Lecture 9
April 15t




Review



Discrete Distributions

Bernoulli:
= indicator of coin flip X ~ Ber(p)

Binomial:
= # successes in n coin flips X ~ Bin(n, p)

Poisson:
= # successes in n coin flips X ~ Poi(\)

Geometric:
= # coin flips until success X ~ Geo(p)

Negative Binomial:
= # trials until r successes X ~ NegBin(r, p)

Hyper Geometric:

= # white balls drawn without replacement from urn with N balls, m
are white: X ~ HypG(n, N, m)



Balls, Urns and the Supreme Court

Supreme Court case: Berghuis v. Smith

If a group is underrepresented in a jury pool, how do you tell?
» Article by Erin Miller — Friday, January 22, 2010
« Thanks to (former CS109er) Josh Falk for this article

Justice Breyer [Stanford Alum] opened the questioning by
Invoking the binomial theorem. He hypothesized a scenario
iInvolving “an urn with a thousand balls, and sixty are blue,
and nine hundred forty are purple, and then you select
them at random... twelve at a time.” According to Justice
Breyer and the binomial theorem, if the purple balls were under
represented jurors then “you would expect... something like
a third to a half of juries would have at least one minority
person” on them.




Justin Breyer Meets CS109

. Should model this combinatorially (X ~ HypGeo)

« Ball draws not independent trials (balls not replaced)

Exact solution: 940)/(

1000
P(draw 12 purple balls) = ( 12

P(draw = 1 blue ball) =1 — P(draw 12 purple) = 0.5261

- Approximation using Binomial distribution

« Assume P(blue ball) constant for every draw = 60/1000
« X =# blue balls drawn. X ~ Bin(12, 60/1000 = 0.06)

« PX21)=1-P(X=0)=1-0.4759 = 0.5240

In Breyer’s description, should actually expect just over half
of juries to have at least one black person on them




Demo



Underrepresented Juror PMF
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Endangered Species

L

Determine N = how many of some species remain
« Randomly tag m of species (e.g., with white paint)

= Allow animals to mix randomly (assuming no breeding)
« Later, randomly observe another n of the species

« X =number of tagged animals in observed group of n

= X ~HypG(n, N, m)
- “Maximum Likelihood” estimate (m) N_¢)
. Set N to be value that maximizes: Py =i)=3"A""

N

)
for the value i of X that you observed > N = mnli

Calculated by assuming: i = E[X] = nm/N




End Review



From Discrete to Continuous

. So far, all random variables we saw were discrete

« Have finite or countably infinite values (e.g., integers)
= Usually, values are binary or represent a count

Now it's time for continuous random variables
« Have (uncountably) infinite values (e.g., real numbers)

= Usually represent measurements (arbitrary precision)
- Height (centimeters), Weight (Ibs.), Time (seconds), etc.

Difference between how many and how much

b b
Generally, it means replace Ef(X) with ff(X)dx



Integrals
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Continuous Random Variables

- Xis a Continuous Random Variable if there is
function f(x) =2 0 for -0 < x < o0, such that:

Pa<X <b)= f F(x)dx

- fIs a Probability Density Function (PDF) if:

P(~% < X <) = f_O; f(x)dx =1



Probability Density Function

- Say f'is a Probability Density Function (PDF)

P(=% < X < x) =f f(x)dx =1
= f(x) is not a probability, it is probability/units of X
« Not meaningful without some subinterval over X

P(X =a) = f F(x)dx =0

» Contrast with Probability Mass Function (PMF) in
discrete case: p(a)=P(X =a)

where E p(x.) =1 for X taking on values x;, X, X3, ...
=1



Cumulative Distribution Function

- For a continuous random variable X, the
Cumulative Distribution Function (CDF) is:

F(a)=P(X<a)=P(Xsa)=}f(x)dx

- Density f'is derivative of CDF F: f(a) = iF(a)

da
- For continuous fand small ¢ :

a+e/?2

P(a—%sXsa+%)= ff(x)dxzef(a)

a-&/2
= S0, ratio of probabilities can still be meaningful:

- P(X = 1)/P(X = 2) = (¢ f(1))(€ f(2)) = {(1)/f(2)



Simple Example

. X is continuous random variable (CRV) with PDF:

1
C(4x—2x2) when0<x<2 0.8

S(x)= | 0
0 otherwise 0.

