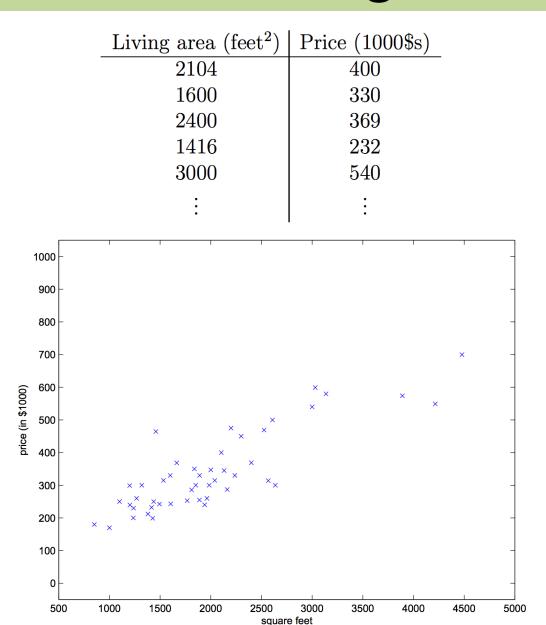
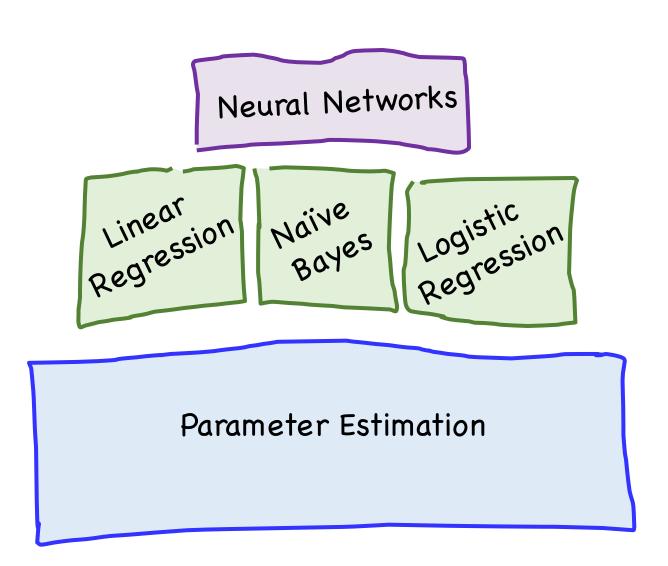


Predict Housing Prices



Review

Our Path



What are Parameters?

Consider some probability distributions:

• Uni(
$$\alpha$$
, β)

• Normal(
$$\mu$$
, σ^2)

