CS 109
Lecture 14
April 27th, 201 -




Assignment Grades
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We have 2055 assignment distributions from grade scope



Review



Two parts to last class:
Convolution and Conditionals with
Random Variables



Convolution of Probability Distributions

We talked about sum of Binomial, Normal and
Poisson...who's missing from this party?

Uniform.



Dance, Dance Convolution

- Let Xand Y be independentrandom variables
» Cumulative Distribution Function (CDF) of X +Y:

F..,(@a)=P(X+Y =a) o amy
L= AOs0ddy = [ [f@dx £ () dy
%

x+y=a =—00 X=—00
0 y y

fF (a NHOY

y——OO

= Fyx.yis called convolution of Fy and Fy



Discrete Conditional Distribution

- Recall that for events E and F:

P(EF)

P(E|F) = )

where P(F)>0

F
E




Conditional Probability
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P(Status | Year)
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It's complicated
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Sophomore
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5+



Web Server Requests Redux

- Requests received at web server in a day

« X =#requests from humans/day X ~ Poi(\,)

« Y =# requests from bots/day Y ~ Poi(\,)

« XandY are independent - X+ Y ~Poi(A; +1\,)

« Whatis P(X=k|X+Y =n)?

P(X =k,Y=n-k) P(X=k)P(Y =n-k)
P(X +Y =n) P(X +Y =n)

e"ll/'l1 ek n! nl A"

P(X =k|X+Y =n)=

K (n=k)! e%*‘z)(zqmz) k!(n—k)! (A +4,)"

k n-k

=(Z)(ﬁ@) (ﬁf@)

. A1
X|X +Y =n) ~ Bin(n.
(X n) in (n N+ )\2)




End Review



Let’s talk a little more about conditional
probabilities with RVs



Continuous Conditional Distributions

- Let Xand Y be continuous random variables
« Conditional PDF of X given Y (where f\(y) > 0):

fX,Y(x:Y)
Sy (¥)

fX|Y(x | V) =



Let’'s Do an Example

- XandY are continuous RVs with PDF:

12
x(2-x- where O<x,v<1
(6, 7) = { (E=x=y) <%y
otherwise

= Compute conditional density: fy,(x]»)

fX,Y(xa »)

fX|Y('x|y)= O

12x(2—x—y) _ x(2 x=y)  x(2-x-y)

2 11
2 X XYy
2

0




Independence and Conditioning

- [f X andY are independentdiscrete RVs:

X = x|Y =y o PX =0T =) PX=0)P(Y =)

= P(X =x)
Z P(Y =y) P(Y =y)

Pxy (%) _ pyr(x)py ()
py(y) py(y)

pX|Y(x|y) = = Py (X)

a

Sanity check: what do these different notations mean?

- Analogously, for independent continuous RVs:

_ fX,Y(x’y) _ fx(x) fy(¥) _
fX|Y(x | ) 0 () Sx(x)




Mixing Discrete and Continuous

. Let X be a continuous random variable

- Let N be a discrete random variable
= Conditional PDF of X given N:

Pnix (n]x) [y (x)
py(n)

fX|N(x |n) =

= Conditional PMF of N given X:

fX|N (x| n)py(n)
Sx(X)

Pnix (n]x)=

« If Xand N are independent, then:
fX|N(x|n) = fx(x) pN|X(n|x) = py(n)



We will use that shortly



Beta Random Variable

- X is a Beta Random Variable: X ~ Beta(a, b)
= Probability Density Function (PDF):  (where a, b > 0)

1 xa—l (l_x)b—l

o _ ] w =
! Il !
t t

1
B(a,b) O<x<l . -
J(x)=- where B(a,b) =fx“ (1-x)""dx
0 otherwise 0
T Beta(2,8) Beta(8,2) 5 1
Beta(5,5) 4 Beta(0.2,0.8) Beta(0.8,0.2)
2 . Beta(1,2) 31
; m / 2 -
Beta(2,1) 14 Beta(0.8,0.8)
vy
0 t t
0 0.2 0.4 06 08 1

« Symmetric when a=>b

- Var(X) = ab
a+b (a+b) (a+b+1)

