Lecture 12
April 22th, 2016



Today:
1. Multi variable RVs
2. Expectation with multiple RVs
3. Independence with multiple RVs



Review



Discrete Joint Mass Function

- For two discrete random variables X and Y, the

Joint Probability Mass Function is:

Pyy(a,b)=P(X =a,Y =D)

- Marginal distributions:

py(a)=P(X =a)= EPX,Y(aay)

py(b)=PXY =b)= EPX,Y(xab)

- Example: X = value of die D,, Y = value of die D,

P(X =1) = Ep”a y)=§_i6=é



Probability Table

States all possible outcomes with several discrete variables
Often is not “parametric”

If #variables is > 2, you can have a probability table, but you
can't draw it on a slide

All values of A

a
8]
HC_) Every
0 outcome falls
() P(A=a.B=b info a bucket
= b ( —d, D= )
®
>
<

Remember “,” means “and”




Marginal Probability Mass

Probability Table

Joint Probability Table

Single In a relationship It's complicated Marginal Year
Freshman 0.06 0.04 0.03 0.13
Sophomore 0.21 0.16 0.02 0.39
Junior 0.13 0.06 0.02 0.21
Senior 0.04 0.07 0.01 0.12
A 0.04 0.09 0.03 0.15
Marginal Status 0.47 0.43 0.10 1.00
Marginal Status Probability Marginal Year Probability
0.60 0.40
0.45 § 0.30
0.30 g 0.20
<
0.15 % 0.10
s
0.00 0.00

Single In a relationship  It's complicated




Jointly Continuous

- Random variables X and Y, are Jointly
Continuous if there exists PDF f, ,(x, y) defined
over —oo < x, y < oo such that:

a, b,

P(a, <X =a,,b, <Ysb2)=fffX’Y(x,y)dy dx

a, b

Dart Probability Density

900

0 900



Jointly Continuous

a, b,

Pla, <X =a,,b <Y <b,)) =fffX’Y(x,y) dy dx
/\ a, b
Can calculate
probabilities = fxy(@,y)

N




Probability Density

@Q

Daris!

Can calculate marginal

Y probabilities
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Transfer Learning



Way Back



Permutations

How many ways are there to order » distinct objects?

n!



Multinomial

How many ways are there to order »n objects such that:
n; are the same (indistinguishable)
n, are the same (indistinguishable)

n, are the same (indistinguishable)?

n! _ ( n >
nl!ng!...nr! N1, N2y .« oy Ny

Called the “multinomial” because of something from Algebra



Binomial

How many ways are there to make an unordered
selection of » objects from »n objects?

How many ways are there to order n objects such that:
r are the same (indistinguishable)
(n—r) are the same (indistinguishable)?

Called the Binomial (Multi -> Bi)



Binomial Distribution

Consider n independent trials of Ber(p) rand. var.

= X is number of successes in n trials
« X is a Binomial Random Variable: X ~ Bin(n, p)

Binomial # ways
of ordering the
successes

l

/\ /t Probability of each

Probability of ordering of j
exactly i/ successes is equal +
successes mutually exclusive

P(X =0)=p()= (r.l)pi(l—p)”'i i=01,...,n



End Review



Welcome Back the Multinomial

- Multinomial distribution

« nindependent trials of experiment performed

« Each trial results in one of m outcomes, with
respective probabilities: p,, p,, ..., p,, Where Ep,. =1
- X, = number of trials with outcome i =

n
c .C Cpy
P(X, =c,X,=c¢,...X, =c¢c, )= D' Py --D,
/ K' CisCyreresC,,
e Probabilities of each
Joint distribution Multinomial # ways of .
ordering the successes  ordering are equal and

mutually exclusive

where Y'c, =n and =
L Cl5CyseennC |l !

m



Hello Die Rolls, My Old Friends

- b-sided die is rolled 7 times

» Roll results: 1 one, 1 two, O three, 2 four, O five, 3 six

P(X, =1 X,=1X,=0,X,=2,X,=0,X, =3)

ot (I -2

- This is generalization of Binomial distribution
» Binomial: each trial had 2 possible outcomes
« Multinomial: each trial has m possible outcomes




Probabilistic Text Analysis

Ignoring order of words, what is probability of any
given word you write in English?
« P(word = “the”) > P(word = “transatlantic”)

« P(word = “Stanford”) > P(word = “Cal”)
= Probability of each word is just multinomial distribution

- What about probability of those same words in
someone else’s writing?
« P(word = “probability” | writer = you) >
P(word = “probability” | writer = non-CS109 student)

= After estimating P(word | writer) from known writings,
use Bayes’ Theorem to determine P(writer | word) for
new writings!



