don't play!"

And Then There's This

Lottery: A tax on people who are bad at math.

- Ambrose Bierce

Recall, Geometric Series

$$a^0 + a^1 + a^2 + \dots$$

$$=\sum_{i=0}^{\infty}a^{i}$$

$$=\frac{1}{1-a}$$

where 0 < a < 1

Breaking Vegas

- Consider even money bet (e.g., bet "Red" in roulette)
 - p = 18/38 you win \$Y, otherwise (1 p) you lose \$Y
 - Consider this algorithm for one series of bets:
 - 1. Y = \$1
 - 2. Bet Y
 - 3. If Win then stop
 - 4. If Loss then Y = 2 * Y, goto 2
 - Let Z = winnings upon stopping

$$= \mathbf{E}[\mathbf{Z}] = \left(\frac{18}{38}\right)1 + \left(\frac{20}{38}\right)\left(\frac{18}{38}\right)(2-1) + \left(\frac{20}{38}\right)^2\left(\frac{18}{38}\right)(4-2-1) + \dots$$

$$= \sum_{i=0}^{\infty} \left(\frac{20}{38}\right)^i \left(\frac{18}{38}\right)\left(2^i - \sum_{j=0}^{i-1} 2^j\right) = \left(\frac{18}{38}\right)\sum_{i=0}^{\infty} \left(\frac{20}{38}\right)^i = \left(\frac{18}{38}\right)\frac{1}{1 - \frac{20}{38}} = 1$$

Expected winnings ≥ 0. Use algorithm infinitely often!

Vegas Breaks You

- Why doesn't everyone do this?
 - Real games have maximum bet amounts
 - You have finite money
 - Not able to keep doubling bet beyond certain point
 - Casinos can kick you out
- But, if you had:
 - No betting limits, and
 - Infinite money, and
 - Could play as often as you want...
- Then, go for it!
 - And tell me which planet you are living on

Is E[X] enough?

Variance

Consider the following 3 distributions (PMFs)

- All have the same expected value, E[X] = 3
- But "spread" in distributions is different
- Variance = a formal quantification of "spread"

Variance

 If X is a random variable with mean μ then the variance of X, denoted Var(X), is:

$$Var(X) = E[(X - \mu)^2]$$

Note: Var(X) ≥ 0

 Also known as the 2nd Central Moment, or square of the Standard Deviation

Computing Variance

$$Var(X) = E[(X - \mu)^{2}]$$

$$= \sum_{x} (x - \mu)^{2} p(x)$$

$$= \sum_{x} (x^{2} - 2\mu x + \mu^{2}) p(x)$$

$$= \sum_{x} x^{2} p(x) - 2\mu \sum_{x} x p(x) + \mu^{2} \sum_{x} p(x)$$

$$= E[X^{2}] - 2\mu E[X] + \mu^{2} \quad \text{Ladies and gentlemen, please welcome the 2}^{\text{nd}} \text{ moment!}$$

$$= E[X^{2}] - 2\mu^{2} + \mu^{2}$$

$$= E[X^{2}] - \mu^{2}$$

$$= E[X^{2}] - (E[X])^{2}$$

Variance of a 6 sided dice

- Let X = value on roll of 6 sided die
- Recall that E[X] = 7/2
- Compute E[X²]

$$E[X^2] = (1^2)\frac{1}{6} + (2^2)\frac{1}{6} + (3^2)\frac{1}{6} + (4^2)\frac{1}{6} + (5^2)\frac{1}{6} + (6^2)\frac{1}{6} = \frac{91}{6}$$

$$Var(X) = E[X^{2}] - (E[X])^{2}$$
$$= \frac{91}{6} - \left(\frac{7}{2}\right)^{2} = \frac{35}{12}$$

Properties of Variance

- $Var(aX + b) = a^2Var(X)$
 - Proof:

Standard Deviation of X, denoted SD(X), is:

$$SD(X) = \sqrt{Var(X)}$$

- Var(X) is in units of X²
- SD(X) is in same units as X

Intuition

Peer Grading on Coursera HCI.

