

CS 109
Lecture 12
April 22th, 2016

Today:

- 1. Multi variable RVs
- 2. Expectation with multiple RVs
- 3. Independence with multiple RVs

Review

Discrete Joint Mass Function

 For two discrete random variables X and Y, the Joint Probability Mass Function is:

$$p_{X,Y}(a,b) = P(X = a, Y = b)$$

Marginal distributions:

$$p_X(a) = P(X = a) = \sum_{y} p_{X,Y}(a, y)$$

$$p_X(b) = P(Y = b) = \sum_{y} p_{X,Y}(x, b)$$

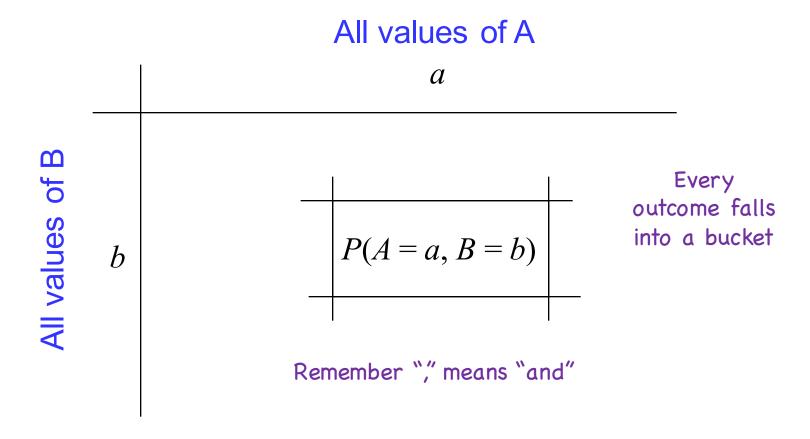
$$p_{Y}(b) = P(Y = b) = \sum_{x} p_{X,Y}(x,b)$$

• Example: $X = \text{value of die } D_1$, $Y = \text{value of die } D_2$

$$P(X = 1) = \sum_{y=1}^{6} p_{X,Y}(1, y) = \sum_{y=1}^{6} \frac{1}{36} = \frac{1}{6}$$

Probability Table

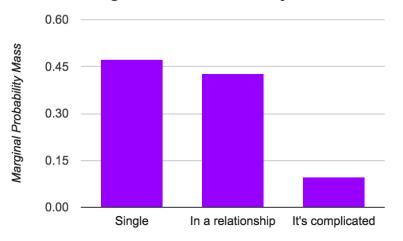
- States all possible outcomes with several discrete variables
- Often is not "parametric"
- If #variables is > 2, you can have a probability table, but you can't draw it on a slide



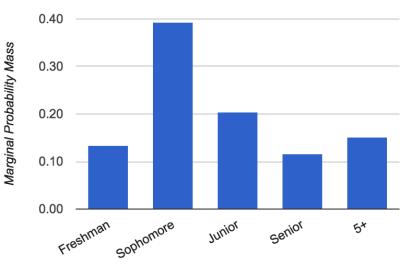
Probability Table

Joint Probability Table				
	Single	In a relationship	It's complicated	Marginal Year
Freshman	0.06	0.04	0.03	0.13
Sophomore	0.21	0.16	0.02	0.39
Junior	0.13	0.06	0.02	0.21
Senior	0.04	0.07	0.01	0.12
5+	0.04	0.09	0.03	0.15
Marginal Status	0.47	0.43	0.10	1.00

