Logistic Regression

Lecture 20
May 11th, 2016

Review

Classification Task

Ancestry

Netflix

NETFLIN

Training

Real World Problem

|
Train on the Model the problem

training * _ _
dataset!! Training
Formal Model 6 Data
l /

Learning Algorithm

\ 24
Testing

Data 2(X)

Classification
Accuracy

Testing

Real World Problem

|
Test on the Model the problem

testing W
dataset! Training
Formal Model 6 Data

l /
Learning Algorithm
Testing S —y Classification
Data 2o(X) Accuracy

Training a Learning Machine

- We consider statistical learning paradigm here

= We are given set of N “training” instances
o Each training instance is pair: (<xq, Xy, ..., X;»>, Y)
o Training instances are previously observed data
o Gives the output value y associated with each observed vector
of input values <x4, X, ..., X,
» Learning: use training data to specify g(X)
o Generally, first select a parametric form for g(X)
o Then, estimate parameters of model g(X) using training data
o For classification, generally best choice of

Y = 2(X) = argmaxf’(Y|X) = argmaxf’(X,Y)

y y

Naive Bayes Classifier

- Say, we have minput values X = <X;, X,, ..., X,,>

« Assume variables X,, X,, ..., X,,are conditionally
independent given Y

- Really don’t believe X,, X,, ..., X, are conditionally independent
o Just an approximation we make to be able to make predictions

o This is called the “Naive Bayes” assumption, hence the name

» Predict Y using Y = argmax P(X,Y) = argmax P(X | Y)P(Y)
- But, we now have: ’ ’

P(X|Y)=P(X,,X,,.X, |Y)= HP(Xi |Y) by conditional independence
i=]

« Note: computation of PMF table is linear in m : O(m)

- Don’t need much data to get good probability estimates

Computing Probabilities from Data

- Various probabilities you will need to compute for
Naive Bayesian Classifier (using MLE here):

#instancesin class=0

P(Y=0)= .
total # instances
P(X,=0,Y =0) = #1instances where .X ;=0andclass =0
total # instances
5 P(X, =0,Y =0) Y 0V o
B =0|y =0y L& =0T =00 5oy P =01 =)
P(Y =0) P =1)

P(X. =1|Y=0)=1-P(X, =0]Y =0)
y=argmax P(X |Y)P(Y) =argmax(log[P(X | Y)P(Y)])

logP(X |Y)=logP(X,,X,,.. X, |Y)= lognP(Xl. 1Y) = ElogP(Xl. 1Y)
i=1 i=1

On biased datasets

Ancestry dataset prediction

East Asian
or
Ad Mixed American (Native + Early
Immigrants)

|s the ancestry dataset biased?

Yes!

It is much easier
to write a binary classifier
when learning ML
for the first time

Learn Two Things From This

. What classification with DNA Single Nucleotide
Polymorphisms looks like.

. That genetic ancestry paints a more realistic picture
of how we are mixed in many nuanced ways.

. The importance of choosing the right data to learn
from. Your results will be as biased as your dataset.

Know it so you can beat it!

Ethics in Machine Learning
IS a whole new field

End Review

Notation For Today

o'(z) — L Sigmoid function
Il +e%
n
Ty, _ A Weighted sum
0 x = Z 0ii (aka dot product)
1=1

= 121 + Ooxa + -+ - + Oy

O'(HTx) — ! Sigmoid function of

B 1+ e—0'x weighted sum

Step 1: Big Picture

From Naive Bayes to Logistic Regression

Recall the Naive Bayes Classifier
« Predict Y =argmax P(X,Y) =argmax P(X |Y)P(Y)
« Use assumptlo; that p(x |Y) = Py(X X,,..X |Y)= HP(X 1Y)
= We are really modeling joint probability P(X, Y)
- But for classification, really care about P(Y | X)
» Really want to predict y=argmax P(Y | X)
. Modeling full joint probability P(X, Y) is equivalent
- Could we model P(Y | X) directly?

« Welcome our friend: logistic regression!

