

New Datasets

Heart

Ancestry

Netflix

Our Path

Machine Learning: Formally

- Many different forms of "Machine Learning"
 - We focus on the problem of prediction
- Want to make a prediction based on observations
 - Vector **X** of *m* observed variables: <X₁, X₂, ..., X_m>
 - $_{\circ}$ X_{1} , X_{2} , ..., X_{m} are called "input features/variables"
 - Based on observed X, want to predict unseen variable Y
 - Y called "output feature/variable" (or the "dependent variable")
 - Seek to "learn" a function g(X) to predict Y: $\hat{Y} = g(X)$
 - When Y is discrete, prediction of Y is called "classification"
 - When Y is continuous, prediction of Y is called "regression"

A (Very Short) List of Applications

- Machine learning widely used in many contexts
 - Stock price prediction
 - Using economic indicators, predict if stock will go up/down
 - Computational biology and medical diagnosis
 - Predicting gene expression based on DNA
 - Determine likelihood for cancer using clinical/demographic data
 - Predict people likely to purchase product or click on ad
 - "Based on past purchases, you might want to buy..."
 - Credit card fraud and telephone fraud detection
 - Based on past purchases/phone calls is a new one fraudulent?
 - Saves companies billions(!) of dollars annually
 - Spam E-mail detection (gmail, hotmail, many others)

That list is ridiculously short ©

Motivating Example

What is Bayes Doing in my Mail Server

This is spam:

Who was crazy enough to think of that?

Spam, Spam... Go Away!

The constant battle with spam

- Spam prevalence: % of all incoming Gmail traffic (before filtering) that is spam
- Missed spam: % of total spam reported by Gmail users

As the amount of spam has increased, Gmail users have received less of it in their inboxes, reporting a rate less than 1%.

"And machine-learning algorithms developed to merge and rank large sets of Google search results allow us to combine hundreds of factors to classify spam."

Source: http://www.google.com/mail/help/fightspam/spamexplained.html

Training a Learning Machine

- We consider statistical learning paradigm here
 - We are given set of N "training" instances
 - $_{\circ}$ Each training instance is pair: ($\langle x_1, x_2, ..., x_m \rangle$, y)
 - Training instances are previously observed data
 - $_{\circ}$ Gives the output value *y* associated with each observed vector of input values $\langle x_1, x_2, ..., x_m \rangle$
 - Learning: use training data to specify g(X)
 - $_{\circ}$ Generally, first select a parametric form for g(X)
 - $_{\circ}$ Then, estimate parameters of model g(X) using training data
 - \circ For regression, usually want g(X) that minimizes $E[(Y g(X))^2]$
 - Mean squared error (MSE) "loss" function. (Others exist.)
 - \circ For classification, generally best choice of $g(X) = \arg \max \hat{P}(Y \mid X)$

The Machine Learning Process

- Training data: set of N pre-classified data instances
 - \circ N training pairs: $(<x>^{(1)},y^{(1)}), (<x>^{(2)},y^{(2)}), ..., (<x>^{(N)}, y^{(N)})$
 - Use superscripts to denote i-th training instance
- Learning algorithm: method for determining g(X)
 - $_{\circ}$ Given a new input observation of **X** = <X₁, X₂, ..., X_m>
 - \circ Use g(X) to compute a corresponding output (prediction)
 - $_{\circ}$ When prediction is discrete, we call g(X) a "classifier" and call the output the predicted "class" of the input

Training

Testing

Linear Regression

A Grounding Example: Linear Regression

- Predict real value Y based on observing variable X
 - Assume model is linear: $\hat{Y} = g(X) = aX + b$
 - Training data
 - Each vector X has one observed variable: <X₁> (just call it X)
 - Y is continuous output variable
 - o Given N training pairs: $(\langle x \rangle^{(1)}, y^{(1)})$, $(\langle x \rangle^{(2)}, y^{(2)})$, ..., $(\langle x \rangle^{(N)}, y^{(N)})$
 - Use superscripts to denote i-th training instance
 - Determine a and b by minimizing $E[(Y g(X))^2]$

Predicting CO₂

$$X_1 = Temperature$$

$$X_2 = Elevation$$

$$X_3 = CO_2$$
 level yesterday

$$X_4 = GDP$$
 of region

$$X_5$$
 = Acres of forest growth

$$Y = CO_2$$
 levels

How Did We Get Linear Regression?