Marginal Status Probability



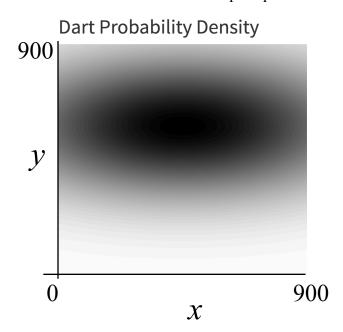
Marginal Year Probability



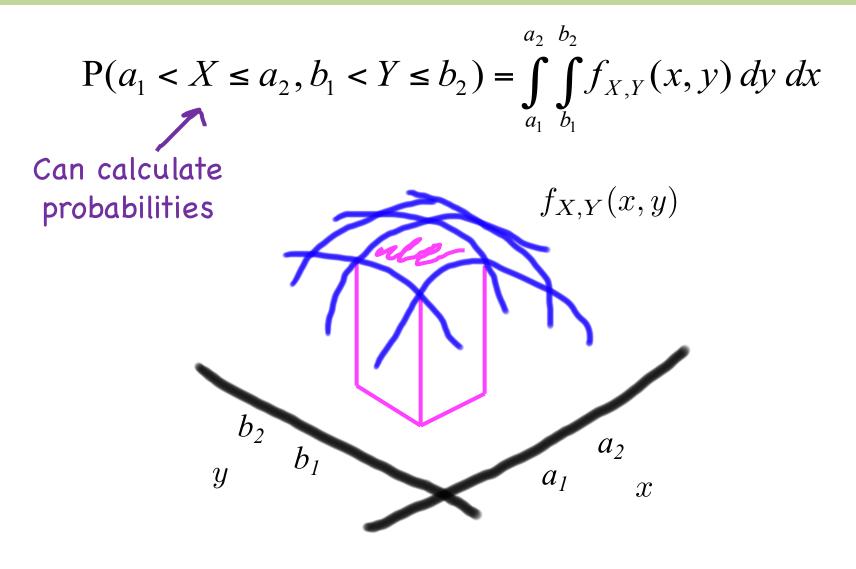
Jointly Continuous

• Random variables X and Y, are <u>Jointly</u> <u>Continuous</u> if there exists PDF $f_{X,Y}(x,y)$ defined over $-\infty < x, y < \infty$ such that:

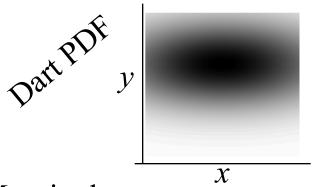
$$P(a_1 < X \le a_2, b_1 < Y \le b_2) = \int_{a_1}^{a_2} \int_{b_1}^{b_2} f_{X,Y}(x, y) \, dy \, dx$$



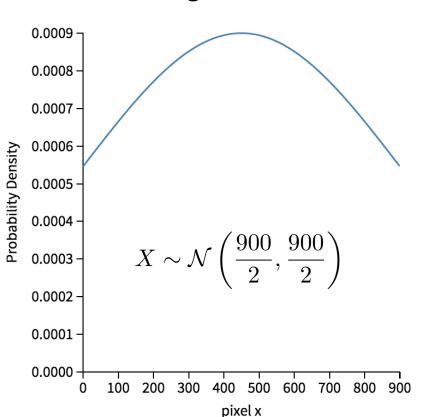
Jointly Continuous



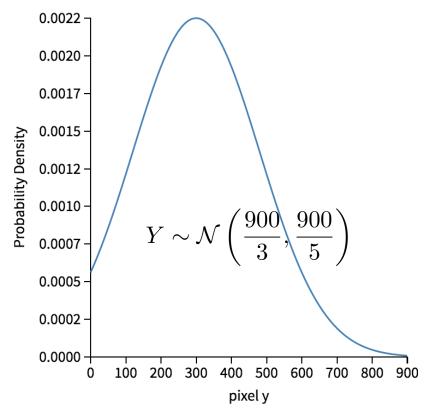
Darts!



Can calculate marginal probabilities



Y-Pixel Marginal



Transfer Learning

Way Back

Permutations

How many ways are there to order *n* distinct objects?

n!

Multinomial

How many ways are there to order *n* objects such that:

 n_I are the same (indistinguishable)

 n_2 are the same (indistinguishable)

. . .

 n_r are the same (indistinguishable)?

$$\frac{n!}{n_1!n_2!\dots n_r!} = \binom{n}{n_1, n_2, \dots, n_r}$$

Called the "multinomial" because of something from Algebra

Binomial

How many ways are there to make an unordered selection of r objects from n objects?