•
$$Y = mX + b$$

$$\theta = p$$

$$\theta = \lambda$$

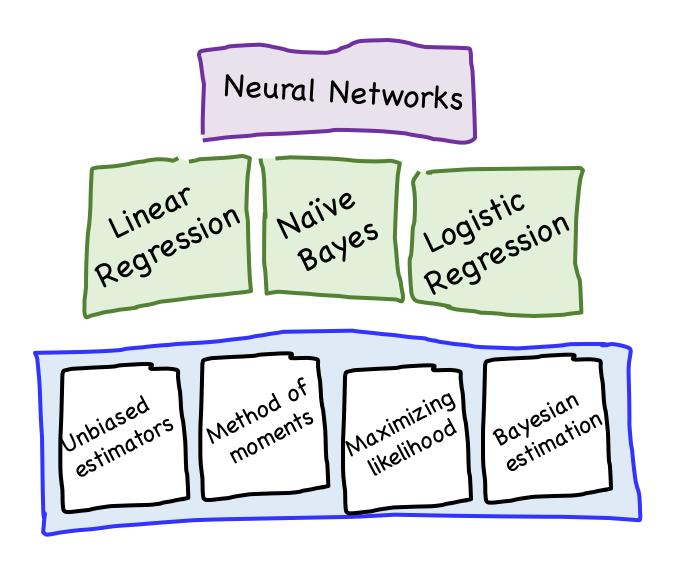
$$\theta = (\alpha, \beta)$$

$$\theta = (\mu, \sigma^2)$$

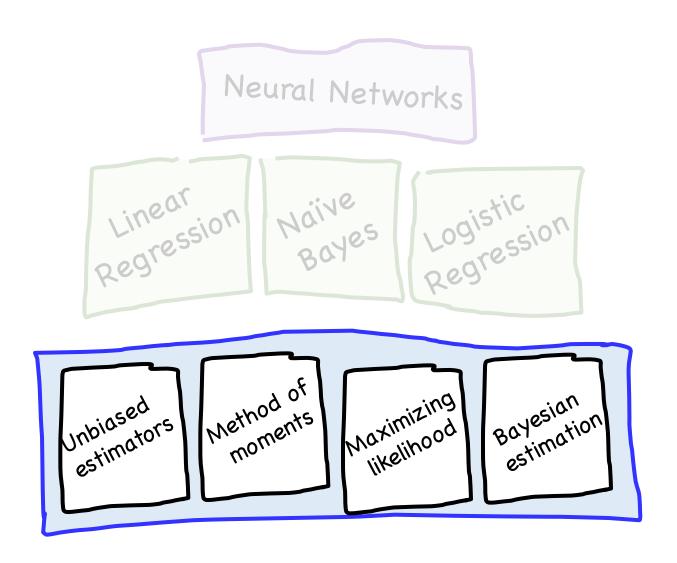
$$\theta$$
 = (m, b)

- Call these "parametric models"
- Given model, parameters yield actual distribution
 - Usually refer to parameters of distribution as θ
 - Note that θ that can be a vector of parameters

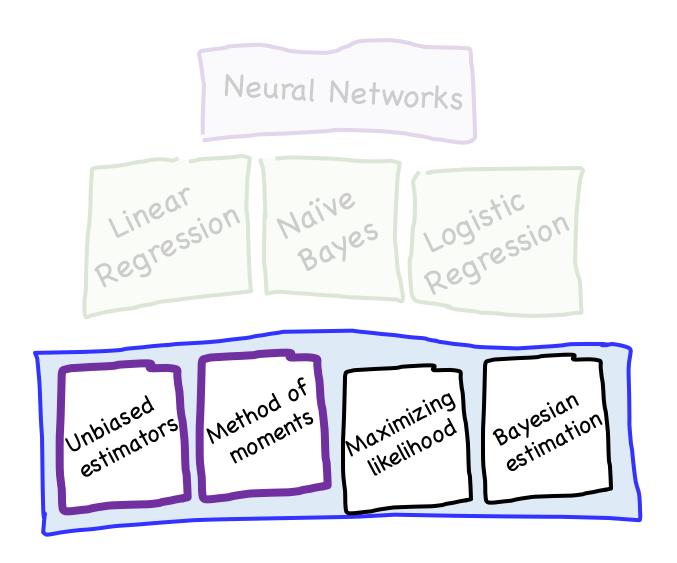
Our Path



Parameter Estimation



Parameter Estimation



Recall Sample Mean + Variance?

- Consider n I.I.D. random variables X₁, X₂, ... X_n
 - X_i have distribution F with $E[X_i] = \mu$ and $Var(X_i) = \sigma^2$
 - We call sequence of X_i a <u>sample</u> from distribution F
 - Recall sample mean: $\overline{X} = \sum_{i=1}^{n} \frac{X_i}{n}$ where $E[\overline{X}] = \mu$ $\overline{X} \sim N(\mu, \frac{\sigma^2}{n}) \text{ as } n \to \infty$
 - Recall sample variance:

$$S^{2} = \sum_{i=1}^{n} \frac{(X_{i} - \overline{X})^{2}}{n-1} = \text{undefined}$$

Estimate parameters for Bernoulli Poisson and Normal

Method of Moments

Recall: n-th moment of distribution for variable X:

$$m_n = E[X^n]$$

Consider I.I.D. random variables X₁, X₂, ..., X_n

$$\hat{m}_1 = \frac{1}{n} \sum_{i=1}^n X_i$$
 $\hat{m}_2 = \frac{1}{n} \sum_{i=1}^n X_i^2$... $\hat{m}_k = \frac{1}{n} \sum_{i=1}^n X_i^k$

are called the "sample moments"

- Estimates of the moments of distribution based on data
- Method of moments estimators
 - Estimate model parameters by equating "true" true" moments to sample moments: $m_i \approx \hat{m}_i$ Estimate parameters for estimate parameters for estimate parameters for example moments:

Method of Moments with Uniform

- Consider I.I.D. random variables X₁, X₂, ..., X_n
 - X_i ~ Uni(α , β)
 - Estimate mean:

$$\mu \approx \hat{m}_1 = \frac{1}{n} \sum_{i=1}^n X_i = \hat{\mu}$$

Estimate variance:

$$\sigma^{2} \approx \hat{m}_{2} - (\hat{m}_{1})^{2} = \frac{\sum_{i=1}^{n} (X_{i}^{2} - \overline{X}^{2})}{n} = \hat{\sigma}^{2}$$

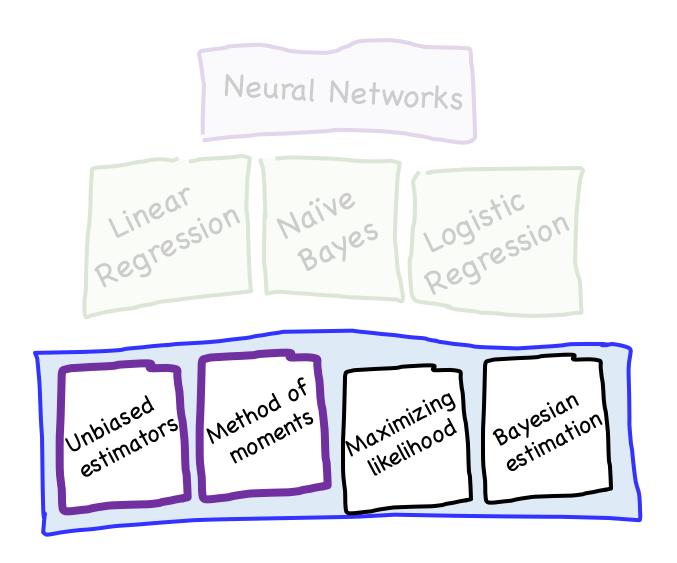
- For Uni(α , β), know that: $\mu = \frac{\alpha + \beta}{2}$ and $\sigma^2 = \frac{(\beta \alpha)^2}{12}$
- Solve (two equations, two unknowns):
 - $_{\circ}$ Set β = 2 μ α , substitute into formula for σ^2 and solve:

$$\hat{\alpha} = \overline{X} - \sqrt{3}\hat{\sigma}$$
 and $\hat{\beta} = \overline{X} + \sqrt{3}\hat{\sigma}$

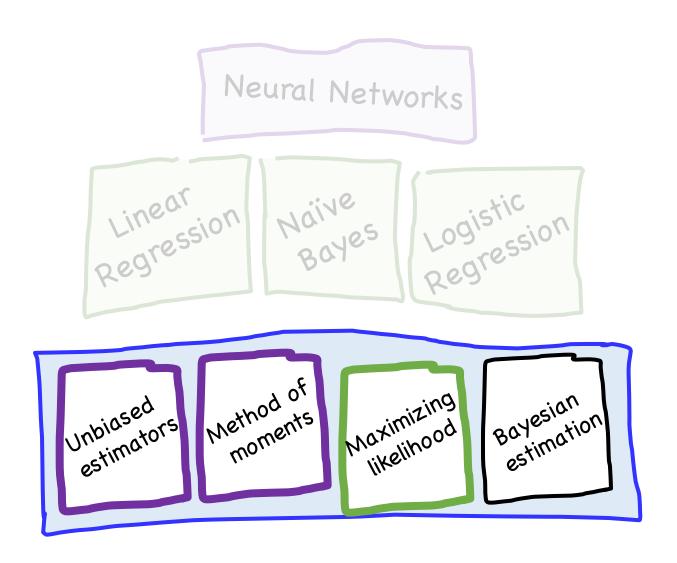
Method of Moments with Uniform

End Review

Parameter Estimation



Parameter Estimation



Great idea in Machine Learning

Likelihood of Data

- Consider n I.I.D. random variables X₁, X₂, ..., X_n
 - X_i is a sample from density function $f(X_i | \theta)$
 - $_{\circ}$ Note: now explicitly specify parameter θ of distribution
 - We want to determine how "likely" the observed data $(x_1, x_2, ..., x_n)$ is based on density $f(X_i | \theta)$
 - Define the **Likelihood function**, $L(\theta)$:

$$L(\theta) = \prod_{i=1}^{n} f(X_i \mid \theta)$$

- This is just a product since X_i are I.I.D.
- Intuitively: what is probability of observed data using density function $f(X_i | \theta)$, for some choice of θ