N training pairs:
$$(\mathbf{x}^{(1)}, y^{(1)}), (\mathbf{x}^{(2)}, y^{(2)}), \dots, (\mathbf{x}^{(N)}, y^{(N)})$$

1. Linear Regression Model:

$$Y = \theta_1 X_1 + \theta_2 X_2 + \dots \theta_{n-1} X_{n-1} + \theta_n 1 + Z$$
$$= \theta^T \mathbf{X} + Z$$
$$Z \sim N(0, \sigma^2)$$

2. Find the LL function and chose thetas which maximize it

$$\hat{\theta}_{MLE} = \underset{\theta}{\operatorname{argmax}} - \sum_{i=1}^{n} (Y^{(i)} - \theta^{T} \mathbf{x}^{(i)})^{2}$$

3. Use an optimizer to calculate each theta.

Classification

A Simple Classification Example

- Predict Y based on observing variables X
 - X has discrete value from {1, 2, 3, 4}
 - ∘ X denotes temperature range today: <50, 50-60, 60-70, >70
 - Y has discrete value from {rain, sun}
 - Y denotes general weather outlook tomorrow
 - Note Bayes' Thm.: $P(Y|X) = \frac{p_{X,Y}(x,y)}{p_X(x)} = \frac{p_{X|Y}(x|y)p_Y(y)}{p_X(x)}$
 - For new X, predict $\hat{Y} = g(X) = \arg \max_{v} \hat{P}(Y | X)$
 - Note $p_x(x)$ is not affected by choice of y, yielding:

$$\hat{Y} = g(X) = \underset{y}{\operatorname{arg max}} \hat{P}(Y \mid X) = \underset{y}{\operatorname{arg max}} \hat{P}(X, Y) = \underset{y}{\operatorname{arg max}} \hat{P}(X \mid Y) \hat{P}(Y)$$

Brute Force Classification

Estimating the Complete Joint

From last slide:

$$\hat{Y} = g(X) = \underset{y}{\operatorname{arg max}} \hat{P}(Y \mid X) = \underset{y}{\operatorname{arg max}} \hat{P}(X, Y) = \underbrace{\hat{P}(X, Y)}_{y} = \underbrace{\hat{P}(X,$$

• First idea: Let (X,Y) be one giant multinomial! Say X can take on the values 1, 2, 3, 4 and Y can take on the values 1,2

X	1	2	3	4
1	$\theta_{1,1}$	$\theta_{1,2}$	$\theta_{1,3}$	$\theta_{1,4}$
2	$\theta_{2,1}$	$\theta_{2,2}$	$\theta_{2,3}$	$\theta_{2,4}$

Estimate these and use them to make our prediction

Estimating the Complete Joint

- Given training data, compute joint PMF: p_{X,Y}(x, y)
 - MLE: count number of times each pair (x, y) appears
 - MAP using Laplace prior: add 1 to all the MLE counts
 - Normalize to get true distribution (sums to 1)
 - Observed 50 data points:

Y	1	2	3	4
rain	5	3	2	0
sun	3	7	10	20

$$\hat{p}_{MLE} = \frac{\text{count in cell}}{\text{total } \# \text{ data points}}$$

$\hat{p}_{Laplace} =$	count in cell+1
	total # data points + total # cells

\ v	I				
YX	1	2	3	4	<i>p</i> _Y (y)
rain	0.10	0.06	0.04	0.00	0.20
sun	0.06	0.14	0.20	0.40	0.80
$p_{\chi}(x)$	0.16	0.20	0.24	0.40	1.00

$\setminus x$	Lapl	Laplace (MAP) estimate						
YX	1	2	3	4	<i>p</i> _Y (y)			
rain	0.103	0.069	0.052	0.017	0.241			
sun	0.069	0.138	0.190	0.362	0.759			
$p_{X}(x)$	0.172	0.207	0.242	0.379	1.00			

Classify New Observations

- Say today's temperature is 75, so X = 4
 - Recall X temperature ranges: <50, 50-60, 60-70, >70
 - Prediction for Y (weather outlook tomorrow)

$$\hat{Y} = \arg \max \hat{P}(X, Y) = \arg \max \hat{P}(X \mid Y)\hat{P}(Y)$$

MLE estimate					<i>y</i>	Lapla	ce (MA	۹P) est	imate	I	
YX	1	2	3	4	<i>p</i> _Y (y)	YX	1	2	3	4	<i>p</i> _Y (y)
rain	0.10	0.06	0.04	0.00	0.20	rain	0.103	0.069	0.052	0.017	0.241
sun	0.06	0.14	0.20	0.40	0.80	sun	0.069	0.138	0.190	0.362	0.759
$p_{\chi}(x)$	0.16	0.20	0.24	0.40	1.00	$p_{\chi}(x)$	0.172	0.207	0.242	0.379	1.00

- What if we asked what is probability of rain tomorrow?
 - MLE: absolutely, positively no chance of rain!
 - Laplace estimate: small chance → "never say never"