How many ways are there to order n objects such that: r are the same (indistinguishable) (n-r) are the same (indistinguishable)?

$$\frac{n!}{r!(n-r)!} = \binom{n}{r}$$

Called the Binomial (Multi -> Bi)

Binomial Distribution

- Consider n independent trials of Ber(p) rand. var.
 - X is number of successes in n trials
 - X is a <u>Binomial</u> Random Variable: X ~ Bin(n, p)

Binomial # ways
of ordering the successes
$$P(X=i) = p(i) = \binom{n}{i} p^{i} (1-p)^{n-i} \quad i = 0,1,...,n$$
Probability of each ordering of i successes is equal + successes
$$p(X=i) = p(i) = \binom{n}{i} p^{i} (1-p)^{n-i} \quad i = 0,1,...,n$$

End Review

Welcome Back the Multinomial

- Multinomial distribution
 - n independent trials of experiment performed
 - Each trial results in one of *m* outcomes, with respective probabilities: $p_1, p_2, ..., p_m$ where $\sum p_i = 1$
 - X_i = number of trials with outcome i

$$P(X_1 = c_1, X_2 = c_2, ..., X_m = c_m) = \binom{n}{c_1, c_2, ..., c_m} p_1^{c_1} p_2^{c_2} ... p_m^{c_m}$$

Joint distribution

ordering the successes

Multinomial # ways of Probabilities of each ordering are equal and mutually exclusive

where
$$\sum_{i=1}^{m} c_i = n$$
 and $\binom{n}{c_1, c_2, \dots, c_m} = \frac{n!}{c_1! c_2! \cdots c_m!}$

Hello Die Rolls, My Old Friends

- 6-sided die is rolled 7 times
 - Roll results: 1 one, 1 two, 0 three, 2 four, 0 five, 3 six

$$P(X_1 = 1, X_2 = 1, X_3 = 0, X_4 = 2, X_5 = 0, X_6 = 3)$$

$$= \frac{7!}{1!1!0!2!0!3!} \left(\frac{1}{6}\right)^1 \left(\frac{1}{6}\right)^1 \left(\frac{1}{6}\right)^0 \left(\frac{1}{6}\right)^2 \left(\frac{1}{6}\right)^0 \left(\frac{1}{6}\right)^3 = 420 \left(\frac{1}{6}\right)^7$$

- This is generalization of Binomial distribution
 - Binomial: each trial had 2 possible outcomes
 - Multinomial: each trial has m possible outcomes

Probabilistic Text Analysis

- Ignoring order of words, what is probability of any given word you write in English?
 - P(word = "the") > P(word = "transatlantic")
 - P(word = "Stanford") > P(word = "Cal")
 - Probability of each word is just multinomial distribution
- What about probability of those same words in someone else's writing?
 - P(word = "probability" | writer = you) >
 P(word = "probability" | writer = non-CS109 student)
 - After estimating P(word | writer) from known writings, use Bayes' Theorem to determine P(writer | word) for new writings!

Text is a Multinomial

Example document:

this document | spam

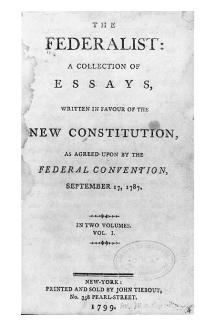
"Pay for Viagra with a credit-card. Viagra is great. So are credit-cards. Risk free Viagra. Click for free."

$$n = 18$$

$$Viagra = 2$$
 Free = 2
$$P\left(\begin{array}{c} \text{Free} = 2 \\ \text{Risk} = 1 \\ \text{Credit-card: 2} \end{array} | \text{spam} \right) = \frac{n!}{2!2! \dots 2!} p_{\text{viagra}}^2 p_{\text{free}}^2 \dots p_{\text{for}}^2$$
 The probability of a word in spam email being viagra

Old and New Analysis

- Authorship of "Federalist Papers"
 - 85 essays advocating ratification of US constitution
 - Written under pseudonym "Publius"
 - Really, Alexander Hamilton, James Madison and John Jay
 - Who wrote which essays?
 - Analyzed probability of words in each essay versus word distributions from known writings of three authors



- Filtering Spam
 - P(word = "Viagra" | writer = you)
 - << P(word = "Viagra" | writer = spammer)

Expectation with Multiple Variables?

