

Today's Topics

Last time:

Conditional Probability
Bayes Theorem

Today:

Independence Conditional Independence

Next time:

Random Variables

The Tragedy of Conditional Prob

THE ANNUAL DEATH RATE AMONG PEOPLE WHO KNOW THAT STATISTIC IS ONE IN SIX.

Thanks xkcd! http://xkcd.com/795/

A Few Useful Formulas

For any events A and B:

$$P(A B) = P(B A)$$
 (Commutativity)
 $P(A B) = P(A | B) P(B)$ (Chain rule)
 $= P(B | A) P(A)$

$$P(A B^{c}) = P(A) - P(AB)$$
 (Intersection)

$$P(A B) \ge P(A) + P(B) - 1$$
 (Bonferroni)

Generality of Conditional Probability

 For any events A, B, and E, you can condition consistently on E, and these formulas still hold:

$$P(A B | E) = P(B A | E)$$

$$P(A B | E) = P(A | B E) P(B | E)$$

$$P(A | B E) = \frac{P(B | A E) P(A | E)}{P(B | E)}$$
 (Bayes' Thm.)

BAE's Theorem?

$$P(A \mid B \mid E) = \frac{P(B \mid A \mid E) P(A \mid E)}{P(B \mid E)}$$

Generality of Conditional Probability

 For any events A, B, and E, you can condition consistently on E, and these formulas still hold:

$$P(A B | E) = P(B A | E)$$

$$P(A B | E) = P(A | B E) P(B | E)$$

$$P(A | B E) = \frac{P(B | A E) P(A | E)}{P(B | E)}$$
 (Bayes' Thm.)

- Can think of E as "everything you already know"
- Formally, P(| E) satisfies 3 axioms of probability

Our Still Misunderstood Friend

- Roll two 6-sided dice, yielding values D₁ and D₂
 - Let E be event: $D_1 = 1$
 - Let F be event: $D_2 = 1$
- What is P(E), P(F), and P(EF)?
 - P(E) = 1/6, P(F) = 1/6, P(EF) = 1/36
 - P(EF) = P(E) P(F) \rightarrow E and F <u>independent</u>
- Let G be event: $D_1 + D_2 = 5$ {(1, 4), (2, 3), (3, 2), (4, 1)}
- What is P(E), P(G), and P(EG)?
 - P(E) = 1/6, P(G) = 4/36 = 1/9, P(EG) = 1/36
 - $P(EG) \neq P(E) P(G)$ \rightarrow E and G <u>dependent</u>

Two events E and F are called <u>independent</u> if:

$$P(EF) = P(E) P(F)$$

Or, equivalently: $P(E \mid F) = P(E)$

- Otherwise, they are called dependent events
- Three events E, F, and G independent if:

$$P(EFG) = P(E) P(F) P(G)$$
, and

$$P(EF) = P(E) P(F)$$
, and

$$P(EG) = P(E) P(G)$$
, and

$$P(FG) = P(F) P(G)$$

 Given independent events E and F, prove that E and F^C are independent

 Given independent events E and F, prove that E and F^C are independent

```
• Proof: We want to show that this is equal to P(E F^c) to P(E)P(F^c)
```

 Given independent events E and F, prove that E and F^C are independent

P(E F^c) = P(E) – P(EF) Since P(E) =
$$P(EF^c) + P(EF)$$

- Given independent events E and F, prove that E and F^C are independent
- Proof:

```
P(E F^c) = P(E) - P(EF) Since we are told
= P(E) - P(E) P(F) E and F are
independent
```

- Given independent events E and F, prove that E and F^C are independent
- Proof:

```
P(E F^{c}) = P(E) - P(EF)
= P(E) - P(E) P(F)
= P(E) [1 - P(F)]
Factoring!
```

- Given independent events E and F, prove that E and F^C are independent
- Proof:

```
P(E F^{c}) = P(E) - P(EF)
= P(E) - P(E) P(F)
= P(E) [1 - P(F)]
= P(E) P(F^{c})
Yep, that's the complement
```

