Debugging Intuition

How to calculate the probability of at least k
successes in n trials?

= X is number of successes in n trials each with
probability p

. P(X > k) _ First clue that
— something is wrong.

Don"r care about Think about p = 1
<n> pk the rest

k voat Not mutually
‘\wo\oo\o\\'\’ﬁ\l eSS exclusive...
‘. S\
ots for succass oo

Correct: P(X > k) = znj (7;)]0’“(1 — p)nk

1=k
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Is Peer Grading Accurate Enough?

Peer Grading on Coursera
HCI.

31,067 peer grades for
3,607 students.

Tuned Models of Peer Assessment. C Piech, J Huang, A Ng, D Koller



Today’s Topics

Last time:
Random Variables
Expectation + PDF

\. J

Today:
Variance
Bernoulli + Binominal RVs

Next time:
All the other discrete
RVs




St Petersburg

Game set-up

« We have a fair coin (come up “heads” with p = 0.5)
« Let n = number of coin flips (“heads”) before first “tails”
= You win $2"

How much would you pay to play?

. Solution

= Let X = your winnings
1 2 3 4 i+1

- E[X] = Dooos (LY 2 oDy 2 (L) 224 =2 BN
2 2 2 2 ~f\2
|
= — =00
et )
= I'll let you play for $1 thousand... but just once! Takers?



St Petersburg + Reality

- What if Chris has only $65,5367

» Same game
« If you win over $65,536 | leave the country.

- Solution

= Let X = your winnings

« E[X] = (;)12% (;)221+ (;)32% (;)423+...

k 1 1+1 '
= (5) 2" s.t. k = log,(65,536)



Utility

Utility is value of some choice
= 2 options, each with n consequences: ¢4, C,,..., C,
= One of ¢; will occur with probability p;

« Each consequence has some value (utility): U(c))
« Which choice do you make?

Example: Buy a $1 lottery ticket (for $1M prize)?
« Probability of winning is 1/107

« Buy: ¢, = win, ¢, =lose, U(c,) =10°-1, U(c,) = -1

« Don’t Buy: c, =lose, U(cy) =0

« E(buy) =1/107 (106 = 1) + (1 — 1/107) (-1) = -0.9

« E(don’t buy) =1(0)=0

= “You can't lose if you don’t play!”




And Then There’s This

.-.L‘-'i '_ T —

FOK| TIPS TO INCREASE CHANCE |
Wil “% W3h  OF WINNING LOTTERY

BUY AS MANY TICKETS
AS YOU CAN AFFORD

om
. I

_BIG PAYOUT Jfox:
. POWERBA(L JACKPOTINOW $800 MILLON ~ =

P —

Lottery: A tax on people who are bad at math.
— Ambrose Bierce



Recall, Geometric Series

aO—I—al—I—a2+...

O

|
Q

where 0 < a < 1



Breaking Vegas

Consider even money bet (e.g., bet “Red” in roulette)
» p = 18/38 you win $Y, otherwise (1 — p) you lose $Y

« Consider this algorithm for one series of bets:
1. ' Y=%1
2. BetY
3. If Win then stop
4. IfLossthenY =27"Y, goto 2

» Let Z = winnings upon stopping

18 20\/ 18 20\ /18
. E[Z] =(§ 1+(§)(£)(2_1)+(§) (g (4-2-1)+..

=20\ (18\( ., &) [18)&(20 18) 1

= —_— —_— 21— 2] =\| — —_— = =1

3 -3 - ) ()
38

= Expected winnings = 0. Use algorithm infinitely often!

~.




Vegas Breaks You

- Why doesn’ t everyone do this?
» Real games have maximum bet amounts

« You have finite money
o Not able to keep doubling bet beyond certain point

« Casinos can kick you out
But, if you had:
» No betting limits, and
« Infinite money, and
« Could play as often as you want...
- Then, go for it!
= And tell me which planet you are living on



Is E[X] enough?



