Lecture 19
May 9th, 2016




25

20

15

10

E[X] = 87

Midterm Distribution

VVar(X) = 15
median = 90




Midterm Distribution

E[X] =87
VVar(X) = 15

20

15

10

median = 90




25

20

15

10

10
15
20
25

Midterm Distribution

E[X] =

\/Var(X) =15
median = 90

30

Core Advanceq
Understanding Understanding

v—1v—1‘_“_‘v—<



25

20

15

10

Midterm Beta

E[X] =87

VVar(X) = 15

median = 90

a="7.1

B=2.7

— o T e ey



1.0
0.8
0.6
0.4
0.2
0.0

0.14
0.12
0.10
0.08
0.06
0.04
0.02
0.00

Midterm Beta

CS109 Midterm CDF

You can interpret
this as a percentile

function

20

CS109 Midterm PDF

Derivative of
percentile per point

40

20

40

60

60

80

80

100

100

120

120



100

50

100

50

100

50

Midterm Question Correlations

.

10 12 14 16 18 20 22 24

Problem 1

2 4 6 8
Problem 3
2 4 6
Problem 5
2 4 6 8

18 20

12

Problem 2
100
50 ||||
O [
2 4 6 g 10 12 14 18 20
Problem 4
100
0 _u
2 4 6 8 18 20
Problem 6
100

I

2 4 6 8 10 12 14 16 18 20 22 24




Midterm Question Correlations

2.C —2D 4.c

Lb \ / / Correlation
\ 2.a

l.c 6.c B 0.60
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*Correlations bellow 0.22 are not shown R

** Almost all correlations were positive >



Joint PMF for Questions 6.q,6.c
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Conditional Expectation

- Let X be your score on problem 4.

I use standard

- Let Y be your score on problem 6. error because
expectation is
- E[X | Y]’? from a sample
20
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1. Inequalities



Inequality, Probability and Joviality

- In many cases, we don’t know the true form of a
probability distribution

- E.g., Midterm scores

« But, we know the mean

« May also have other measures/properties
o Variance
o Non-negativity
- Etc.

« Inequalities and bounds still allow us to say something
about the probability distribution in such cases

- May be imprecise compared to knowing true distribution!



Markov’s Inequality

- Say X is a non-negative random variable

P(X=za)s E[X], forall a>0
a

- Proof:
« /=1if X=a, 0 otherwise \
X

» Since X =20, [ <—
a

« Taking expectations:

E[[]=P(Xza)sEl£]
a

_ E[X]

a




Andrey Markov

- Andrey Andreyevich Markov (1856-1922)was a
Russian mathematician

« Markov’s Inequality is named after him

« He also invented Markov Chains...
o ...which are the basis for Google’s PageRank algorithm



Markov and the Midterm

Statistics from a previous quarter's CS109 midterm
« X = midterm score

« Using sample mean X = 86.7 = E[X]

« What is P(X = 100)?

E[X] 86.7
100 100

~ 0.867

P(X =100) <

« Markov bound: = 86.7% of class scored 100 or greater

« In fact, 20.1% of class scored 100 or greater
o Markov inequality can be a very loose bound

o But, it made no assumption at all about form of distribution!



Chebyshev’s Inequality

. X is a random variable with E[X] = u, Var(X) = o?

2
P(\X—M\zk)s%, forall k>0

- Proof:

. Since (X — u)? is non-negative random variable, apply

Markov’s Inequality with a = k?
E[(X-w?’] o’
- Note that: (X —u)*=k*> < [X—u|=k, yielding:

02

P(‘X—Iu‘zk)sﬁ




Pafnuty Chebyshev

. Pafnuty Lvovich Chebyshev (1821-1894) was also
a Russian mathematician

« Chebyshev’s Inequality is named after him
o But actually formulated by his colleague Irénée-Jules Bienaymé

- He was Markov’'s doctoral advisor
- And sometimes credited with first deriving Markov’s Inequality

= There is a crater on the moon named In his honor



2. Law of Large Numbers



Weak Law of Large Numbers

- Consider |.1.D. random variables X4, X, ...
- X; have distribution F with E[X]= uand Var(X,) = o°