Classification with Multiple Observations

- Say, we have m input values X = <X₁, X₂, ..., X_m>
 - Note that variables $X_1, X_2, ..., X_m$ can be dependent!
 - In theory, could predict Y as before, using

$$\hat{Y} = \underset{y}{\operatorname{arg max}} \hat{P}(X, Y) = \underset{y}{\operatorname{arg max}} \hat{P}(X \mid Y) \hat{P}(Y)$$

- Why won't this necessarily work in practice?
- Need to estimate $P(X_1, X_2, ..., X_m \mid Y)$
 - $_{\circ}$ Fine if *m* is small, but what if m = 10 or 100 or 10,000?
 - Need ridiculous amount of data for good probability estimates!
 - Likely to have many 0's in table (bad times)
- Need to consider a simpler model

And Learn

Netflix and Learn

- Say, we have m input values X = <X₁, X₂, ..., X_m>
 and a single Y. Each X_i represents if a user liked
 movie i.
- Let's think about the joint distribution for different values of m

Netflix and Learn: m = 1

Say, we have m input values X = <X₁, X₂, ..., X_m>
and a single Y. Each X_i represents if a user liked
movie i.

Netflix and Learn: m = 2

Say, we have m input values X = <X₁, X₂, ..., X_m>
and a single Y. Each X_i represents if a user liked
movie i.

Netflix and Learn: m = 3

Say, we have m input values X = <X₁, X₂, ..., X_m> and a single Y. Each X_i represents if a user liked movie i.

		A ₂ – 0	
	Y X ₁	0	1
$X_3 = 0$	0	$\theta_{0,0,0,0}$	$\theta_{0,1,0,0}$
	1	$\theta_{1,0,0,0}$	$\theta_{1,1,0,0}$

-	X_1	$X_2 = 0$	1
≡ X 3	0	$\theta_{0,0,0,1}$	$\theta_{0,1,0,1}$
	1	$\theta_{1,0,0,1}$	$\theta_{1,1,0,1}$

	-					
Y X ₁	0	1				
0	$\theta_{0,0,1,0}$	$\theta_{0,1,1,0}$				
1	$\theta_{1,0,1,0}$	$\theta_{1,1,1,0}$				
$X_2 = 1$						

•	$X_2 = 1$	
Y X ₁	0	1
0	$\theta_{0,0,1,1}$	$\theta_{0,1,1,1}$
1	$\theta_{1,0,1,1}$	$\theta_{1,1,1,1}$

And if m=100?

What is the big O for # parameters? m = # features.

Big O of Brute Force Joint

What is the big O for # parameters? m = # features.

$$\mathcal{O}(2^n)$$

Assuming each feature is binary...

Not going to cut it!

Naïve Bayes Classifier

- Say, we have m input values $\mathbf{X} = \langle X_1, X_2, ..., X_m \rangle$
 - Assume variables X₁, X₂, ..., X_m are <u>conditionally</u> <u>independent</u> given Y
 - $_{\circ}$ Really don't believe $X_1, X_2, ..., X_m$ are conditionally independent
 - Just an approximation we make to be able to make predictions
 - This is called the "Naive Bayes" assumption, hence the name
 - Predict Y using $\hat{Y} = \underset{v}{\operatorname{arg max}} P(X, Y) = \underset{v}{\operatorname{arg max}} P(X \mid Y) P(Y)$
 - But, we now have:

$$P(X | Y) = P(X_1, X_2, ..., X_m | Y) = \prod_{i=1}^m P(X_i | Y)$$
 by conditional independence

- Note: computation of PMF table is <u>linear</u> in m : O(m)
 - Don't need much data to get good probability estimates

Naïve Bayes Example

- Predict Y based on observing variables X₁ and X₂
 - X₁ and X₂ are both indicator variables
 - X₁ denotes "likes Star Wars", X₂ denotes "likes Harry Potter"
 - Y is indicator variable: "likes Lord of the Rings"
 - $_{\circ}$ Use training data to estimate PMFs: $\hat{p}_{X_i,Y}(x_i,y),~\hat{p}_{Y}(y)$

Y X ₁	0	1	MLE estimates	YX ₂	0	1	MLE estimates	Y	#	MLE est.
0	3	10	0.10 0.33	0	5	8	0.17 0.27	0	13	0.43
1	4	13	0.13 0.43	1	7	10	0.23 0.33	1	17	0.57

- Say someone likes Star Wars $(X_1 = 1)$, but not Harry Potter $(X_2 = 0)$
- Will they like "Lord of the Rings"? Need to predict Y:

$$\hat{Y} = \arg \max_{v} \hat{P}(\mathbf{X} | Y) \hat{P}(Y) = \arg \max_{v} \hat{P}(X_1 | Y) \hat{P}(X_2 | Y) \hat{P}(Y)$$