Maximum Likelihood Estimator

- The Maximum Likelihood Estimator (MLE) of θ , is the value of θ that maximizes $L(\theta)$
 - More formally: $\theta_{MLE} = \arg \max_{\theta} L(\theta)$

Argmax

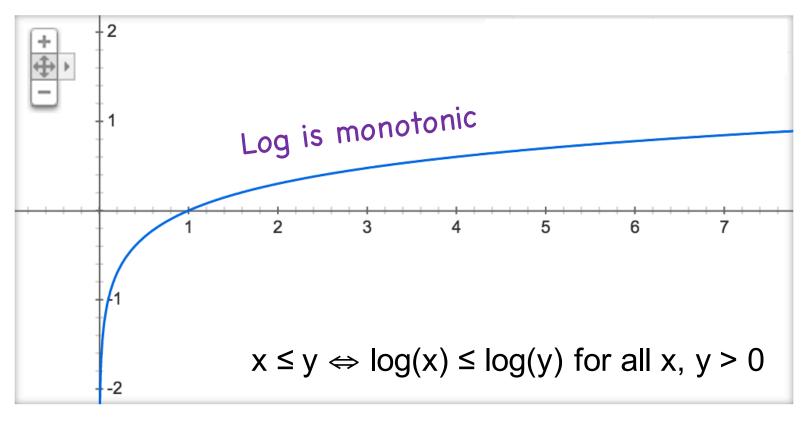
$$f(x) = -x^2 + 5$$

$$\max_{x} -x^2 + 5 = 5$$

$$\underset{x}{\operatorname{argmax}} - x^2 + 5 = 0$$

Argmax of Log

Graph for log(x)

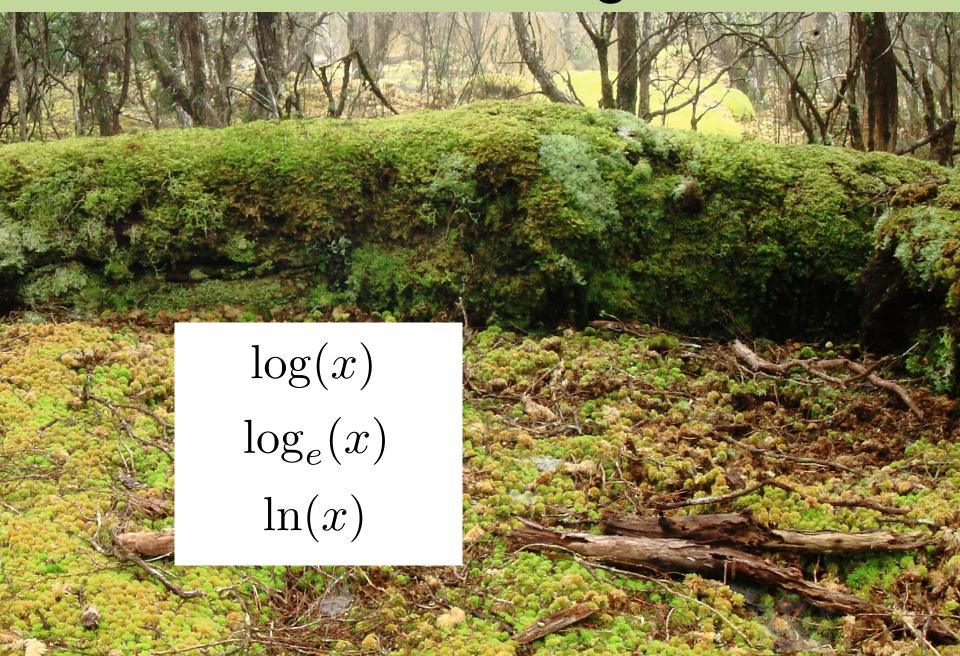


Claim:
$$\underset{x}{\operatorname{argmax}} f(x) = \underset{x}{\operatorname{argmax}} \log f(x)$$