- Given independent events E and F, prove that E and F^C are independent
- Proof:

$$P(E F^{c}) = P(E) - P(EF)$$

$$= P(E) - P(E) P(F)$$

$$= P(E) [1 - P(F)]$$

$$= P(E) P(F^{c})$$
So, E and F^c independent, implying that:
$$P(E \mid F^{c}) = P(E) = P(E \mid F)$$

- Given independent events E and F, prove that E and F^C are independent
- Proof:

```
P(E F^{c}) = P(E) - P(EF)
= P(E) - P(E) P(F)
= P(E) [1 - P(F)]
= P(E) P(F^{c})
So, E and F<sup>c</sup> independent, implying that:
P(E \mid F^{c}) = P(E) = P(E \mid F)
```

 Intuitively, if E and F are independent, knowing whether F holds gives us no information about E

Generalized Independence

General definition of Independence:

Events E_1 , E_2 , ..., E_n are independent if for every subset with r elements (where $r \le n$) it holds that:

$$P(E_{1'}E_{2'}E_{3'}...E_{r'}) = P(E_{1'})P(E_{2'})P(E_{3'})...P(E_{r'})$$

- Example: outcomes of n separate flips of a coin are all independent of one another
 - Each flip in this case is called a "trial" of the experiment

Two Dice

- Roll two 6-sided dice, yielding values D₁ and D₂
 - Let E be event: $D_1 = 1$
 - Let F be event: $D_2 = 6$
 - Are E and F independent? Yes!
- Let G be event: $D_1 + D_2 = 7$
 - Are E and G independent? Yes!
 - P(E) = 1/6, P(G) = 1/6, P(E|G) = 1/36 [roll (1, 6)]
 - Are F and G independent? Yes!
 - P(F) = 1/6, P(G) = 1/6, P(F G) = 1/36 [roll (1, 6)]
 - Are E, F and G independent? No!
 - $P(EFG) = 1/36 \neq 1/216 = (1/6)(1/6)(1/6)$

Generating Random Bits

- A computer produces a series of random bits,
 with probability p of producing a 1.
 - Each bit generated is an independent trial
 - E = first n bits are 1's, followed by a single 0
 - What is P(E)?
- Solution
 - P(first *n* 1's) = P(1st bit=1) P(2nd bit=1) ... P(nth bit=1) = p^n
 - P(n+1 bit=0) = (1-p)
 - $P(E) = P(first \ n \ 1's) P(n+1 \ bit=0) = p^n (1-p)$

Coin Flips

- Say a coin comes up heads with probability p
 - Each coin flip is an independent trial
- P(n heads on n coin flips) = p^n
- P(n tails on n coin flips) = $(1 p)^n$
- P(first k heads, then n k tails) = $p^k (1 p)^{n-k}$
- P(exactly k heads on n coin flips) =?

Explain...

P(exactly *k* heads on *n* coin flips)?

$$\binom{n}{k} p^k (1-p)^{n-k}$$

Think of the flips as ordered:

Ordering 1: T, H, H, T, T, T....

Ordering 2: H, T, H, T, T, T....

And so on...

The coin flips are independent!

$$P(F_i) = p^k (1 - p)^{n - k}$$

Let's make each ordering with k heads an event... F_i

P(exactly k heads on n coin flips) = P(any one of the events)

P(exactly k heads on n coin flips) = $P(F_1 \text{ or } F_2 \text{ or } F_3...)$

Those events are mutually exclusive!

Moment of Crystallization

Add vs Multiply?

Add vs Multiply

Add vs Multiply

multiply

P(AB)

Generally:

P(A)P(B|A)
P(A)P(B)

Independent:

 $P(A \cup B)$

Generally:

P(A) + P(B) - P(AB)

Mutually Exclusive: P(A) + P(B)

add

Add vs Multiply

Next up...

And vs Condition

$$P(A B) = P(A \mid B) P(B)$$

Hash Tables

- m strings are hashed (unequally) into a hash table with n buckets
 - Each string hashed is an independent trial, with probability p_i of getting hashed to bucket i
 - E = at least one string hashed to first bucket
 - What is P(E)?
- Solution

To the chalk board!

