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Predict Housing Prices

Price (1000$s)

price (in $1000)

Living area (feet?)

2104 400
1600 330
2400 369
1416 232
3000 540
T T
1000 -
900 |
800 |-
700 - X
600 |- X
X
X
500 X
X X X
X
400 X
X X
X X XXy
300 X X x ><>< % X x
Xk ok X
200 x
X x
100
o L
500 10100 15I00 20100 25100 30I00 35100 4060 45I00 5000

square feet

[Andrew Ng]
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Parameter Estimation




What are Parameters?

- Consider some probability distributions:

- Ber(p) 0=p

« Poi(A\) 6= A

. Uni(a, B) 6= (a, B)
= Normal(u, o2) 0= (u, 0%
» Y=mX+b 0= (m, b)
= etc...

. Call these “parametric models”

- Given model, parameters yield actual distribution

« Usually refer to parameters of distribution as 6
» Note that 6 that can be a vector of parameters
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Recall Sample Mean + Variance?

Consider n |.1.D. random variables X4, X,, ... X,
- X; have distribution F with E[X]= u and Var(X,) = o°

« We call sequence of X; a sample from distribution F

n

« Recall sample mean: X = X, where E[X]=
. U
=1

2
X~Nuw?) as n—o
n

» Recall sample variance:

n _ v\ 2
S? = 2 (X, = X) _ undefined

n-—1



Method of Moments

Recall: n-th moment of distribution for variable X:

m =E[X"]

- Consider I.I.D. random variables X,, X,, ..., X,

I | (L |

are called the “sample moments”
- Estimates of the moments of distribution based on data

Method of moments estimators

momepts to sample moments: ke ? 00155
m. =m. ?,5" 00‘\\\ \
i i Be’(“ v\ ﬂ'(\o



Method of Moments with Uniform

- Consider |.1.D. random variables X4, X, ..., X,
« X; ~Uni(a, P)
» Estimate mean: [
U=t ==X, =
« Estimate variance:
o> ~ 1, — (i) = 2 X=X &

n
a+f

« For Uni(a, B), know that: u«=

» Solve (two equations, two unknowns):

o Set f=2u— a, substitute into formula for 6? and solve:
G=X-~36 and B=X++/36



Method of Moments with Uniform

J(X=x)




End Review
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Great idea in Machine Learning



Likelihood of Data

Consider n |.1.D. random variables X4, X,, ..., X,

= X;is a sample from density function f(X; | 6)
o Note: now explicitly specify parameter 6 of distribution

» We want to determine how “likely” the observed data
(X1, Xo, ..., X,) is based on density f(X;| 6)

» Define the Likelihood function, L(6):
L(6) =Hf(Xi 16)

o This is just a product since X, are |.1.D.

« Intuitively: what is probability of observed data using
density function f(X;| 8), for some choice of 6

Demo




Maximum Likelihood Estimator

- The Maximum Likelihood Estimator (MLE) of 6,
is the value of 6 that maximizes L(6)

= More formally: 6,,, =argmax L(8)
0



Argmax

flx)=—2*+5

max —x2+5
€I

argmax — x° + 5



Argmax of Log

Graph for log(x)

X £y < log(x) <log(y) forall x,y>0

Claim: argmax f(x) = argmax log f(x)



Log | Love You

log(ab) = log(a) + log(b)
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Maximum Likelihood Estimator

- The Maximum Likelihood Estimator (MLE) of 6,
is the value of 6 that maximizes L(6)

« More formally: 6,,, =argmax L(8)
0
« More convenient to use log-likelihood function, LL(6):
LL(0) =1og L(0) =10gﬂf(Xi |60) = zlogf(Xi |6)

« Note that /log function is “monotone” for positive values
o Formally: x =y < log(x) < log(y) forall x,y >0

» S0, 6 that maximizes LL(6) also maximizes L(6)
o Formally: argmax LL(6) = argmax L(6)
0 0

o Similarly, for any positive constant ¢ (not dependent on 6):
argmax(c- LL(6))=argmax LL(6) = argmax L(6)
0 0 0



Computing the MLE

- General approach for finding MLE of 6

» Determine formula for LL(6)
ILL(6)
06

= Differentiate LL(68) w.r.t. (each) 6

ILL©O) _,

= To maximize, set

= Solve resulting (simultaneous) equations to get 6, £

> Make sure that derived g, , . is actually a maximum (and not a
minimum or saddle point). E.g., check LL(6y g = €) < LL(6y¢)

» This step often ignored in expository derivations
- So, we'll ignore it here too (and won'’t require it in this class)



Maximizing Likelihood with Bernoulli

- Consider [.1.D. random variables X4, X, ..., X,
- X; ~ Ber(p)



Maximizing Likelihood with Bernoulli

- Consider I.I.D. random variables X,, X,, ..., X,
= X; ~ Ber(p)

» Probability mass function, f(X; | p):

PMF of Bernoulli PMF of Bernoulli (p = 0.2)

\_.

| -p 0.8
0.6
0.4

P
0.24

— 0 1 1

f(X;|p)= p" (l_p)l_xi f(ac) — ().Qx(l _ 0.2)1—90



Maximizing Likelihood with Bernoulli

- Consider I.I.D. random variables X,, X,, ..., X,
= X; ~ Ber(p)