31,067 peer grades for 3,607 students.

$$Var(X) = E[(X - \mu)^2]$$

Second Moment

Second Moment

Second Moment

Lots of fun with Random Variables

Moaaahhhh Random Variables

Jacob Bernoulli

 Jacob Bernoulli (1654-1705), also known as "James", was a Swiss mathematician

- One of many mathematicians in Bernoulli family
- The Bernoulli Random Variable is named for him
- He is my academic great¹²-grandfather
- Same eyes as Ice Cube

Bernoulli Random Variable

- Experiment results in "Success" or "Failure"
 - X is random indicator variable (1 = success, 0 = failure)
 - P(X = 1) = p(1) = p P(X = 0) = p(0) = 1 p
 - X is a <u>Bernoulli</u> Random Variable: X ~ Ber(p)
 - E[X] = p
 - Var(X) = p(1 p)
- Examples
 - coin flip
 - random binary digit
 - whether a disk drive crashed
 - whether someone likes a netflix movie

Feel the Bern!

Binomial Random Variable

- Consider n independent trials of Ber(p) rand. var.
 - X is number of successes in n trials
 - X is a <u>Binomial</u> Random Variable: X ~ Bin(n, p)

$$P(X = i) = p(i) = \binom{n}{i} p^{i} (1 - p)^{n-i}$$
 $i = 0,1,...,n$

- By Binomial Theorem, we know that $\sum_{i=0}^{\infty} P(X=i) = 1$
- Examples
 - # of heads in n coin flips
 - # of 1's in randomly generated length n bit string
 - # of disk drives crashed in 1000 computer cluster
 - Assuming disks crash independently

Bernoulli vs Binomial

Bernoulli is a type of RV

Binomial is the sum of *n*Bernoullis

Three Coin Flips

- Three fair ("heads" with p = 0.5) coins are flipped
 - X is number of heads
 - X ~ Bin(3, 0.5)

$$P(X=0) = {3 \choose 0} p^0 (1-p)^3 = \frac{1}{8}$$

$$P(X = 1) = {3 \choose 1} p^{1} (1 - p)^{2} = \frac{3}{8}$$

$$P(X = 2) = {3 \choose 2} p^2 (1 - p)^1 = \frac{3}{8}$$

$$P(X=3) = {3 \choose 3} p^3 (1-p)^0 = \frac{1}{8}$$

Error Correcting Codes

- Error correcting codes
 - Have original 4 bit string to send over network
 - Add 3 "parity" bits, and send 7 bits total
 - Each bit independently corrupted (flipped) in transition with probability 0.1

Error Correcting Codes

Key for 7 bits Send: 1110?

Receive: 1110000? Receive: 1010100?

Flip set: $0_i E_j^c$ sets i for all odd sets j and even sets j

Error Correcting Codes

- Error correcting codes
 - Have original 4 bit string to send over network
 - Add 3 "parity" bits, and send 7 bits total
 - Each bit independently corrupted (flipped) in transition with probability 0.1
 - X = number of bits corrupted: $X \sim \text{Bin}(7, 0.1)$
 - But, parity bits allow us to correct at most 1 bit error
- P(a correctable message is received)?
 - P(X = 0) + P(X = 1)

Error Correcting Codes

Using error correcting codes: X ~ Bin(7, 0.1)

$$P(X = 0) = {7 \choose 0} (0.1)^0 (0.9)^7 \approx 0.4783$$

$$P(X = 1) = {7 \choose 1} (0.1)^1 (0.9)^6 \approx 0.3720$$

- P(X = 0) + P(X = 1) = 0.8503
- What if we didn't use error correcting codes?
 - $X \sim Bin(4, 0.1)$
 - P(correct message received) = P(X = 0)

$$P(X=0) = {4 \choose 0} (0.1)^0 (0.9)^4 = 0.6561$$

Using error correction improves reliability ~30%!