Log I Love You

$$\log(ab) = \log(a) + \log(b)$$

Natural Log



Maximum Likelihood Estimator

- The Maximum Likelihood Estimator (MLE) of θ , is the value of θ that maximizes $L(\theta)$
 - More formally: $\theta_{MLE} = \arg \max_{\theta} L(\theta)$
 - More convenient to use <u>log-likelihood function</u>, $LL(\theta)$:

$$LL(\theta) = \log L(\theta) = \log \prod_{i=1}^{n} f(X_i \mid \theta) = \sum_{i=1}^{n} \log f(X_i \mid \theta)$$

- Note that log function is "monotone" for positive values
 - $_{\circ}$ Formally: x ≤ y \Leftrightarrow log(x) ≤ log(y) for all x, y > 0
- So, θ that maximizes $LL(\theta)$ also maximizes $L(\theta)$
 - Formally: $\underset{\theta}{\operatorname{arg max}} LL(\theta) = \underset{\theta}{\operatorname{arg max}} L(\theta)$
 - Similarly, for any positive constant c (not dependent on θ): $\underset{\theta}{\operatorname{arg\,max}}(c \cdot LL(\theta)) = \underset{\theta}{\operatorname{arg\,max}} LL(\theta) = \underset{\theta}{\operatorname{arg\,max}} L(\theta)$

Computing the MLE

- General approach for finding MLE of θ
 - Determine formula for $LL(\theta)$
 - Differentiate $LL(\theta)$ w.r.t. (each) θ : $\frac{\partial LL(\theta)}{\partial \theta}$
 - To maximize, set $\frac{\partial LL(\theta)}{\partial \theta} = 0$
 - Solve resulting (simultaneous) equations to get θ_{MLE}
 - $_{\circ}$ Make sure that derived $\hat{\theta}_{MLE}$ is actually a maximum (and not a minimum or saddle point). E.g., check $LL(\theta_{MLE} \pm \epsilon) < LL(\theta_{MLE})$
 - This step often ignored in expository derivations
 - So, we'll ignore it here too (and won't require it in this class)

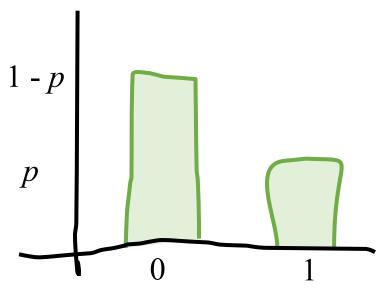
Maximizing Likelihood with Bernoulli

- Consider I.I.D. random variables X₁, X₂, ..., X_n
 - $X_i \sim Ber(p)$

Maximizing Likelihood with Bernoulli

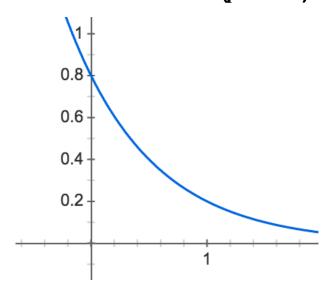
- Consider I.I.D. random variables X₁, X₂, ..., X_n
 - $X_i \sim Ber(p)$
 - Probability mass function, $f(X_i | p)$:

PMF of Bernoulli



$$f(X_i | p) = p^{x_i} (1-p)^{1-x_i}$$

PMF of Bernoulli (p = 0.2)



$$f(x) = 0.2^{x} (1 - 0.2)^{1-x}$$

Maximizing Likelihood with Bernoulli

- Consider I.I.D. random variables X₁, X₂, ..., X_n
 - $X_i \sim Ber(p)$
 - Probability mass function, $f(X_i | p)$, can be written as:

$$f(X_i | p) = p^{x_i} (1-p)^{1-x_i}$$
 where $x_i = 0$ or 1

- Likelihood: $L(\theta) = \prod_{i=1}^{n} p^{X_i} (1-p)^{1-X_i}$
- Log-likelihood:

$$LL(\theta) = \sum_{i=1}^{n} \log(p^{X_i} (1-p)^{1-X_i}) = \sum_{i=1}^{n} \left[X_i (\log p) + (1-X_i) \log(1-p) \right]$$
$$= Y(\log p) + (n-Y) \log(1-p) \quad \text{where} \quad Y = \sum_{i=1}^{n} X_i$$

• Differentiate w.r.t. p, and set to 0:

$$\frac{\partial LL(p)}{\partial p} = Y \frac{1}{p} + (n - Y) \frac{-1}{1 - p} = 0 \quad \Rightarrow \quad p_{MLE} = \frac{Y}{n} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