Text is a Multinomial

Example document:

“Pay for Viagra with a credit-card. Viagra is great.
So are credit-cards. Risk free Viagra. Click for free.”
n=18

It's a Multinomial!

Viagra =2 /‘\ ~

Free =2

I
Risk=1 . n. 2. 2 9
i ( Credit-card: 2 ]Spam> ~ 9101, o1PviagraPiee - - - Pfor

For =2 Y
The probability of a word in
spam email being viagra

Probability of seeing
this document | spam




Old and New Analysis

- Authorship of “Federalist Papers” FEDERALIST:
- 85 essays advocating ratification of e
US COﬂStitution NEWCONSTITUTION
« Written under pseudonym “Publius”

et e

- Really, Alexander Hamilton, James
Madison and John Jay

« Who wrote which essays?

o Analyzed probability of words in each
essay versus word distributions from
known writings of three authors

. Filtering Spam
- P(word = "Viagra” | writer = you)
<< P(word = “Viagra” | writer = spammer)






Expectation with Multiple Variables?



Joint Expectation
E[X] = xp(x)

Expectation over a joint isn't nicely defined because it is not
clear how to compose the multiple variables:
* Add them? Multiply them?

Lemma: For a function g(X,Y) we can calculate the
expectation of that function:

Elg(X,Y)] =) g(z,y)p(z,y)

By the way, this also holds for single random variables:

Elg(X)] =) g(z)p(x)



Expected Values of Sums

E[X + Y] = E[X] + E[Y]

Generalized: E[z Xl-] = ZE[X,-]

Holds regardless of dependency between X's



Skeptical Chris Wants a Proof!

Let g(X,Y) = [X + Y]

EX+Y]|=FE[g(X,Y)] = Zg(xa y)p(z,y) What a useful lemma
Y

By the definition of
— Z[CIZ + ylp(z, y) g(x,y)
x,y

Break that sum

info parts! = Z ajp(a:, y) + Z yp(% y)
T,y L,y

Change the sum
of (x,y) into _
separate sums Z:EZp(x,y) + S:yy:p(:my)
£ Yy Y xT
That is the definition of
marginal probability — Z xp(x) + Z yp(y)

That is the definition of
expectation — [X] + E[Y]




Independence and Random Variables



Independent Discrete Variables

- Two discrete random variables X and Y are
called independent if:

p(x,y)=py(x)p,(y) forallx,y

- Intuitively: knowing the value of X tells us nothing
about the distribution of Y (and vice versa)

« If two variables are not independent, they are called
dependent

- Similar conceptually to independent events, but
we are dealing with multiple variables
» Keep your events and variables distinct (and clear)!




Coin Flips

Flip coin with probability p of *heads”
« Flip coin a total of n + m times

« Let X = number of heads in first n flips

« Let Y = number of heads in next m flips

n X n—x m b% m-—y
p (1-p) p (1-p)
X Y
= P(X =x)P(Y = y)
« Xand Y are independent
« Let Z = number of total heads in n + m flips

« Are X and Z independent?
o What if you are told Z = 07?

P(X=x,Y=y)=(



Web Server Requests

Let N = # of requests to web server/day

« Suppose N ~ Poi(A\)

« Each request comes from a human (probability = p) or
from a “bot” (probability = (1 — p)), independently

« X =#requests from humans/day (X | N) ~Bin(N, p)
« Y = # requests from bots/day (Y | N) ~Bin(N, 1 -p)

P(X=i,Y=)=P(X=i,Y=j|X+Y =i+ HP(X+Y =i+ J)
/\ + LY =T X+ Y 21 F HP(X +Y =i+ j)

Probability of /i human
requests and j bot
requests

Probability of number of
requests in a day was i + j

Probability of / human
requests and j bot requests |
we got / + J requests



Web Server Requests

Let N = # of requests to web server/day

« Suppose N ~ Poi(A\)

« Each request comes from a human (probability = p) or
from a “bot” (probability = (1 — p)), independently

« X =#requests from humans/day (X | N) ~Bin(N, p)
« Y = # requests from bots/day (Y | N) ~Bin(N, 1 -p)