Variance

- Consider the following 3 distributions (PMFs)
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- All have the same expected value, E[X] = 3
- But “spread” in distributions is different
- Variance = a formal quantification of “spread”




Variance

- If X'is a random variable with mean u then the
variance of X, denoted Var(X), is:

Var(X) = E[(X — u)’]

- Note: Var(X) =0

- Also known as the 2nd Central Moment, or

square of the Standard Deviation



Computing Variance

Var(X) = E[(X - 1)°]
=) (x=u)’ p(x)

= ) (x" =2ux+ ) p(x)

= N p(r) =26 xp(x) + 12, p(x)

=|E[ X |- 2uE[X ]+ Ladies and gentlemen, please
Ca- 5 welcome the 2" moment!
=L X -2u "+ u

= E[X*]-u’
- E[X*]- (E[X])




Variance of a 6 sided dice

- Let X = value on roll of 6 sided die

- Recall that E[X] = 7/2
. Compute E[X?]

Ex*]=(1 )% +(2? )é + (32)é @) i) (@) 2

Var(X) = E[X°]-(E[X])

91 (7\ _35
6 2 12



Properties of Variance

. Var(aX + b) = a?Var(X)
« Proof:
Var(aX + b) = E[(aX + b)Y — (E[aX + b])?
= E[a®X? + 2abX + b?] — (aE[X] + b)?
= a?E[X?] + 2abE[X] + b? — (a*(E[X])? + 2abE[X] + b?)
= a’E[X?] — a®(E[X])* = a®(E[X’] - (E[X])?)
= a’Var(X)
- Standard Deviation of X, denoted SD(X), is:
SD(X) =,/ Var(X)
. Var(X) is in units of X?
« SD(X) is in same units as X




Intuition

Peer Grading on Coursera
HCI.

K 31,067 peer grades for
/ 3,607 students.
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Peer Grades in Coursera HCI

Let X be a random variable that represents a peer grade

Trgf)qgrid;{;g If we base a final score off
4 peer-grades, 19% of
students would get a score
that was off by more than
10 percentage points

20 40 60 80 100



Peer Grades in Coursera HCI

Let X be a random variable that represents a peer grade
Var(X) = E[(X — u)°]

True grade = 58
E[X]=57.5

20 40 60 80 100



Peer Grades in Coursera HCI

Let X be a random variable that represents a peer grade
Var(X) = E[(X — u)°]

True grade = 58 X (X —p)
E[X] |57-5 25 points 1056 points?
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Peer Grades in Coursera HCI

Let X be a random variable that represents a peer grade
Var(X) = E[(X — u)°]

True grade = 58 X (X —p)
E[X] |57-5 25 points 1056 points?

| 80 points 506 points?
|
|
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Peer Grades in Coursera HCI

Let X be a random variable that represents a peer grade
Var(X) = E[(X — u)°]

True grade = 58 X (X —u)?
E[X] |57-5 25 points 1056 points?

| 80 points 506 points?
B 50 points 56 points?
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Peer Grades in Coursera HCI

Let X be a random variable that represents a peer grade
Var(X) = E[(X — u)°]

True grade = 58 X (X —u)?
E[X] |57-5 25 points 1056 points?

80 points 506 points?
50 points 56 points?

|
|
|
|
: E [(X— w)?] = 52 points?
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Peer Grades in Coursera HCI

Let X be a random variable that represents a peer grade
Var(X) = E[(X — u)°]

True grade = 58 X (X —u)?
E[X] |57-5 25 points 1056 points?

80 points 506 points?
50 points 56 points?

E [(X — u)?] = 52 points?

|
I
|
I
|
| SD(X) = 7.2 points

20 40 60 80 100



Second Moment

Let X be a random variable that represents a peer grade
E[X?]

True grade = 58
E[X] =57.5 _ _
| Recall that Variance is

the second central
moment. What is the
second moment?
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Second Moment

Let X be a random variable that represents a peer grade
E[X?]

True grade = 58
E[X] =57.5 _ _
| Recall that Variance is

the second central
moment. What is the

second moment?

20 40 60 80 100



Second Moment

Let X be a random variable that represents a peer grade
E[X?]

True grade = 58
E[X]=57.5

Yea second moment
really isn’t that useful a
statistic in this case...

20 40 60 80 100



Lots of fun with Random Variables



Moaaahhhh Random Variables



Jacob Bernoulli

Jacob Bernoulli (1654-1705), also known as
“*James”, was a Swiss mathematician

One of many mathematicians in Bernoulli family

The Bernoulli Random Variable is named for him

He is my academic great'?