Maximizing Likelihood with Poisson

- Consider I.I.D. random variables X₁, X₂, ..., X_n
 - $X_i \sim Poi(\lambda)$
 - PMF: $f(X_i | \lambda) = \frac{e^{-\lambda} \lambda^{x_i}}{x_i!}$ Likelihood: $L(\theta) = \prod_{i=1}^n \frac{e^{-\lambda} \lambda^{X_i}}{X_i!}$
 - Log-likelihood:

$$LL(\theta) = \sum_{i=1}^{n} \log(\frac{e^{-\lambda} \lambda^{X_i}}{X_i!}) = \sum_{i=1}^{n} \left[-\lambda \log(e) + X_i \log(\lambda) - \log(X_i!) \right]$$
$$= -n\lambda + \log(\lambda) \sum_{i=1}^{n} X_i - \sum_{i=1}^{n} \log(X_i!)$$

Differentiate w.r.t. λ, and set to 0:

$$\frac{\partial LL(\lambda)}{\partial \lambda} = -n + \frac{1}{\lambda} \sum_{i=1}^{n} X_i = 0 \implies \lambda_{MLE} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

Maximizing Likelihood with Normal

- Consider I.I.D. random variables X₁, X₂, ..., X_n
 - $X_i \sim N(\mu, \sigma^2)$
 - PDF: $f(X_i \mid \mu, \sigma^2) = \frac{1}{\sqrt{2\pi}\sigma} e^{-(X_i \mu)^2/(2\sigma^2)}$
 - Log-likelihood:

$$LL(\theta) = \sum_{i=1}^{n} \log(\frac{1}{\sqrt{2\pi}\sigma} e^{-(X_i - \mu)^2/(2\sigma^2)}) = \sum_{i=1}^{n} \left[-\log(\sqrt{2\pi}\sigma) - (X_i - \mu)^2/(2\sigma^2) \right]$$

First, differentiate w.r.t. μ, and set to 0:

$$\frac{\partial LL(\mu,\sigma^2)}{\partial \mu} = \sum_{i=1}^n 2(X_i - \mu)/(2\sigma^2) = \frac{1}{\sigma^2} \sum_{i=1}^n (X_i - \mu) = 0$$

Then, differentiate w.r.t. σ, and set to 0:

$$\frac{\partial LL(\mu, \sigma^2)}{\partial \sigma} = \sum_{i=1}^{n} -\frac{1}{\sigma} + 2(X_i - \mu)^2 / (2\sigma^3) = -\frac{n}{\sigma} + \sum_{i=1}^{n} (X_i - \mu)^2 / (\sigma^3) = 0$$

Being Normal, Simultaneously

Now have two equations, two unknowns:

$$\frac{1}{\sigma^2} \sum_{i=1}^n (X_i - \mu) = 0 \qquad -\frac{n}{\sigma} + \sum_{i=1}^n (X_i - \mu)^2 / (\sigma^3) = 0$$

• First, solve for μ_{MIF} :

$$\frac{1}{\sigma^2} \sum_{i=1}^n (X_i - \mu) = 0 \implies \sum_{i=1}^n X_i = n\mu \implies \mu_{MLE} = \frac{1}{n} \sum_{i=1}^n X_i$$

• Then, solve for σ^2_{MLF} :

$$-\frac{n}{\sigma} + \sum_{i=1}^{n} (X_i - \mu)^2 / (\sigma^3) = 0 \implies n\sigma^2 = \sum_{i=1}^{n} (X_i - \mu)^2$$
$$\sigma_{MLE}^2 = \frac{1}{n} \sum_{i=1}^{n} (X_i - \mu_{MLE})^2$$

• Note: μ_{MLE} unbiased, but σ^2_{MLE} biased (same as MOM)

Maximizing Likelihood with Uniform

Consider I.I.D. random variables X₁, X₂, ..., X_n

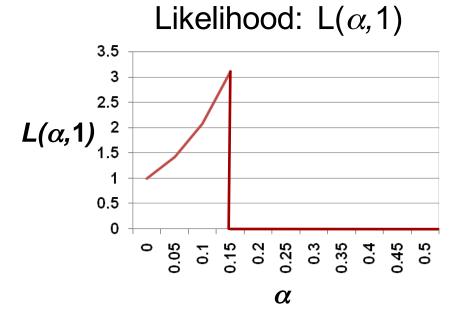
•
$$X_i \sim \text{Uni}(\alpha, \beta)$$