Joint Expectation

$$E[X] = \sum_{x} xp(x)$$

- Expectation over a joint isn't nicely defined because it is not clear how to compose the multiple variables:
 - Add them? Multiply them?
- Lemma: For a function g(X,Y) we can calculate the expectation of that function:

$$E[g(X,Y)] = \sum_{x,y} g(x,y)p(x,y)$$

By the way, this also holds for single random variables:

$$E[g(X)] = \sum g(x)p(x)$$

Expected Values of Sums

Big deal lemma: first stated without proof

$$E[X + Y] = E[X] + E[Y]$$

Generalized:
$$E\left[\sum_{i=1}^{n} X_i\right] = \sum_{i=1}^{n} E[X_i]$$

Holds regardless of dependency between X_i 's

Skeptical Chris Wants a Proof!

Let
$$g(X,Y) = [X + Y]$$

$$E[X+Y] = E[g(X,Y)] = \sum_{x,y} g(x,y) p(x,y) \qquad \text{What a useful lemma}$$

$$= \sum_{x,y} [x+y] p(x,y) \qquad \text{By the definition of } g(x,y)$$

$$= \sum_{x,y} x p(x,y) + \sum_{x,y} y p(x,y)$$
 Change the sum of (x,y) into separate sums
$$= \sum_{x} x \sum_{y} p(x,y) + \sum_{y} y \sum_{x} p(x,y)$$
 That is the definition of marginal probability
$$= \sum_{x} x p(x) + \sum_{y} y p(y)$$

=E[X]+E[Y]

That is the definition of

expectation

Independent Discrete Variables

 Two discrete random variables X and Y are called <u>independent</u> if:

$$p(x, y) = p_X(x)p_Y(y)$$
 for all x, y

- Intuitively: knowing the value of X tells us nothing about the distribution of Y (and vice versa)
 - If two variables are <u>not</u> independent, they are called <u>dependent</u>
- Similar conceptually to independent events, but we are dealing with multiple <u>variables</u>
 - Keep your events and variables distinct (and clear)!

Coin Flips

- Flip coin with probability p of "heads"
 - Flip coin a total of n + m times
 - Let X = number of heads in first n flips
 - Let Y = number of heads in next m flips

$$P(X = x, Y = y) = \binom{n}{x} p^{x} (1 - p)^{n - x} \binom{m}{y} p^{y} (1 - p)^{m - y}$$
$$= P(X = x) P(Y = y)$$

- X and Y are independent
- Let Z = number of total heads in n + m flips
- Are X and Z independent?
 - ⋄ What if you are told Z = 0?

- Let N = # of requests to web server/day
 - Suppose N ~ Poi(λ)
 - Each request comes from a human (probability = p) or from a "bot" (probability = (1 p)), independently
 - X = # requests from humans/day $(X | N) \sim Bin(N, p)$
 - Y = # requests from bots/day $(Y | N) \sim Bin(N, 1 p)$

$$P(X = i, Y = j) = P(X = i, Y = j \mid X + Y = i + j)P(X + Y = i + j)$$

$$+ P(X = i, Y = j \mid X + Y \neq i + j)P(X + Y \neq i + j)$$

$$= Probability of i human$$
Probability of pumber of

Probability of *i* human requests and *j* bot requests

Probability of number of requests in a day was i + j

Probability of *i* human requests and *j* bot requests | we got *i* + *j* requests

- Let N = # of requests to web server/day
 - Suppose N ~ Poi(λ)
 - Each request comes from a human (probability = p) or from a "bot" (probability = (1 p)), independently
 - X = # requests from humans/day $(X | N) \sim Bin(N, p)$
 - Y = # requests from bots/day $(Y | N) \sim Bin(N, 1 p)$

$$P(X = i, Y = j) = P(X = i, Y = j | X + Y = i + j)P(X + Y = i + j) + P(X = i, Y = j | X + Y \neq i + j)P(X + Y \neq i + j)$$