P(X=i,Y =j)=P(X =i,Y = j|X+Y =i+ )P(X +Y =i+ )
+P(X =i,Y = j| X +Y =i+ )P(X +Y =i+ )

= Note: P(X =i,V =j|X+Y =i+ j)=0

A ~—

You got / human requests You did not get / + J
and j bot requests requests



Web Server Requests

Let N = # of requests to web server/day

« Suppose N ~ Poi(A\)

« Each request comes from a human (probability = p) or
from a “bot” (probability = (1 — p)), independently

« X =#requests from humans/day (X | N) ~Bin(N, p)
« Y = # requests from bots/day (Y | N) ~Bin(N, 1 -p)

P(X =i,Y = ))=P(X =i,Y = j| X +Y =i+ )P(X +Y =i+ )



Web Server Requests

Let N = # of requests to web server/day

« Suppose N ~ Poi(A\)

« Each request comes from a human (probability = p) or
from a “bot” (probability = (1 — p)), independently

« X =#requests from humans/day (X | N) ~Bin(N, p)
« Y = # requests from bots/day (Y | N) ~Bin(N, 1 -p)

P(X =i,Y = ))=P(X =i,Y = j| X +Y =i+ )P(X +Y =i+ )

P(X =i,Y=j|X+Y=i+))= (”’)p(l Py o

P(X+Y=i+j)=e" (f:]]), Qd\sso(\
. . + 2 AitJ O
P(X =i,Y = j) = (Z ])p (1-p)Y e ¥



Web Server Requests

Let N = # of requests to web server/day

« Suppose N ~ Poi(A\)

« Each request comes from a human (probability = p) or
from a “bot” (probability = (1 — p)), independently

« X =#requests from humans/day (X | N) ~Bin(N, p)
« Y = # requests from bots/day (Y | N) ~Bin(N, 1 -p)

/ N G V)L A A 2 (Ap)' (A(l-p)y
P(X=1,Y=))= (i!;!) p'(-p)e AW _ ot ( 5) ( (J'p))
Re’?;?:\rs _ e—ﬁp (/‘Lﬁ)l ,e—ﬂ(l—P) (/‘L(l;'p))] _ P(X _ Z)P(Y _ ])

« Where X ~ Poi(Ap) and Y ~ Poi(A(1 — p))
« XandY are independent!



Independent Continuous Variables

- Two continuous random variables X and Y are
called independent if:

P(X<a,Y=b)=P(X=<=a)P(Y=b) foranya, b

- Equivalently:
Fy(a,b)=Fy(a)F,(b) foralla,b
fX,Y (a,b) = fX (a)fy (b) toralla,b

- More generally, joint density factors separately:
Jxy(X,¥) =h(x)g(y) where —o <,y <o



Pop Quiz (just kidding)

- Consider joint density function of X and Y:
fX,Y(xa y) = 6e e for 0< X,y <

« Are X and Y independent? Yes!
Let (x) =3e™* and g(») = 2¢™,50 fy , (x,») = h(x)g(¥)
- Consider joint density function of X and Y

Sry(x,¥y)=4xy for O<x,y<l
« Are X and Y independent? Yes!

Let A(x) =2xand g(y) =2y,80 fy,(x,y) =h(x)g(y)
» Now add constraint that: 0 <(x +y) <1
« Are X and Y independent? No!

o Cannot capture constraint on x + y in factorization!



Dating at Stanford

- Two people set up a meeting for 12pm

= Each arrives independently at time uniformly
distributed between 12pm and 12:30pm

« X =# min. past 12pm person 1 arrives X ~ Uni(0, 30)
« Y =# min. past 12pm person 2 arrives Y ~ Uni(0, 30)
= What is P(first to arrive waits > 10 min. for other)?

P(X+10<Y)+PY +10< X)=2P(X +10 <Y) by symmetry
2P(X +10<Y) =2 fff(x,y)dxdy=2 fffX(x)fY(y)dxdy

x+10<y x+10<y
30 y-10 2 30 y-10 30
1 2 2 y-10 2
2| f(5p) =g [[ fir] =5 [ (" )ar= s for-om
y= X y= xX= y= y=

30= 2
10 302

2 y2
I AT
302(2 y)




Independence of Multiple Variables

- nrandom variables X,, X,, ..., X, are called
independent if:

P(X, =x,X,=x,....,X, =x) =HP(XZ. = x,) forallsubsetsof x,x,,...,x,
i=]

- Analogously, for continuous random variables:

P(X =a,X,=a,,.,X =a,) =1_[P(Xl. <aq,;) forallsubsetsof a,,a,,...,a,
i=1



Independence is Symmetric

If random variables X and Y independent, then
« Xindependent of Y, and Y independent of X

Duh!? Duh, indeed...