_ 1
Let X=;;Xi

« Forany > 0:
P(‘)?—ﬂ‘ =>g)———0

Proof:
E[X] = ELXI+X2n+...+X J u  Var(X) = Var( $ Xyt X )= o’

n n

« By Chebyshev’s inequality:

—_ 0-2 I
P(‘X—y‘zk)svarTm P(‘X—ﬂ‘zg)sng >()




Strong Law of Large Numbers

Consider |.I.D. random variables X, X,, ...
« X; have distribution F with E[X] = u

_ 1
= Let X=;;Xi

P(lim(X1+X2+"'+X”)=u)=l

n—>00 n

« Strong Law = Weak Law, but not vice versa

« Strong Law implies that for any £ > 0, there are only a
finite number of values of n such that condition of

Weak Law: |.X - 4 = ¢ holds.



Intuitions and Misconceptions of LLN

Say we have repeated trials of an experiment
» Let event E = some outcome of experiment
« Let X;=1if E occurs on trial i, O otherwise

» Strong Law of Large Numbers (Strong LLN) yields:
X+ X, +..+ X,

n
» Recall first week of class: P(E) = lim

n—oo

n
« Strong LLN justifies “frequency” notion of probability

— E[X,]= P(E)
n(E)

= Misconception arising from LLN:
o Gambler’s fallacy: “I'm due for a win”
o Consider being “due for a win” with repeated coin flips...



La Loi des Grands Nombres

History of the Law of Large Numbers e > %
- 1713: Weak LLN described by Jacob Bernoulli &# ~**

= 1835: Poisson calls it “La Loi des Grands Nombres”

o That would be “Law of Large Numbers” in French

- 1909: Emile Borel develops Strong LLN for
Bernoulli random variables

« 1928: Andrei Nikolaevich Kolmogorov proves
Strong LLN in general case




)

And now a moment of silence...
...before we present...

...the greatest result of probability theory!



3. Central Limit Theorem






The Centiral Limit Theorem

Consider |.I.D. random variables X, X, ...

. X; have distribution F with E[X]= uand Var(X,) = o°
. v _1Ix

« Let: X-= anle.

= Central Limit Theorem:

2

)_(~N(/,¢,O—) as n—o
n

Demo

http://onlinestatbook.com/stat sim/sampling_dist/



The Centiral Limit Theorem

Consider |.I.D. random variables X, X, ...
= X; have dlstrlbutlon F with E[X,] = uand Var(X;) =

Let: X == EX X N(ﬂ,—) as n— o

. Recall z=22- where Z ~ N(0, 1):

o’/n

( X ) "[1( X)ﬂ]_(E'?_X.)_W

O/n n\/O/n an
X+ X, +...+ X, —nu ~N(0,1) as n—w
on ’

Another form of the Central Limit Theorem
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Once Upon a Time...

History of the Central Limit Theorem

« 1733: CLT for X ~ Ber(1/2) postulated by
Abraham de Moivre

M - 1823: Pierre-Simon Laplace extends de Moivre’s
48| work to approximating Bin(n, p) with Normal

» 1901: Aleksandr Lyapunov provides precise
definition and rigorous proof of CLT

= 2003: Charlie Sheen stars in television series
“Two and a Half Men”

- By end of the 7th (final) season, there were 161 episodes

- Mean quality of subsamples of episodes is Normally
distributed (thanks to the Central Limit Theorem)




Central Limit Theorem in the Real World

- CLT is why many things in “real world” appear
Normally distributed

« Many quantities are sum of independent variables
= Exams scores
o Sum of individual problems on the SAT
o Why does the CLT not apply to our midterm?
= Election polling
o Ask 100 people if they will vote for candidate X (p; = # “yes’/100)
- Repeat this process with different groups to get p4, ..., p;,
o WIll have a normal distribution over p;
o Can produce a “confidence interval”
* How likely is it that estimate for true p is correct



Binomial Approximation

Consider |.1.D. Bernoulli variables X,, X,, ... With
probability p

- X; have distribution F with E[X]= uand Var(X,) = o°

= Let: )?:li)(. Let: YV =nX
n = l
_ L rem
X ~ N(,u, 0_2) as 7 — 00 Cer\’fm\ Limit Theo
2
o
Y ~ N(nu,n*—)
n
N mean Or}d
Y ~ N(np,np(1 —p)) subsfr\’m’ﬂr\%f gernoill