Same eyes as Ilce Cube

-grandfather



Bernoulli Random Variable

Experiment results in “Success” or “Failure”

» X is random indicator variable (1 = success, 0 = failure)
- P(X=1)=p(1)=p P(X=0)=p0)=1-p

« X is a Bernoulli Random Variable: X ~ Ber(p)

« E[X]=p /—A )
« Var(X) = p(1-p) Feel the Bern!
Examples 9 J

= coin flip

= random binary digit
= whether a disk drive crashed
= whether someone likes a netflix movie



Binomial Random Variable

Consider n independent trials of Ber(p) rand. var.

= X is number of successes in n trials
» X is a Binomial Random Variable: X ~ Bin(n, p)

n
I

P(X =) = p(i) =( )pl‘a—p)"-f PO
. By Binomial Theorem, we know that ZP(X =) =1

Examples
« # of heads in n coin flips
= #of 1's in randomly generated length n bit string

« # of disk drives crashed in 1000 computer cluster
o Assuming disks crash independently



Bernoulli vs Binomial

Bernoulli is a type of RV

Binomial is the sum of n
Bernoullis




Three Coin Flips

- Three fair (*heads” with p = 0.5) coins are flipped
« X is number of heads
. X ~Bin(3, 0.5)

3
P(X=0>=(O)p (1-p) =

3
P(X=1>=(1)p (1= py =

8
(3) 2 3
P(X=2)=| |p"(1-p) =3

PX =3)=( |- p) =~



Error Correcting Codes

Error correcting codes
= Have original 4 bit string to send over network
« Add 3 “parity” bits, and send 7 bits total

« Each bit independently corrupted (flipped) in transition
with probability 0.1



Error Correcting Codes
Key for 7 bits Send: 1110?

Receive: 11100007 Receive: 10101007



Error Correcting Codes

Error correcting codes
= Have original 4 bit string to send over network
« Add 3 “parity” bits, and send 7 bits total

« Each bit independently corrupted (flipped) in transition
with probability 0.1

= X =number of bits corrupted: X ~ Bin(7, 0.1)

= But, parity bits allow us to correct at most 1 bit error
P(a correctable message is received)?

» P(X=0)+P(X=1)



Error Correcting Codes

- Using error correcting codes: X ~ Bin(7, 0.1)

P(X =0) = (g)(0.1)0(0.9)7 ~0.4783
P(X =1)= (Z)(O.1)1(0.9)6 ~0.3720
- P(X=0)+P(X=1)=0.8503
- What if we didn’t use error correcting codes?
. X ~Bin(4, 0.1)
« P(correct message received) = P(X = 0)
P(X =0) = (3)(0.1)0(0.9)4 = 0.6561

- Using error correction improves reliability ~30%!



Genetic Inheritance

Person has 2 genes for trait (eye color)

= Child receives 1 gene (equally likely) from each parent
« Child has brown eyes if either (or both) genes brown

« Child only has blue eyes if both genes blue

= Brown is “dominant” (d) , Blue is “recessive” (r)

« Parents each have 1 brown and 1 blue gene

. 4 children, what is P(3 children with brown eyes)?

= Child has blue eyes: p = (72) (*2) =% (2 blue genes)

« P(child has brown eyes) =1 - (V4) = 0.75

« X =# of children with brown eyes. X ~ Bin(4, 0.75)
P(X =3) = (;‘)(0.75)3(0.25)1 ~0.4219



Properties of Bin(n, p)

- Consider: X ~ Bin(n, p)
- E[X]=np
+ Var(X) =np(1-p)
- So, to compute E[X?], we have:
Var(X) = E[X?] - (E[X])?
E[X?] = Var(X) + (E[X])
=np(1-p)+ (np)
= N%p?—np®+ np

. Note: Ber(p) = Bin(1, p)



Galton Board




Galton Board

When a marble hits a pin, it has
equal chance of going left or
right.




Galton Board

When a marble hits a pin, it has
equal chance of going left or
right. Each pin represents an
iIndependent event.




Galton Board

The bucket index that a marble
lands in is equal to the number of
times the marble went right




Galton Board

We can define an indicator
random variable (R) which
represents whether a particular
marble goes right as a Bernoulli
~ Ber(0.5)




Galton Board

We can define an indicator
random variable (B) which
represents what bucket a marble
lands In.