= Whatis C? 05 0 05 1 15 2 25

ONP~O®

2

2 3
fC(4x—2x2)dx=1 — C(2x2_2;c) ~1
0

0

C((8—§)—o)=1 ~ % o 23
3 3 g
. What is P(X > 1)?

? F(x)dx = f% (4x - 2x7)dx = Z( D2 — 2363)

1




Disk Crashes

- X = days of use before your disk crashes

/'Le—x/IOO x> O
f(x)= ,
0 otherwise
« First, determine A to have actual PDF
- Good integral to know: f e du = e"

0o

1 =f/1€_x“00dx _ —lOOﬂf%e_X/loodx = 1004100
- What is P(50 < X < 150)7?

150

F150)- F(50) = fﬁ o100 11 _ ,mx/100
50

1

0

150 ~3/2 _1/2
= —e +e ~(.383
50

- What is P(X < 10)?
10
F(10) =fﬁ o X100 1 ,=x/100
0

10

—e "% 1 1~0.095

0



Expectation and Variance

For discrete RV X: For continuous RV JX:
X]=Exp(x) E[X]=fxf(x)dx

Elg(N)]= D g0 px) | Elg(X)]- [20) 1)

E[X"] zx p(x) fx £(x)dx
For both discrete and continuous RVs:
ElaX +bl=aE[X]+b
Var(X) = E[(X - u)*]1= E[ X" ]- (E[X])’
Var(aX +b) = a*Var(X)




Linearly Increasing Density

- XIS a continuous random variable with PDF:

2
2x O<sx=<l 1.5
xX) =
709 {O otherwise f() 0;
0

= What is E[XP 0 02 04 06 08 1

E[X] = fxf(x)dx f2x a’x—gx _2

03
« What is Var(X)
E[X]= fx f(x)dx = fodx lx4

X

1 —

1
02
1

2

Var(X) = E[X*]- (E[X])’ %—(%) -



Uniform Random Variable

- Xis a Uniform Random Variable: X ~ Uni(a, p)
= Probability Density Function (PDF):

f(x)
(1
f=)fe @=x=l /310:
\ 0 otherwise . —_ OC

o Sometimes defined overrange a<x < f “ /

b
b—
* Plasxsb)=[f(x)dv=—— (forasas<bs<p)
-

2
X

_ Fop’-a’ a+pf
2f-a)

2B-a) 2

- E[X]= }xf(x)dx =j:ﬁ—fa dx

e Varx)=L 1‘2“)




Fun with the Uniform Distribution

. X ~ Uni(0, 20)
f(x) = 21() O=sx=<20
0 otherwise
. P(X <6)?
P(x<6) =}idx=£
0 20 20

: P(4 < X<17)?
17413
20 20 20

17
1
P(4<x<17)= [—dx
[20



Riding the Marguerite




Riding the Marguerite

. Say the Marguerite bus stops at the Gates bldg.
at 15 minute intervals (2:00, 2:15, 2:30, etc.)

« Passenger arrives at stop uniformly between 2-2:30pm
= X~ Uni(0, 30)

P(Passenger waits < 5 minutes for bus)?
» Must arrive between 2:10- 2 15pm or 2.25-2: 30pm

PI0< X <15)+ P(25<x<30)= f dx+f =30 350 ;

P(Passenger waits > 14 minutes for bus)?
» Must arrive between 2:00- 2 O1pm or 2:15- 2 16pm

1 1
PO<X <D)+P(15<x<16)= [, dx+ —dx—
{ f 30 30 15




When to Leave for Class

- Biking to a class on campus
= Leave f minutes before class starts

» X =travel time (minutes). X has PDF: f(x)

« If early, incur cost: ¢/min.  If late, incur cost: k/min.
c(t - X) if x<t

k(X -1t) if x=¢

« Choose t (when to leave) to minimize E[C(X, 1)]-

Cost: C(X,t) = {

t

E[C(X,1)] =}C(X, t) f(x)dx =fc(t - x) f(x)dx +}k(x —t) f(x)dx

0 t



Minimization via Differentiation

- Want to minimize w.r.t. t:

E[C(X,1)] =jc(t -Xx) f(x)dx +}k(x —1) f(x)dx

« Differentiate E[C(X, t)] w.r.t. t, and set = 0 (to obtain t*):

o Leibniz integral rule:

f2(t) £
dt i, P Ot
d

— EICX.D]=ct-0f () +jcf (X)dx - k(t-1) f(2) —jkf (x)dx

k

0=cF(r)~K[I=F(r*)] = F(r*)=——