Your Midterm on the Central Limit Theorem

. Start with 370 midterm scores: X4, X, ..., X370
« E[X] =87 and Var(X)) = 225
« Created 50 samples (Y; ) of size n =10

- Prediction by CLT: Y; ~ N(87,22.5)

Y, -E[X)] Yi-87 Z= 7, — 4 % 10-16
Zi = = 50 <
Vo?/n V22.5 T =l
Var(Z) = 0.997
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Estimating Clock Running Time

- Have new algorithm to test for running time
= Mean (clock) running time: u = t sec.
» Variance of running time: 0% = 4 sec?.

« Run algorithm repeatedly (I.1.D. trials), measure time
o How many trials so estimated time =t + 0.5 with 95% certainty?
o X; = running time of i-th run (for 1 < i < n)

"X,
0.95 = P(—0.5 < i1 —t<0.5)
n

o By Central Limit Theorem, Z ~ N(O, 1), where:

o (Z?:l Xi) —ny

Ly, = o
(Z?:l X;) —nt

2y/n




nt

0.95 = P(—0.5 < < 0. = Wi

0.95 = P(—0.5 < 2iz1 Xi t <0.5)
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Estimating Time With Chebyshev

- Have new algorithm to test for running time
» Mean (clock) running time: u = t sec.
» Variance of running time: 0% = 4 sec?.

= Run algorithm repeatedly (I.1.D. trials), measure time
- How many trials so estimated time =t = 0.5 with 95% certainty?

o X; = running time of i-th run (for 1 < i = n),

=1 N
2

- What would Chebyshev say? P(X;-us|=k)=

2)’? =t 052=Var(2 n) EVar(

4/n 16
(0.5 =n

k2
) o’ 4

_n— —
n

Us =E

n

Xi
2

P( ~0.05 = n=320

Thanks for playing, Pafnuty!

=(0.5) <




Crashing Your Website

Number visitors to web site/minute: X ~ Poi(100)
« Server crashes if = 120 requests/minute
« What is P(crash in next minute)?

00 -100 i
= Exact solution: P(X =120) = E ° (.}OO) ~0.0282
i=T20 2

. Use CLT, where Poi(100) ~ EPoi(IOO/n) (all 1.1.D)
=1

Y-100 119.5-100

=
v100 7100

o Note: Normal can be used to approximate Poisson

P(X =120) = P(Y =119.5) = P(

) =1-®(1.95) ~0.0256



It's play time!



Sum of Dice

- You will roll 10 6-sided dice (X, X, ..., X40)

« X =total value of all 10 dice = X, + X, + ... + X,
« Winif: X<25 or X=45
« Roall!

- And now the truth (according to the CLT)...



1-P(25.5= X <44.5)=1-P(

Sum of Dice

- You will roll 10 6-sided dice (X, X,, ..., X4o)
« X =total value of all 10 dice = X; + X, + ... + Xy
« Winif: X<25 or X=45

X+ X, +...+ X —nu

Recall CLT: — N(0,1) as n—®
oJn
» Determine P(X = 25 or X = 45) using CLT:
w=E[X ]=35 o =Var(Xl.)=f—§

25.5-10(3.5) _ X -10(3.5) _44.5-10(3.5)
V3571210~ /35712410~ +/35/124/10

)

~1-(2®(1.76) 1) ~ 2(1 - 0.9608) = 0.0784



Wonderful Form of Cosmic Order

| kKnow of scarcely anything so apt to impress the
imagination as the wonderful form of cosmic order
expressed by the "[Central limit theorem]". The law
would have been personified by the Greeks and
deified, if they had known of it. It reigns with serenity
and in complete self-effacement, amidst the wildest
confusion. The huger the mob, and the greater the
apparent anarchy, the more perfect is its sway. It is
the supreme law of Unreason. Whenever a large
sample of chaotic elements are taken in hand and
marshalled in the order of their magnitude, an
unsuspected and most beautiful form of regularity
proves to have been latent all along.

-Sir Francis Galton
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