Yet More Hash Tables

- m strings are hashed (unequally) into a hash table with n buckets
 - Each string hashed is an independent trial, with probability p_i of getting hashed to bucket i
 - E = At least 1 of buckets 1 to k has \geq 1 string hashed to it
- Solution
 - F_i = at least one string hashed into i-th bucket
 - P(E) = P(F₁∪F₂∪...∪F_k) = 1 P((F₁∪F₂∪...∪F_k)^c) = 1 - P(F₁^c F₂^c ...F_k^c) (DeMorgan's Law)
 - $P(F_1^c F_2^c ... F_k^c) = P(\text{no strings hashed to buckets 1 to } k)$ = $(1 - p_1 - p_2 - ... - p_k)^m$
 - $P(E) = 1 (1 p_1 p_2 ... p_k)^m$

No, Really, More Hash Tables

- m strings are hashed (unequally) into a hash table with n buckets
 - Each string hashed is an independent trial, with probability p_i of getting hashed to bucket i
 - E = $\frac{\text{Each of}}{\text{buckets 1 to } k}$ has ≥ 1 string hashed to it
- Solution
 - F_i = at least one string hashed into i-th bucket

■ P(E) = P(F₁F₂...F_k) = 1 - P((F₁F₂...F_k)^c)
= 1 - P(F₁^c ∪ F₂^c ∪ ... ∪ F_k^c) (DeMorgan's Law)
= 1 - P(\bigcup_{i=1}^{k} F_i^c) = 1 - \sum_{r=1}^{k} (-1)^{(r+1)} \sum_{i_1 < ... < i_r} P(F_{i_1}^c F_{i_2}^c ... F_{i_r}^c)
where
$$P(F_{i_1}^c F_{i_2}^c ... F_{i_r}^c) = (1 - p_{i_1} - p_{i_2} - ... - p_{i_r})^m$$

Sending a Message Through Network

Consider the following parallel network:

- n independent routers, each with probability p_i of functioning (where 1 ≤ i ≤ n)
- E = functional path from A to B exists. What is P(E)?
- Solution:

• P(E) = 1 - P(all routers fail)
= 1 -
$$(1 - p_1)(1 - p_2)...(1 - p_n)$$

= $1 - \prod_{i=1}^{n} (1 - p_i)$

Phew...

2 min pedagogical pause

Digging Deeper on Independence

Recall, two events E and F are called independent if

$$P(EF) = P(E) P(F)$$

 If E and F are independent, does that tell us whether the following is true or not:

$$P(EF \mid G) = P(E \mid G) P(F \mid G),$$

where G is an arbitrary event?

In general, No!

Not So Independent Dice

- Roll two 6-sided dice, yielding values D₁ and D₂
 - Let E be event: $D_1 = 1$
 - Let F be event: $D_2 = 6$
 - Let G be event: $D_1 + D_2 = 7$
- E and F are independent
 - P(E) = 1/6, P(F) = 1/6, P(EF) = 1/36
- Now condition both E and F on G:
 - P(E|G) = 1/6, P(F|G) = 1/6, P(EF|G) = 1/6
 - $P(EF|G) \neq P(E|G) P(F|G)$ → $E|G \text{ and } F|G \text{ } \underline{dependent}$
- Independent events can become dependent by conditioning on additional information

- Say you have a lawn
 - It gets watered by rain or sprinklers
 - P(rain) and P(sprinklers were on) are independent
 - Now, you come outside and see the grass is wet
 - You know that the sprinklers were on
 - Does that lower probability that rain was cause of wet grass?
 - This phenomena is called "explaining away"
 - One cause of an observation makes other causes less likely