Galton Board

We can define an indicator
random variable (B) which
represents what bucket a marble
lands in. B ~ Bin(levels, 0.5)




Galton Board

We can define an indicator
random variable (B) which
represents what bucket a marble
lands in. B ~ Bin(5, 0.5)




Galton Board

We can define an indicator
random variable (B) which
represents what bucket a marble
lands in. B ~ Bin(5, 0.5)

Calculate the probability of a
marble landing in a bucket.




Galton Board

We can define an indicator
random variable (B) which
represents what bucket a marble
lands in. B ~ Bin(5, 0.5)

Calculate the probability of a
marble landing in a bucket.

5\ 1°
° P(B:O):(O)5 ~ 0.03




Galton Board

We can define an indicator
random variable (B) which
represents what bucket a marble
lands in. B ~ Bin(5, 0.5)

Calculate the probability of a
marble landing in a bucket.




Galton Board

We can define an indicator
random variable (B) which
represents what bucket a marble
lands in. B ~ Bin(5, 0.5)

Calculate the probability of a
marble landing in a bucket.

5\ 1°
R P(B:2):()— ~ (.31




Galton Board

We can define an indicator
random variable (B) which
represents what bucket a marble
lands in. B ~ Bin(5, 0.5)

Calculate the probability of a
marble landing in a bucket.

o P(B=3) = (5> 1 031




Galton Board

We can define an indicator
random variable (B) which
represents what bucket a marble
lands in. B ~ Bin(5, 0.5)

Calculate the probability of a
marble landing in a bucket.

PDF




https://www.youtube.com/watch?v=p65aY YuAz-s




PMF for X ~ Bin(10, 0.5)
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PMF for X ~ Bin(10, 0.3)
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Power of Your Vote

Is it better to vote in small or large state?

- Small: more likely your vote changes outcome

« Large: larger outcome (electoral votes) if state swings

« a (= 2n) voters equally likely to vote for either candidate
= You are deciding (a + 1)st vote

2 n n
P(2n Voterstie)=( n)(l) (l) = (2n)2!
n\2)\2 nn2~"
. Use Stirling’s Approximation: n!=~n"""2e™ /2

(2n)2n+1/2e—2n /2” B 1

2n+l =2 2 o
n""e " 22" NYY

P P(tie) * Elec. Vot L (ac) =22
. ower = e eC. voles = =
\/— \/7

(a/2)r 7T
« Larger state = more power

P(2n voters tie) =




Is Peer Grading Accurate Enough?
Looking ahead

Peer Grading on Coursera
HCI.

31,067 peer grades for
3,607 students.

Tuned Models of Peer Assessment. C Piech, J Huang, A Ng, D Koller



Is Peer Grading Accurate Enough?

Looking ahead

1. Defined random variables for:
* True grade (s;) for assignment i
,- » Observed (z/) score for assign i
et od * Bias (b;) for each grader j
- Variance (r;) for each grader j

.\ a - 2. Designed a probabilistic model that
RN Y SRS defined the distributions for all random

, variables D
7| rob|
| Y €M pq

. r
e s; ~ Bin(points, 0) am

2~ N(p = si + bj,0 = \/75)

Tuned Models of Peer Assessment. C Piech, J Huang, A Ng, D Koller



Is Peer Grading Accurate Enough?

Looking ahead

1. Defined random variables for:
* True grade (s;) for assignment i
,- » Observed (z/) score for assign i
et od * Bias (b;) for each grader j
- Variance (r;) for each grader j

.\ A - 2. Designed a probabilistic model that
RN ot 7 defined the distributions for all random
variables

3. Found the variable assignments that
maximized the probability of our
observed data ;‘

M g

Tuned Models of Peer Assessment. C Piech, J Huang, A Ng, D Koller



Yes, With Probabilistic Modelling

Before: After:

99%

within
) 10pp
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-100 -80 -60 -40 -20 0 20 40 60 &0 -100 -80 -60 -40 -20 0 20 40 60 80

Tuned Models of Peer Assessment. C Piech, J Huang, A Ng, D Koller



Volila, c'est tout