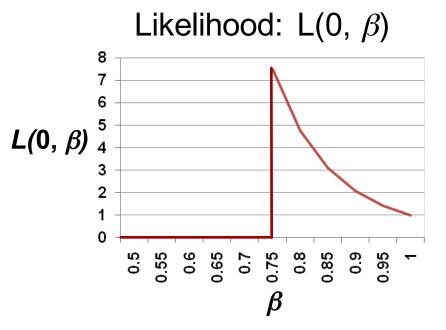
• $PDF: f(X_i | \alpha, \beta) = \begin{cases} \frac{1}{\beta - \alpha} & \alpha \leq x_i \leq \beta \\ 0 & \text{otherwise} \end{cases}$
• Likelihood: $L(\theta) = \begin{cases} \left(\frac{1}{\beta - \alpha}\right)^n & \alpha \leq x_1, x_2, ..., x_n \leq \beta \\ 0 & \text{otherwise} \end{cases}$

- ∘ Constraint $\alpha \le x_1$, x_2 , ..., $x_n \le \beta$ makes differentiation tricky
- $_{\circ}$ Intuition: want interval size $(\beta \alpha)$ to be as small as possible to maximize likelihood function for each data point
- But need to make sure all observed data contained in interval
 - If all observed data not in interval, then $L(\theta) = 0$
- Solution: $\alpha_{MLE} = \min(x_1, ..., x_n)$ $\beta_{MLE} = \max(x_1, ..., x_n)$

Understanding MLE with Uniform

- Consider I.I.D. random variables X₁, X₂, ..., X_n
 - $X_i \sim Uni(0, 1)$
 - Observe data:
 - o 0.15, 0.20, 0.30, 0.40, 0.65, 0.70, 0.75





Once Again, Small Samples = Problems

- How do small samples affect MLE?
 - In many cases, $\mu_{MLE} = \frac{1}{n} \sum_{i=1}^{n} X_i = \text{sample mean}$
 - Unbiased. Not too shabby...
 - As seen with Normal, $\sigma_{MLE}^2 = \frac{1}{n} \sum_{i=1}^n (X_i \mu_{MLE})^2$
 - $_{\circ}$ Biased. Underestimates for small n (e.g., 0 for n = 1)
 - As seen with Uniform, $\alpha_{MLE} \ge \alpha$ and $\beta_{MLE} \le \beta$
 - $_{\circ}$ Biased. Problematic for small *n* (e.g., $\alpha = \beta$ when n = 1)
 - Small sample phenomena intuitively make sense:
 - o Maximum likelihood ⇒ best explain data we've seen
 - Does not attempt to generalize to unseen data

Properties of MLE

- Maximum Likelihood Estimators are generally:
 - Consistent: $\lim_{n\to\infty} P(|\hat{\theta} \theta| < \varepsilon) = 1 \text{ for } \varepsilon > 0$
 - Potentially biased (though asymptotically less so)
 - Asymptotically optimal
 - Has smallest variance of "good" estimators for large samples
 - Often used in practice where sample size is large relative to parameter space
 - But be careful, there are some very large parameter spaces

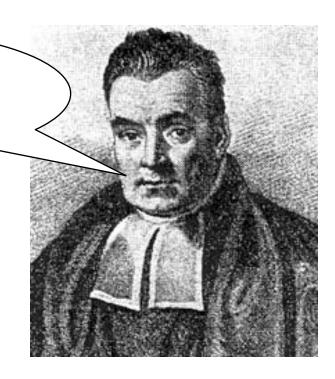
[on board, MLE of line]

From probability theory

To ML algorithm

Need a Volunteer

So good to see you again!



Two Envelopes

- I have two envelopes, will allow you to have one
 - One contains \$X, the other contains \$2X
 - Select an envelope
 - o Open it!
 - Now, would you like to switch for other envelope?
 - To help you decide, compute E[\$ in other envelope]
 - Let Y = \$ in envelope you selected $E[$ in other envelope] = \frac{1}{2} \cdot \frac{Y}{2} + \frac{1}{2} \cdot 2Y = \frac{5}{4}Y$
 - Before opening envelope, think either <u>equally</u> good
 - So, what happened by opening envelope?
 - And does it really make sense to switch?