Logistic Regression Assumption

- Model conditional likelihood P(Y | X) directly
= Model this probability with logistic function:

P(Y =1|X) = o(z) where z = 0y + Z 0;x;
i=1

. For simplicity define 2o =1 so z=06Tx

- Since P(Y=0|X)+P(¥Y=1|X)=1:
ince P(Y=0|X) + P(Y=1]X) - ~

Recall:
Sigmoid function

P(Y = 0|X =x) = 1 — o(67x) o(z) = ; +1€_z

. /

P(Y =1|X =x) = 0(0'x)

The Sigmoid Function

1
AT //
/
/
/
/' Want to distinguish y = 1 (blue)
/ points from y = 0 (red) points

e

MH.W.WW“I'.I.HHHWHHI'HIIHHHHHHHHHHHHHHHHH z

5 4 3 -2 1 0 1 2 3 4 5
Note: inflection point at z =0. f(0) = 0.5

The Sigmoid Function

Normal CDF
1.0

—@- Standard normal CDF

—a— Sigmoid

Cumulative Density(z)

What is In a Name

Regression Algorithms Classification Algorithms

Linear Regression ° Naive Bayes °

Logistic Regression %

Awesome classifier,
terrible name

If Chris could rename it he would call it: Sigmoidal Classification

Training Data

Assume IID data:
N 7Lr‘C“'I'Iin

dafapoinfs

(xM,yM), (x®),y®), . (x™),y)

m = |x]

Each datapoint has m features and a single vy

Logistic Regression

@ Make logistic regression assumption
PY = 11X =x) = 0(6'x)
PY =0/X =x)=1-0(6"x)

@ Calculate the log probability for all data

LL(0) = Zy(i) log o(07x D) + (1 — yD) log[l — (87 xD)]
i=0

@ Get derivative of log probability with respect to thetas

o = [o]

Gradient Ascent

YO
v 4 .“‘é

7 Jo8

LI

¢ e,
S
----- A “«4"’.@%\““
0% @,’éﬁ{fg’, 7 ;"- "&\\\\\f{:.‘f,* 9%
AR ;zﬁ'&‘\\\\\:\\‘\\‘*ﬂﬂ AX IS
\'\ A

S
"“’:};

Logistic regression

LL function is convex

O
Ry

(

AAA /

Walk uphill and you will find a local maxima
(if your step size is small enough)

Gradient Ascent Step

00 P
HLL(H 1) .
prev =gold 4 p. Do this
’ ! 893'01(1 for all
i thetas!

=92 -y [y@) — o (0Tx) | 2

1=0

Logistic Regression Training

Initialize: f; = 0 for all 0 < j < m
// "epochs" = number of passes over data during learning
for (1 = 0; 1 < epochs; i++) {
Initialize: gradient[j] = 0 for all 0 £ j < m
// Compute "batch" gradient vector
for each training instance (<x;, xX,, .., X,>, y) in data {
// Add contribution to gradient for each data point
for (j = 0; j <=m; j++) {

// Note: x; below is j-th input variable and x, = 1.

. . 1 N
gradient[]] += xj(y—l—_z) where Z=E/J’jxj
+e 7=0

}

// Update all 0;. Note learning rate m is pre-set constant

6; += m * gradient[j] for all 0 < j < m

Classification with Logistic Regression

- Training: determine parameters 6; (forall 0 << m)

- After parameters 8, have been learned, test classifier

- To test classifier, for each new (test) instance X:
1

l+e

. Compute: p=PY =1|X) = , where 2z =10%x

1 p>0.5

» Classify instance as: y ={ .
0 otherwise

= Note about evaluation set-up: parameters 6, are not
updated during “testing” phase

Step 2: How Come?

Logistic Regression

@ Make logistic regression assumption
PY = 11X =x) = 0(6'x)
PY =0/X =x)=1-0(6"x)

@ Calculate the log probability for all data

LL(0) = Zy(i) log o(07x D) + (1 — yD) log[l — (87 xD)]
i=0

@ Get derivative of log probability with respect to thetas

o = [o]

How did we get that LL function?

Log Probability of Data
P(Y =1|X =x) = o(0'x)
PY=0/X =x)=1-0(6"x)

¢of L) = H PY = y@|X = x®)
(1—y™)

ﬁ (6T xyv™ [1—0(9Tx<i>)

LLO) =) yPDlogo(0"x) + (1 —yP)log[l — o (8"x"))]
1=0

How did we get that gradient?

Sigmoid has a Beautiful Slope

9,
—o(012)?
557 (0")
QO(Z) — O'(Z)[l _ Z] True fact about
0z sigmoid functions
0 0 0z Chain rule!

99710) = 5,79 5.