One SciFi/Fantasy to Rule them All

X ₁	0	1	MLE estimates		
0	3	10	0.10	0.33	
1	4	13	0.13	0.43	

X ₂	0	1	MLE estimates		
0	5	8	0.17	0.27	
1	7	10	0.23	0.33	

Prediction for Y is value of Y maximizing P(X, Y):

$$\hat{Y} = \underset{y}{\text{arg max }} \hat{P}(\mathbf{X} \mid Y) \hat{P}(Y) = \underset{y}{\text{arg max }} \hat{P}(X_1 \mid Y) \hat{P}(X_2 \mid Y) \hat{P}(Y)$$

• Compute P(X, Y=0):
$$\hat{P}(X_1 = 1 | Y = 0)\hat{P}(X_2 = 0 | Y = 0)\hat{P}(Y = 0)$$

= $\frac{\hat{P}(X_1 = 1, Y = 0)}{\hat{P}(Y = 0)} \frac{\hat{P}(X_2 = 0, Y = 0)}{\hat{P}(Y = 0)} \hat{P}(Y = 0) \approx \frac{0.33}{0.43} \frac{0.17}{0.43} 0.43 \approx 0.13$

• Compute P(X, Y=1):
$$\hat{P}(X_1 = 1 | Y = 1)\hat{P}(X_2 = 0 | Y = 1)\hat{P}(Y = 1)$$

= $\frac{\hat{P}(X_1 = 1, Y = 1)}{\hat{P}(Y = 1)} \frac{\hat{P}(X_2 = 0, Y = 1)}{\hat{P}(Y = 1)} \hat{P}(Y = 1) \approx \frac{0.43}{0.57} \frac{0.23}{0.57} 0.57 \approx 0.17$

Since P(X, Y=1) > P(X, Y=0), we predict Ŷ = 1

Email Classification

- Want to predict if an email is spam or not
 - Start with the input data
 - Consider a lexicon of m words (Note: in English $m \approx 100,000$)
 - ∘ Define *m* indicator variables $\mathbf{X} = \langle X_1, X_2, ..., X_m \rangle$
 - $_{\circ}$ Each variable X_i denotes if word i appeared in a document or not
 - Note: m is huge, so make "Naive Bayes" assumption
 - Define output classes Y to be: {spam, non-spam}
 - Given training set of N previous emails
 - ∘ For each email message, we have a training instance: $\mathbf{X} = \langle X_1, X_2, ..., X_m \rangle$ noting for each word, if it appeared in email
 - Each email message is also marked as spam or not (value of Y)

Training the Classifier

Given N training pairs:

$$(\langle x \rangle^{(1)}, y^{(1)}), (\langle x \rangle^{(2)}, y^{(2)}), \dots, (\langle x \rangle^{(N)}, y^{(N)})$$

- Learning
 - Estimate probabilities P(Y) and each P(X_i | Y) for all i
 - Many words are likely to not appear at all in given set of email
 - Laplace estimate: $\hat{p}(X_i = 1 | Y = spam)_{Laplace} = \frac{(\# \text{spam emails with word } i) + 1}{\text{total } \# \text{ spam emails } + 2}$
- Classification
 - For a new email, generate $\mathbf{X} = \langle X_1, X_2, ..., X_m \rangle$
 - Classify as spam or not using: $\hat{Y} = \arg \max \hat{P}(X | Y)\hat{P}(Y)$
 - Employ Naive Bayes assumption: $\hat{P}(X \mid Y) = \prod_{i=1}^{m} \hat{P}(X_i \mid Y)$

How Does This Do?

- After training, can test with another set of data
 - "Testing" set also has known values for Y, so we can see how often we were right/wrong in predictions for Y
 - Spam data
 - Email data set: 1789 emails (1578 spam, 211 non-spam)
 - First, 1538 email messages (by time) used for training
 - Next 251 messages used to test learned classifier

Criteria:

- Precision = # correctly predicted class Y/ # predicted class Y
- Recall = # correctly predicted class Y / # real class Y messages

	Spam		Non-spam	
	Precision	Recall	Precision	Recall
Words only	97.1%	94.3%	87.7%	93.4%
Words + add'l features	100%	98.3%	96.2%	100%

On biased datasets

Ethics and Datasets?

Sometimes machine learning feels universally unbiased.

We can even prove our estimators are "unbiased" ©

Google/Nikon/HP had biased datasets

Ancestry dataset prediction

East Asian
or
Ad Mixed American (Native, European and
African Americans)

Is the ancestry dataset biased?

Yes!

It is much easier to write a binary classifier when learning ML for the first time

Learn Two Things From This

- 1. What classification with DNA Single Nucleotide Polymorphisms looks like.
- 2. That genetic ancestry paints a more realistic picture of how we are mixed in many nuanced ways.
- 3. The importance of choosing the right data to learn from. Your results will be as biased as your dataset.

Know it so you can beat it!

Ethics in Machine Learning is a whole new field