Genetic Inheritance

- Person has 2 genes for trait (eye color)
 - Child receives 1 gene (equally likely) from each parent
 - Child has brown eyes if either (or both) genes brown
 - Child only has blue eyes if both genes blue
 - Brown is "dominant" (d), Blue is "recessive" (r)
 - Parents each have 1 brown and 1 blue gene
- 4 children, what is P(3 children with brown eyes)?
 - Child has blue eyes: $p = (\frac{1}{2})(\frac{1}{2}) = \frac{1}{4}$ (2 blue genes)
 - P(child has brown eyes) = $1 (\frac{1}{4}) = 0.75$
 - X = # of children with brown eyes. $X \sim Bin(4, 0.75)$

$$P(X = 3) = {4 \choose 3} (0.75)^3 (0.25)^1 \approx 0.4219$$

Properties of Bin(n, p)

- Consider: X ~ Bin(n, p)
- E[X] = np
- Var(X) = np(1 p)
- So, to compute E[X²], we have:

$$Var(X) = E[X^{2}] - (E[X])^{2}$$

$$E[X^{2}] = Var(X) + (E[X])^{2}$$

$$= np(1 - p) + (np)^{2}$$

$$= n^{2}p^{2} - np^{2} + np$$

Note: Ber(p) = Bin(1, p)

https://www.youtube.com/watch?v=p65aYYuAz-s

PMF for $X \sim Bin(10, 0.5)$

PMF for $X \sim Bin(10, 0.3)$

Power of Your Vote

- Is it better to vote in small or large state?
 - Small: more likely your vote changes outcome
 - Large: larger outcome (electoral votes) if state swings
 - a (= 2n) voters equally likely to vote for either candidate
 - You are deciding (a + 1)st vote $P(2n \text{ voters tie}) = {2n \choose n} \left(\frac{1}{2}\right)^n \left(\frac{1}{2}\right)^n = \frac{(2n)!}{n! \, n! \, 2^{2n}}$
 - Use Stirling's Approximation: $n! \approx n^{n+1/2} e^{-n} \sqrt{2\pi}$

$$P(2n \text{ voters tie}) \approx \frac{(2n)^{2n+1/2} e^{-2n} \sqrt{2\pi}}{n^{2n+1} e^{-2n} 2\pi 2^{2n}} = \frac{1}{\sqrt{n\pi}}$$

- $P(2n \text{ voters tie}) \approx \frac{(2n)^{2n+1/2} e^{-2n} \sqrt{2\pi}}{n^{2n+1} e^{-2n} 2\pi 2^{2n}} = \frac{1}{\sqrt{n\pi}}$ Power = P(tie) * Elec. Votes = $\frac{1}{\sqrt{(a/2)\pi}} (ac) = \frac{c\sqrt{2a}}{\sqrt{\pi}}$
- Larger state = more power

Is Peer Grading Accurate Enough?

Looking ahead

Peer Grading on Coursera HCI.

31,067 peer grades for 3,607 students.

Is Peer Grading Accurate Enough?

Looking ahead

- 1. Defined random variables for:
 - True grade (s_i) for assignment i
 - Observed (z_i^j) score for assign i
 - Bias (b_i) for each grader j
 - Variance (r_i) for each grader j
- 2. Designed a probabilistic model that defined the distributions for all random variables

variables
$$s_i \sim \text{Bin}(\text{points}, \theta)$$

$$z_i^j \sim \mathcal{N}(\mu = s_i + b_j, \sigma = \sqrt{r_j})$$

Is Peer Grading Accurate Enough?

Looking ahead

- 1. Defined random variables for:
 - True grade (s_i) for assignment i
 - Observed (z_i^j) score for assign i
 - Bias (b_i) for each grader j
 - Variance (r_i) for each grader j
- 2. Designed a probabilistic model that defined the distributions for all random variables
- **3.** Found the variable assignments that maximized the probability of our observed data

Inference or Machine Learning

Yes, With Probabilistic Modelling

Tuned Models of Peer Assessment. C Piech, J Huang, A Ng, D Koller

Voilà, c'est tout