• Note: $P(X = i, Y = j | X + Y \neq i + j) = 0$

You got *i* human requests and *j* bot requests

You did not get i + j requests

- Let N = # of requests to web server/day
 - Suppose N ~ Poi(λ)
 - Each request comes from a human (probability = p) or from a "bot" (probability = (1 p)), independently
 - X = # requests from humans/day $(X | N) \sim Bin(N, p)$
 - Y = # requests from bots/day $(Y | N) \sim Bin(N, 1 p)$

$$P(X = i, Y = j) = P(X = i, Y = j | X + Y = i + j)P(X + Y = i + j)$$

- Let N = # of requests to web server/day
 - Suppose N ~ Poi(λ)
 - Each request comes from a human (probability = p) or from a "bot" (probability = (1 p)), independently
 - X = # requests from humans/day (X | N) ~ Bin(N, p)
 - Y = # requests from bots/day $(Y | N) \sim Bin(N, 1 p)$

$$P(X = i, Y = j) = P(X = i, Y = j | X + Y = i + j)P(X + Y = i + j)$$

$$P(X = i, Y = j \mid X + Y = i + j) = {i + j \choose i} p^{i} (1 - p)^{j}$$

$$P(X + Y = i + j) = e^{-\lambda} \frac{\lambda^{i+j}}{(i+j)!}$$
Poisson

$$P(X=i,Y=j) = {i+j \choose i} p^i (1-p)^j e^{-\lambda} \frac{\lambda^{i+j}}{(i+j)!}$$

- Let N = # of requests to web server/day
 - Suppose N ~ Poi(λ)
 - Each request comes from a human (probability = p) or from a "bot" (probability = (1 p)), independently
 - X = # requests from humans/day (X | N) ~ Bin(N, p)
 - Y = # requests from bots/day $(Y | N) \sim Bin(N, 1 p)$

$$P(X = i, Y = j) = \frac{(i+j)!}{i! \, j!} \, p^i (1-p)^j e^{-\lambda} \, \frac{\lambda^{i+j}}{(i+j)!} = e^{-\lambda} \, \frac{(\lambda p)^i}{i!} \cdot \frac{(\lambda (1-p))^j}{j!}$$

Reorder
$$= e^{-\lambda p} \frac{(\lambda p)^i}{i!} \cdot e^{-\lambda(1-p)} \frac{(\lambda(1-p))^j}{j!} = P(X=i)P(Y=j)$$

- Where X ~ Poi(λp) and Y ~ Poi($\lambda (1 p)$)
- X and Y are independent!

Independent Continuous Variables

 Two continuous random variables X and Y are called <u>independent</u> if:

$$P(X \le a, Y \le b) = P(X \le a) P(Y \le b)$$
 for any a, b

Equivalently:

$$F_{X,Y}(a,b) = F_X(a)F_Y(b)$$
 for all a,b
 $f_{X,Y}(a,b) = f_X(a)f_Y(b)$ for all a,b

More generally, joint density factors separately:

$$f_{XY}(x,y) = h(x)g(y)$$
 where $-\infty < x, y < \infty$

Pop Quiz (just kidding)

Consider joint density function of X and Y:

$$f_{X,Y}(x,y) = 6e^{-3x}e^{-2y}$$
 for $0 < x, y < \infty$

Are X and Y independent? Yes!

Let
$$h(x) = 3e^{-3x}$$
 and $g(y) = 2e^{-2y}$, so $f_{X,Y}(x,y) = h(x)g(y)$

Consider joint density function of X and Y:

$$f_{X,Y}(x,y) = 4xy$$
 for $0 < x, y < 1$

Are X and Y independent? Yes!

Let
$$h(x) = 2x$$
 and $g(y) = 2y$, so $f_{X,Y}(x,y) = h(x)g(y)$

- Now add constraint that: 0 < (x + y) < 1
- Are X and Y independent? No!
 - o Cannot capture constraint on x + y in factorization!