%J(HTx) =007 2)[1 — o(6' x)]z; Plg and chug
J

Sigmoid, you should be a ski hill

Gradient Update

LLO) =) yPDlogo(0"x™) + (1 —y)log[l — o (8"x")]

1=0
8%];59) a(z) ylog o(07x) + a%“ —) log[1 — o(67x]
S :J(HyT:U) T —10_(;%): @(Zj“(e%)
g’j’g - _U(Q%x) 1 —10_(9y%)_ (fféﬁ(@”)
_ :g(eTyx)_[f(_engx)]] (6T2)[1 — o (672)]x,

— [y — J(GT:E)} T;

8LL(6’) = i T (i (4) For many data points
5, 3 {y<) — o (X >)} 2!

1=0

Logistic Regression

@ Make logistic regression assumption
PY = 11X =x) = 0(6'x)
PY =0/X =x)=1-0(6"x)

@ Calculate the log probability for all data

LL(0) = Zy(i) log o(07x D) + (1 — yD) log[l — (87 xD)]
i=0

@ Get derivative of log probability with respect to thetas

o = [o]

Step 3: Philosophy

Discrimination Intuition

» Logistic regression is trying to fit a line that separates
data instances where y = 1 from those where y =0

® o ® o 0'x =0
® 90$0+91$1+'°'+9m$m20

« We call such data (or the functions generating the data)
“linearly separable”

= Naive bayes is linear too as there is no interaction
between different features.

Some Data Not Linearly Seperable

Some data sets/functions are not separable

= Consider function: y = x, XOR X,

« Note: y =1 iff one of either x, or x, =1

X
1@ O
0@ @ X,
0 1

» Not possible to draw a line that successfully separates
all the y = 1 points (blue) from the y = 0 points (red)

» Despite this fact, logistic regression and Naive Bayes
still often work well in practice

Logistic Regression vs Naive Bayes

- Compare Naive Bayes and Logistic Regression
» Recall that Naive Bayes models P(X, Y) = P(X | Y) P(Y)
« Logistic Regression directly models P(Y | X)

« We call Naive Bayes a “generative model’
o Tries to model joint distribution of how data is “generated”
- l.e., could use P(X, Y) to generate new data points if we wanted
o But lots of effort to model something that may not be needed

« We call Logistic Regression a “discriminative model”
o Just tries to model way to discriminate y =0 vs. y = 1 cases
o Cannot use model to generate new data points (no P(X, Y))

o Note: Logistic Regression can be generalized to more than two
output values for y (have multiple sets of parameters §3.)

Choosing an Algorithm?

- Many trade-offs in choosing learning algorithm

« Continuous input variables
o Logistic Regression easily deals with continuous inputs

- Naive Bayes needs to use some parametric form for continuous
inputs (e.g., Gaussian) or “discretize” continuous values into
ranges (e.g., temperature in range: <50, 50-60, 60-70, >70)

« Discrete input variables

- Naive Bayes naturally handles multi-valued discrete data by
using multinomial distribution for P(X | Y)

o Logistic Regression requires some sort of representation of
multi-valued discrete data (e.g., multiple binary features)

o Say X; € {A, B, C}. Not necessarily a good idea to encode X; as
taking on input values 1, 2, or 3 corresponding to A, B, or C.

Good ML = Generalization

- Goal of machine learning: build models that
generalize well to predicting new data

= “Overfitting™: fitting the training data too well, so we lose
generality of model

o Example: linear regression vs. Newton’s interpolating polynomial

2 5
4.5 -\ |y=3343.0¢- 7453.065 + 7007.x* - 3435.* + 896.0x* - 111.9x + 5.241

4

y=2.094x- 0.050

3.5
3
1 2.5
2
1.5
0.5 1
0.5
0 0
0 0.1 0.2 0.3 04 0.5 0.6 0 0.1 0.2 0.3 04 0.5 0.6

o Interpolating polynomial fits training data perfectly!
- Which would you rather use to predict a new data point?

To Consider with Logistic Regression

- Logistic Regression can more easily overfit
training data than Naive Bayes

» Logistic Regression is not modeling whole distribution,
it is just optimizing prediction of Y

= Overfitting can is problematic if distributions of training
data and testing data differ a bit

» There are methods to mitigate overfitting in Logistic
Regression

o Called “regularizers”

o Use Bayesian priors on parameters, rather than just maximizing
conditional likelihood (like MAP)

o Many others!

Logistic Regression and Neural Networks

- Consider logistic regression as:

R Logistic regression is
X b y same as a one node
X3 E3 neural network

Xy ’

- Neural network

Biological Basis for Neural Networks

- A neuron

- Your brain

Actually, it’s probably someone else’s brain

Next up: Neural Networks!