Conditioning Can Make Independence

- Consider a randomly chosen day of the week
 - Let A be event: It is not Monday
 - Let B be event: It is Saturday
 - Let C be event: It is the weekend
- A and B are dependent
 - P(A) = 6/7, P(B) = 1/7, P(AB) = 1/7 ≠ (6/7)(1/7)
- Now condition both A and B on C:
 - P(A|C) = 1, P(B|C) = 1/2, P(AB|C) = 1/2
 - $P(AB|C) = P(A|C) P(B|C) \rightarrow A|C \text{ and } B|C \text{ independent}$
- Dependent events can become independent by conditioning on additional information

Conditional Independence

 Two events E and F are called <u>conditionally</u> independent given G, if

$$P(E F | G) = P(E | G) P(F | G)$$

Or, equivalently: P(E | F G) = P(E | G)

And Learn

What is the probability that a user will like Life is Beautiful?

P(E)

$$P(E) = \lim_{n \to \infty} \frac{n(E)}{n} \approx \frac{\# \text{ people who liked movie}}{\# \text{ people who watched movie}}$$

$$P(E) = 50,234,231 / 50,923,123 = 0.97$$

What is the probability that a user will like Life is Beautiful, given they liked Amelie?

$$P(E|F) = \frac{P(EF)}{P(F)} = \frac{\frac{\text{people who liked both}}{\text{people who watched both}}}{\frac{\text{people who liked amelie}}{\text{people who watched amelie}}}$$

$$P(E|F) = 0.99$$

Conditioned on liking a set of movies?

Each event corresponds to liking a particular movie

 E_1

 E_2

 E_3

 E_4

$$P(E_4|E_1,E_2,E_3)$$
?

Is E_4 independent of E_1, E_2, E_3 ?

Is E_4 independent of E_1, E_2, E_3 ?

 E_1

 E_2

 E_3

 E_4

$$P(E_4|E_1, E_2, E_3) \stackrel{?}{=} P(E_4)$$

- What is the probability that a user watched four particular movies?
 - There are 13,000 titles on Netflix

from netflix

- The user watches 30 random titles
- E = movies watched include the given four.

• Solution: Watch those four Choose 24 movies not in the set
$$P(E) = \frac{\binom{4}{4}\binom{12996}{24}}{\binom{13000}{30}} = 10^{-11}$$
 Choose 30 movies

 E_1 E_2

 E_3

 E_4

 K_{l} Like foreign emotional comedies

Conditional independence is a practical, real world way of decomposing hard probability questions.

Big Deal

"Exploiting conditional independence to generate fast probabilistic computations is one of the main contributions CS has made to probability theory"

-Judea Pearl wins 2011 Turing Award, "For fundamental contributions to artificial intelligence through the development of a calculus for probabilistic and causal reasoning"

Extra problem given time

Reminder: Geometric Series

• Geometric series:
$$x^0 + x^1 + x^2 + x^3 + ... + x^n = \sum_{i=0}^{n} x^i$$

If x is greater than 0 and less than 1:

$$\sum_{i=0}^{\infty} x^i = \frac{1}{1-x}$$

From your "Calculation Reference" handout:

Simplified Craps

- Two 6-sided dice repeatedly rolled (roll = ind. trial)
 - E = 5 is rolled before a 7 is rolled
 - What is P(E)?
- Solution
 - $F_n = no 5 \text{ or } 7 \text{ rolled in first } n 1 \text{ trials, } 5 \text{ rolled on } n^{th} \text{ trial}$

•
$$P(E) = P\left(\bigcup_{n=1}^{\infty} F_n\right) = \sum_{n=1}^{\infty} P(F_n)$$

- P(5 on any trial) = 4/36 P(7 on any trial) = 6/36
- $P(F_n) = (1 (10/36))^{n-1} (4/36) = (26/36)^{n-1} (4/36)$

• P(E) =
$$\frac{4}{36} \sum_{n=1}^{\infty} \left(\frac{26}{36}\right)^{n-1} = \frac{4}{36} \sum_{n=0}^{\infty} \left(\frac{26}{36}\right)^{n} = \frac{4}{36} \frac{1}{\left(1 - \frac{26}{36}\right)} = \frac{2}{5}$$