Dating at Stanford

- Two people set up a meeting for 12pm
 - Each arrives independently at time uniformly distributed between 12pm and 12:30pm
 - X = # min. past 12pm person 1 arrives X ~ Uni(0, 30)
 - Y = # min. past 12pm person 2 arrives Y ~ Uni(0, 30)
 - What is P(first to arrive waits > 10 min. for other)?

$$P(X+10 < Y) + P(Y+10 < X) = 2P(X+10 < Y)$$
 by symmetry
 $2P(X+10 < Y) = 2$ If $f(x, y)dxdy = 2$ If $f_{x}(x) f_{y}(y)dxdy$

$$2P(X+10 < Y) = 2 \iint_{x+10 < y} f(x,y) dx dy = 2 \iint_{x+10 < y} f_X(x) f_Y(y) dx dy$$

$$=2\int_{y=10}^{30}\int_{x=0}^{y-10} \left(\frac{1}{30}\right)^2 dx dy = \frac{2}{30^2}\int_{y=10}^{30} \left(\int_{x=0}^{y-10} dx\right) dy = \frac{2}{30^2}\int_{y=10}^{30} \left(x \begin{vmatrix} y-10 \\ 0 \end{vmatrix}\right) dy = \frac{2}{30^2}\int_{y=10}^{30} (y-10) dy$$

$$= \frac{2}{30^2} \left(\frac{y^2}{2} - 10y \right) \begin{vmatrix} 30 \\ 10 \end{vmatrix} = \frac{2}{30^2} \left[\left(\frac{30^2}{2} - 300 \right) - \left(\frac{10^2}{2} - 100 \right) \right] = \frac{4}{9}$$

Independence of Multiple Variables

n random variables X₁, X₂, ..., X_n are called independent if:

$$P(X_1 = x_1, X_2 = x_2, ..., X_n = x_n) = \prod_{i=1}^{n} P(X_i = x_i)$$
 for all subsets of $x_1, x_2, ..., x_n$

Analogously, for continuous random variables:

$$P(X_1 \le a_1, X_2 \le a_2, ..., X_n \le a_n) = \prod_{i=1}^n P(X_i \le a_i)$$
 for all subsets of $a_1, a_2, ..., a_n$

Independence is Symmetric

- If random variables X and Y independent, then
 - X independent of Y, and Y independent of X
- Duh!? Duh, indeed...
 - Let X₁, X₂, ... be a sequence of independent and identically distributed (I.I.D.) continuous random vars
 - Say X_n > X_i for all i = 1,..., n 1 (i.e. X_n = max(X₁, ..., X_n))
 Call X_n a "record value"
 - Let event A_i indicate X_i is "record value"
 - $_{\circ}$ Is A_{n+1} independent of A_n ?

 - Easier to answer: Yes!
 - $_{\circ}$ By symmetry, $P(A_n) = 1/n$ and $P(A_{n+1}) = 1/(n+1)$
 - \circ P(A_n A_{n+1}) = (1/n)(1/(n+1)) = P(A_n)P(A_{n+1})

Earth Day

Choosing a Random Subset

- From set of n elements, choose a subset of size k such that all $\binom{n}{k}$ possibilities are <u>equally</u> likely

 Only have random(), which simulates X ~ Uni(0, 1)
- Brute force:
 - Generate (an ordering of) all subsets of size k
 - Randomly pick one (divide (0, 1) into $\binom{n}{k}$ intervals)
 - Expensive with regard to time and space
 - Bad times!