« Probability mass function, f(X; | p), can be written as:
f(X;|p)=p" (l—p)l'xl' where x;, =0 or 1
. Likelihood: L(9) = ]‘1 V(1= )t
. Log-likelihood:
LL(6) ~ Zlog(pr (1-p)™) - Z[Xiaog p)+ (1= X,)log(1 - p)]

=Y(logp)+(n-Y)log(l- p) where Y = E; X,
« Differentiate w.r.t. p, and set to O:

oLL 1 -1 Y 1¢
(p) =0 = pMLE=;=;2Xi

=Y—+n-Y)
ap p 1-p



Maximizing Likelihood with Poisson

- Consider I.I.D. random variables X, X,, ..., X,

« X; ~Poi(\)
e—ﬂ;txi " AAX
- PMF: f(X,|A) = Likelihood: L(8) = H
x,!
= Log-likelihood:
/IAX

—)= i[ Jlog(e) + X, log(A) - log(X,})]

i=1

LL(O) = E log(
= —nl+ 1og(/1)2 X, - 2 log(X,!)

= Differentiate w.r.t. A, and set to O:

ILL(A) ] & 1 &
= -+ — X. =0 = A = — X,
I /1121 i 'MLE anl i




Maximizing Likelihood with Normal

- Consider I.I.D. random variables X,, X,, ..., X,
= X ~N(u, 0
. oy 1 -Gn-wtieo?)
» PDF: f(X,|u,07) = \/Eﬁe
= Log-likelihood:
LL(6) = 2 log(——e 7 = 2 — log(V270) - (X, - 0)* (20°)
= First, differentiate w.r.t. u, and set to O:

OLL(11,0°) _ 3 0y _ X
= 2(Xi_1u)/(20)=— (Xi_ﬂ)=0
ou 2 o’ 2

« Then, differentiate w.r.t. o, and set to O:

2 n n
ILL(107) _ 2—l+2(Xl. —u) Q0% = -2+ Z(X,- - /(07)=0
00 ~ O O £




Being Normal, Simultaneously

Now have two equations, two unknowns:

D mw=0 LD - ") =0

First, solve for uy e:

¢ : 1 ¢
?E(Xi_ﬂ)=0 d EXi=nﬂ = fuMLE=;2Xi
i=1 i=1 =

Then, solve for 62y g:
n n

—;+2(Xi—ﬂ)2/(03)=0 = no’ =2(Xi—ﬂ)2

=1
1 n
O’fm =; (Xi _ﬂMLE)2

i=

Note: uy e unbiased, but o4, ¢ biased (same as MOM)



Maximizing Likelihood with Uniform

.- Consider I.I.D. random variables X,, X,, ..., X,
= Xi ~ Uni(a, ﬁ)

. PDF: f(X,|a,B)=1P asx, <pf

0 otherwise

(7a)
« Likelihood: () =116~ A< X, Xy X, < 5

0 otherwise
o Constraint a < x4, X,, ..., X, < f makes differentiation tricky

o Intuition: want interval size (8 — «) to be as small as possible to
maximize likelihood function for each data point

- But need to make sure all observed data contained in interval
- If all observed data not in interval, then L(68) = 0

= Solution: OMLE — m|n(X1, . Xn) ﬁMLE maX(X1, ceey Xn)



Understanding MLE with Uniform

Consider |.1.D. random variables X;, X, ..., X,
.- X. ~Uni(0, 1)
= Observe data:

- 0.15, 0.20, 0.30, 0.40, 0.65, 0.70, 0.75

Likelihood: L(c,1) Likelihood: L(0, p)

3.5

L(a1) 2 / L(0, B)

0.5
0

O =~ N W, ouomoNO®

0.05
0.1
0.15
0.2
0.3
0.35
04
0.45
0.5
0.5
0.55
0.6
0.65
0.7
0.8
0.85
0.9
0.95

R 025

= 0.75



Once Again, Small Samples = Problems

- How do small samples affect MLE?

1 n
. In many cases, u,,, =—EXZ. = sample mean
n 4=
o Unbiased. Not too shabby...
. | R
» As seen with Normal, o;,, = —E(Xl. — Uy )
n =

- Biased. Underestimates for small n (e.g., 0 forn=1)

= As seen with Uniform, o2 a and B, < f
- Biased. Problematic for smalln (e.g.,a = whenn =1)
« Small sample phenomena intuitively make sense:

o Maximum likelihood = best explain data we've seen

o Does not attempt to generalize to unseen data



Properties of MLE

- Maximum Likelihood Estimators are generally:
. Consistent: lim P(|# -6 |<¢)=1fore>0

n—>00

« Potentially biased (though asymptotically less so)

= Asymptotically optimal

o Has smallest variance of “good” estimators for large samples

» Often used in practice where sample size is large
relative to parameter space

o But be careful, there are some very large parameter spaces



[on board, MLE of line]



From probability theory



To ML algorithm



Need a Volunteer

So good to see

you again




Two Envelopes

- | have two envelopes, will allow you to have one

One contains $X, the other contains $2X

Select an envelope
o Openit!

= Now, would you like to switch for other envelope?

To help you decide, compute E[$ in other envelope]

- LetY =$ in envelope you selected

E[$ in other envelope] = % g + % 2Y = % Y

Before opening envelope, think either equally good

So, what happened by opening envelope?
o And does it really make sense to switch?