. E[X]=



Meta Beta

T Beta28) Beta,2) ] *]
=+ Beta(0.8,0.2
Beta(5,5) 1l Betan.2,0.8) eta0.8,0.2)
2 ™~ Beta(1,2) 34
Beta(1,1) 2
1
Beta@.1) 14 Beta(0.8,0.8)
4
0 : : . . t 0 t t t t t
0 02 04 06 08 1 0 0.2 0.4 06 0.8 1

Used to represent a
distributed belief of a probability



Flip a Coin With Unknown Probability

Flip a coin (n + m) times, comes up with n heads
= We don't know probability X that coin comes up heads

Frequentist

, n
X = Ilim
n+m—oo N, + M
n
n+m

X iIs a single value

Bayesian

fxn(z[n) =
P(N =n|X =) fx(x)

P(N =n)

X is a random variable



Flip a Coin With Unknown Probability

Flip a coin (n + m) times, comes up with n heads

= We don't know probability X that coin comes up heads

= Our belief before flipping coins is that: X ~ Uni(0, 1)

« Let N = number of heads

» Given X = x, coin flips independent: (N | X)~Bin(n +m, x)
P(N =n|X =2x)fx(x)

fXN(%") - P(N = n)
Bayesian Bayesian "prior”
"posterior” probability
probability distribution

distribution



Flip a Coin With Unknown Probability

Flip a coin (n + m) times, comes up with n heads

= We don't know probability X that coin comes up heads

= Our belief before flipping coins is that: X ~ Uni(0, 1)

« Let N = number of heads

» Given X = x, coin flips independent: (N | X)~Bin(n +m, x)
lZ(N =n|X = a:)‘ix(x)l 1

fX|N(5’7‘n)/: P(N = n)
Binomial B (”:m);,;n@ —x)™ Ay
~ P(N=n) e fe .
(5 iy g S
= P(N:n)x (1 —x)



Dude, Where’s My Beta?

Flip a coin (n + m) times, comes up with n heads

= Conditional density of X given N =n
1

1
fyn(x|n)=—-x"(1-x)" where c=fx”(1—x)’"dx
¢ 0

» Note: O0<x<I1, so f,,(x|n)=0 otherwise
= Recall Beta distribution:

1 xa—l (l_x)b—l

1
f(x) =] B@h) O<x<l B(a,b) = [x"(1-x)" d
0

0 otherwise

« Hey, that looks more familiar now...
« X|(N=n,n+mtrials) ~Beta(n+1, m+ 1)



Understanding Beta

« X|(N=n,m+ntrials)~Beta(n+1, m+1)
= X~Uni(0, 1)
= Check this out, boss:  f(x)=
- Beta(1, 1) = Uni(0, 1)
. So, X ~ Beta(1, 1) L
= “Prior” distribution of X (before seeing any flips) is Beta
= “Posterior” distribution of X (after seeing flips) is Beta

- Betais a conjugate distribution for Beta
= Prior and posterior parametric forms are the same!
» Beta is also conjugate for Bernoulli and Binomial

= Practically, conjugate means easy update:
o Add number of “heads” and “tails” seen to Beta parameters

1 xa—l (1 _ x)b—l — 1
B(a,b) B(a,b)
1

x'(1-x)°

=1 where O<x<1




Further Understanding Beta

Can set X ~ Beta(a, b) as prior to reflect how
biased you think coin is apriori
= This is a subjective probability!

= Then observe n + m trials,
where n of trials are heads

[ Beta(2,8) Beta(8,2)

Beta(5,9)

— N w =
' : | '

Update to get posterior probability
« X | (n heads in n + m trials) ~Beta(a + n, b + m)
« Sometimes call a and b the “equivalent sample size”

= Prior probability for X based on seeing (a + b — 2)
“imaginary” trials, where (a — 1) of them were heads.