« Let X4, X, ... be a sequence of independent and
identically distributed (1.1.D.) continuous random vars

« Say X, > X;foralli=1,...,n-1 (i.e. X, =max(Xy, ... ,X,))
o Call X, a “record value”
« Let event A, indicate X is “record value”
o Is A1 iIndependent of A,?
o Is A, independent of A,,?
- Easier to answer: Yes!
o By symmetry, P(A,) = 1/n and P(A,.¢) = 1/(n+1)
o P(Aq Aniq) = (1/n)(1/(n+1)) = P(A,)P(Ans1)



Earth Day



Choosing a Random Subset

From set of n elements, choose a subset of size k

such that all Z possibilities are equally likely

« Only have random (), which simulates X ~ Uni(0, 1)
Brute force:

« Generate (an ordering of) all subsets of size k

+ Randomly pick one (divide (0, 1) into[ , | intervals)

« Expensive with regard to time and space

« Bad times!



(Happily) Choosing a Random Subset

- Good times:

int indicator (double p) {
if (random() < p) return 1; else return O;

}

// array I[] indexed from 1 to n
subset rSubset(k, set of size n) {
subset size = 0;
I[1l] = indicator((double)k/n) ;
for(i =1; 1 < n; i++) {
subset size += I[i];
I[i+1l] = indicator((k - subset size)/(n - i));

}

return (subset containing element[i] iff I[i] == 1) ;
} i
P(I[11=1)=— and P(U[i +1]=1|I[1],...,I[i]) = —-=— where 1<i<n

n



Random Subsets the Happy Way

Proof (Induction on (k + n)): (i.e., why this algorithm works)
« Base Case: k=1,n=1, Set S ={a}, rsubset returns {a} with p=1/(1)
= Inductive Hypoth. (IH): fork + x < ¢, Given set S, [S| = x and k = X,

rSubsetreturns any subset S’ of S, where |S’| =k, with p =1/(;)

= Inductive Case 1: (wherek+n<c+1) |S|=n(=x+1),I[1] =1
o Elem 1 in subset, choose k — 1 elems from remaining n — 1 |
o By IH: rsubsetreturns subset S’ of size k — 1 with p = l/(n_ )

> P(I[1]= 1, subset S’>=§1/(Zj)=/(z) |

= Inductive Case 2: (wherek+n=<=c+1) [S|=n(=x+1),I[1] =0
o Elem 1 not in subset, choose k elems from remaining n — 1

o By IH: rsubsetreturns subset S’ of size k withp =1

- P(I[1]= 0, subset S') = (1—5)1/(71;;1) =(n;k)l/(nl:1) =1/(Z)

\




Sum of Independent Binomial RVs

Let Xand Y be independentrandom variables
» X~Bin(n4, p) and Y ~ Bin(n,, p)

« X+Y ~Bin(ny + ny, p)

Intuition:

= X has n; trials and Y has n, trials
o Each trial has same “success” probability p

« Define Z to be n, + n, trials, each with success prob. p
« Z~Bin(ny +n,, p),andalso Z=X+Y
More generally: X; ~ Bin(n,, p) for1 <i< N

EX) Bm(i N p)

1



Sum of Independent Poisson RVs

Let Xand Y be independentrandom variables
« X~Poi(A;) and Y ~ Poi(\,)

- X +Y ~Poi(: + \)

Proof: (just for reference)

» Rewrite (X+Y=n)as (X=k,Y=n—-k)where 0<k=n
P(X+Y=n)=iP(X=k,Y=n—k)=iP(X=k)P(Y=n—k)

o A g A ey AKT_EIK Al
; K (n=k) S K(n-k)  n Ak(n-k)

. . . _ A n! k ank
- Noting Blnorrllil%’fheorem. (A +2)" = 2) PTG
(4, +4,) so, X +Y =n~Poi(: +1\,)

» P(X+Y=n)=
n!



