Continuous Joint Distributions

Random variables X and Y are Jointly Continuous if there exists a Probability Density Function (PDF) $f_{X,Y}$ such that:

$$P(a_1 < X \leq a_2, b_1 < Y \leq b_2) = \int_{a_1}^{a_2} \int_{b_1}^{b_2} f_{X,Y}(x,y) \, dy \, dx$$

Using the PDF we can compute marginal probability densities:

$$f_X(a) = \int_{-\infty}^{\infty} f_{X,Y}(a,y) \, dy$$

$$f_Y(b) = \int_{-\infty}^{\infty} f_{X,Y}(x,b) \, dx$$

Lemmas

Here are two useful lemmas. Let $F(a,b)$ be the Cumulative Density Function (CDF):

$$P(a_1 < X \leq a_2, b_1 < Y \leq b_2) = F(a_2,b_2) - F(a_1,b_2) + F(a_1,b_1) - F(a_2,b_1)$$

And did you know that if Y is a non-negative random variable the following hold (for discrete and continuous random variables respectively):

$$E[Y] = \sum_{i=1}^{n} P(Y \geq i)$$

$$E[Y] = \int_{0}^{\infty} P(Y \geq i) \, di$$

Example 3

A disk surface is a circle of radius R. A single point imperfection is uniformly distributed on the disk with joint PDF:

$$f_{X,Y}(x,y) = \begin{cases} \frac{1}{\pi R^2} & \text{if } x^2 + y^2 \leq R^2 \\ 0 & \text{else} \end{cases}$$

Let D be the distance from the origin: $D = \sqrt{X^2 + Y^2}$. What is $E[D]$? Hint: use the lemmas

Multinomial Distribution

Say you perform n independent trials of an experiment where each trial results in one of m outcomes, with respective probabilities: p_1, p_2, \ldots, p_m (constrained so that $\sum p_i = 1$). Define X_i to be the number of trials with outcome i. A multinomial distribution is a closed form function that answers the question: What is the probability that there are c_i trials with outcome i. Mathematically:

$$P(X_1 = c_1, X_2 = c_2, \ldots, X_m = c_m) = \binom{n}{c_1, c_2, \ldots, c_m} p_1^{c_1} p_2^{c_2} \cdots p_m^{c_m}$$
Example 1

A 6-sided die is rolled 7 times. What is the probability that you roll: 1 one, 1 two, 0 threes, 2 fours, 0 fives, 3 sixes (disregarding order).

\[
P(X_1 = 1, X_2 = 1, X_3 = 0, X_4 = 2, X_5 = 0, X_6 = 3) = \frac{7!}{2!3!1!1!0!0!0!} \left(\frac{1}{6} \right)^1 \left(\frac{1}{6} \right)^1 \left(\frac{1}{6} \right)^0 \left(\frac{1}{6} \right)^2 \left(\frac{1}{6} \right)^0 \left(\frac{1}{6} \right)^3
\]

\[
= 420 \left(\frac{1}{6} \right)^7
\]

Fedaralist Papers

In class we wrote a program to decide whether or not James Madison or Alexander Hamilton wrote Fedaralist Paper 49. Both men have claimed to be have written it, and hence the authorship is in dispute. First we used historical essays to estimate \(p_i \), the probability that Hamilton generates the word \(i \) (independent of all previous and future choices or words). Similarly we estimated \(q_i \), the probability that Madison generates the word \(i \). For each word \(i \) we observe the number of times that word occurs in Fedaralist Paper 49 (we call that count \(c_i \). We assume that, given no evidence, the paper is equally likely to be written by Madison or Hamilton.

Define three events: \(H \) is the event that Hamilton wrote the paper, \(M \) is the event that Madison wrote the paper, and \(D \) is the event that a paper has the collection of words observed in Fedaralist Paper 49. We would like to know whether \(P(H|D) \) is larger than \(P(M|D) \). This is equivalent to trying to decide if \(P(H|D)/P(M|D) \) is larger than 1.

The event \(D|H \) is a multinomial parameterized by the values \(p \). The event \(D|M \) is also a multinomial, this time parameterized by the values \(q \).

Using Bayes Rule we can simplify the desired probability.

\[
\frac{P(H|D)}{P(M|D)} = \frac{\frac{P(D|H)P(H)}{P(D)}}{\frac{P(D|M)P(M)}{P(D)}} = \frac{P(D|H)P(H)}{P(D|M)P(M)} = \frac{P(D|H)}{P(D|M)}
\]

\[
= \frac{\prod \left(\begin{array}{c} n \\ c_1, c_2, \ldots, c_m \end{array} \right) \prod_i p_i^{c_i}}{\prod \left(\begin{array}{c} n \\ c_1, c_2, \ldots, c_m \end{array} \right) \prod_i q_i^{c_i}} = \frac{\prod_i p_i^{c_i}}{\prod_i q_i^{c_i}}
\]

This seems great! We have our desired probability statement expressed in terms of a product of values we have already estimated. However, when we plug this into a computer, both the numerator and denominator come out to be zero. The product of many numbers close to zero is too hard for a computer to represent. To fix this problem, we use a standard trick in computational probability: we apply a log to both sides and apply some basic rules of logs.

\[
\log \left(\frac{P(H|D)}{P(M|D)} \right) = \log \left(\frac{\prod_i p_i^{c_i}}{\prod_i q_i^{c_i}} \right)
\]

\[
= \log(\prod_i p_i^{c_i}) - \log(\prod_i q_i^{c_i})
\]

\[
= \sum_i \log(p_i^{c_i}) - \sum_i \log(q_i^{c_i})
\]

\[
= \sum_i c_i \log(p_i) - \sum_i c_i \log(q_i)
\]

This expression is “numerically stable” and my computer returned that the answer was a negative number. We can use exponentiation to solve for \(P(H|D)/P(M|D) \). Since the exponent of a negative number is a number smaller than 1, this implies that \(P(H|D)/P(M|D) \) is smaller than 1. As a result, we conclude that Madison was more likely to have written Fedaralist Paper 49.