« Beta(1, 1) ~ Uni(0, 1) - we haven’t seen any
“Imaginary trials”, so apriori know nothing about coin



Flip a Coin With Unknown Probability

Demo



Assignment Grades
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We have 2055 assignment distributions from gradescope



Binomial
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Grades must be bounded



Normal: No



Poisson: No



Exponential: No



Beta: Yes



Assignment Grades Demo

Assignment id = ‘1613’

10 20 30 40 50 60 70 &80 90 100

Frequency




Assignment Grades Demo

Assignment id = ‘1613’

Frequency

10 20 30 40 50 60 70 &80 90 100

X ~ Beta(a = 8.28,b = 3.16)



Assignment Grades
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We have 2055 assignment distributions from grade scope



Beta is a Better Fit
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Unpublished results. Based on Gradescope data



Beta is a Better Fit For All Class Sizes
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Binomial Interpretation

Each student has the same probability of getting each
point. Generate grades by flipping a coin 100 times for
each student. The resulting distribution is binomial.

- Binomial



Normal Interpretation

The sum of equally weighted independent random
variables will produce a normal. Each point is an
equally weighted, independent random variable.

- Normal



Beta Interpretation

Each student has a different probability of getting
points. A student’s grade is a sum of coin flips based
on their personal probability. The distribution of
iIndividual probabilities is a Beta distribution.

- Beta



Assignment Grades
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Assignment Grades Demo

What is the semantics of E[X]?

Frequency

10 20 30 40 50 60 70 &80 90 100

X ~ Beta(a = 8.28,b = 3.16)



Assignment Grades

What is the probability that a student is bellow the mean?

X ~ Beta(a = 8.28,b = 3.16)

a 8.28

ElX]| = —
X a+b 8284+ 3.16

~ 0.7238

P(X < 0.7238) — FX(O.7238)
Wait what? Chris are you holding out on me?
JStat.beta.cdf (x, alpha, beta)

P(X < E[X]) = 0.46



Implications

Will be combined with Item Response Theory which
models how assignment difficulty and student ability
combine to give point probabilities.

Suggests a way to calculate final grades as a
probabilistic most likely estimate of “ability”.

Machine learning on education data will be more
accurate.

Analysis of “mixture” distributions can be fixed.



Will you use this in CS109?



No



Beta:
The probability density
for probabilities



Recall:
Expectation with Multiple Variables



Joint Expectation
E[X] = xp(x)

Expectation over a joint isn't nicely defined because it is not
clear how to compose the multiple variables:
* Add them? Multiply them?

Lemma: For a function g(X,Y) we can calculate the
expectation of that function:

Elg(X,Y)] =) g(z,y)p(z,y)

By the way, this also holds for single random variables:

Elg(X)] =) g(z)p(x)



Expected Values of Sums

E[X + Y] = E[X] + E[Y]

Generalized: E[z Xl-] = ZE[X,-]

Holds regardless of dependency between X's



Skeptical Chris Wants a Proof!

Let g(X,Y) = [X + Y]

EX+Y]|=FE[g(X,Y)] = Zg(xa y)p(z,y) What a useful lemma
Y

By the definition of
— Z[CIZ + ylp(z, y) g(x,y)
x,y

Break that sum

info parts! = Z ajp(a:, y) + Z yp(% y)
T,y L,y

Change the sum
of (x,y) into _
separate sums Z:EZp(x,y) + S:yy:p(:my)
£ Yy Y xT
That is the definition of
marginal probability — Z xp(x) + Z yp(y)

That is the definition of
expectation — [X] + E[Y]




Hash Tables (aka Toy Collecting)

Consider a hash table with n buckets

« Each string equally likely to get hashed into any bucket
« Let X = # strings to hash until each bucket = 1 string

« What is E[X]?

= Let X; = # of trials to get success after i-th success

o wWhere “success” is hashing string to previously empty bucket

o After i buckets have = 1 string, probability of hashing a string to

an empty bucketis p=(n—1i)/n
. . k-1
o P(X, =k)=""L[L equivalently: X ~ Geo((n—1i) / n)
n \n
o E[X]=1/p=n/(n-i)
» X=X+ X+ ...+ X, = E[X]=E[X,]+ E[X{]+...+ E[X,_{]

1 1
— +
n n-1

E[X]=ﬁ+ P L
n n-1 n-=-2

+...+1|=0(nlogn)



Course Mean

E[CS109]

This is actual midpoint of course
(Just wanted you to know)