(Happily) Choosing a Random Subset

Good times:

```
int indicator(double p) {
         if (random() < p) return 1; else return 0;</pre>
      }
      // array I[] indexed from 1 to n
      subset rSubset(k, set of size n) {
         subset size = 0;
         I[1] = indicator((double)k/n);
         for (i = 1; i < n; i++) {
             subset size += I[i];
             I[i+1] = indicator((k - subset size)/(n - i));
         return (subset containing element[i] iff I[i] == 1);
      }
                                                k-\sum_{i}^{l}I[j]
P(I[1] = 1) = \frac{k}{n} and P(I[i+1] = 1 | I[1],...,I[i]) = \frac{k}{n-i} where 1 < i < n
```

Random Subsets the Happy Way

- Proof (Induction on (k + n)): (i.e., why this algorithm works)
 - Base Case: k = 1, n = 1, Set $S = \{a\}$, rsubset returns $\{a\}$ with $p=1/\binom{1}{1}$
 - Inductive Hypoth. (IH): for $k + x \le c$, Given set S, |S| = x and $k \le x$, rsubset returns any subset S' of S, where |S'| = k, with $p = 1/\binom{x}{k}$
 - Inductive Case 1: (where $k + n \le c + 1$) |S| = n (= x + 1), I[1] = 1
 - Elem 1 in subset, choose k − 1 elems from remaining n − 1
 - o By IH: rsubset returns subset S' of size k 1 with p = $1/\binom{n-1}{k-1}$ o P(I[1] = 1, subset S') = $\frac{k}{n} \cdot 1/\binom{n-1}{k-1} = 1/\binom{n}{k}$
 - Inductive Case 2: (where $k + n \le c + 1$) |S| = n (= x + 1), I[1]
 - ∘ Elem 1 not in subset, choose k elems from remaining n − 1
 - _ο By IH: rsubset returns subset S' of size k with $p = 1/\binom{n-1}{k}$
 - o P(I[1] = 0, subset S') = $\left(1 \frac{k}{n}\right) \cdot 1 / {\binom{n-1}{k}} = \left(\frac{n-k}{n}\right) \cdot 1 / {\binom{n-1}{k}} = 1 / {\binom{n}{k}}$

Sum of Independent Binomial RVs

- Let X and Y be independent random variables
 - $X \sim Bin(n_1, p)$ and $Y \sim Bin(n_2, p)$
 - $X + Y \sim Bin(n_1 + n_2, p)$
- Intuition:
 - X has n₁ trials and Y has n₂ trials
 - Each trial has same "success" probability p
 - Define Z to be n₁ + n₂ trials, each with success prob. p
 - $Z \sim Bin(n_1 + n_2, p)$, and also Z = X + Y
- More generally: $X_i \sim Bin(n_i, p)$ for $1 \le i \le N$

$$\left(\sum_{i=1}^{N} X_i\right) \sim \operatorname{Bin}\left(\sum_{i=1}^{N} n_i, p\right)$$

Sum of Independent Poisson RVs

- Let X and Y be independent random variables
 - $X \sim Poi(\lambda_1)$ and $Y \sim Poi(\lambda_2)$
 - $X + Y \sim Poi(\lambda_1 + \lambda_2)$
- Proof: (just for reference)
 - Rewrite (X + Y = n) as (X = k, Y = n k) where $0 \le k \le n$

$$P(X+Y=n) = \sum_{k=0}^{n} P(X=k, Y=n-k) = \sum_{k=0}^{n} P(X=k)P(Y=n-k)$$

$$=\sum_{k=0}^{n}e^{-\lambda_{1}}\frac{\lambda_{1}^{k}}{k!}e^{-\lambda_{2}}\frac{\lambda_{2}^{n-k}}{(n-k)!}=e^{-(\lambda_{1}+\lambda_{2})}\sum_{k=0}^{n}\frac{\lambda_{1}^{k}\lambda_{2}^{n-k}}{k!(n-k)!}=\frac{e^{-(\lambda_{1}+\lambda_{2})}}{n!}\sum_{k=0}^{n}\frac{n!}{k!(n-k)!}\lambda_{1}^{k}\lambda_{2}^{n-k}$$

- Noting Binomial theorem: $(\lambda_1 + \lambda_2)^n = \sum_{k=0}^n \frac{n!}{k!(n-k)!} \lambda_1^k \lambda_2^{n-k}$
- $P(X+Y=n) = \frac{e^{-(\lambda_1+\lambda_2)}}{n!} (\lambda_1 + \lambda_2)^n \text{ so, } X + Y = n \sim \text{Poi}(\lambda_1 + \lambda_2)$