

Independence

Learning Goals

1. Be able to recognize independent events
2. Use independence rules to calculate probabilities
3. Recognize and use *conditional* independencies

Summary

Two events A and B are called independent if:

$$P(AB) = P(A)P(B) \quad P(A|B) = P(A)$$

Otherwise, they are called dependent events

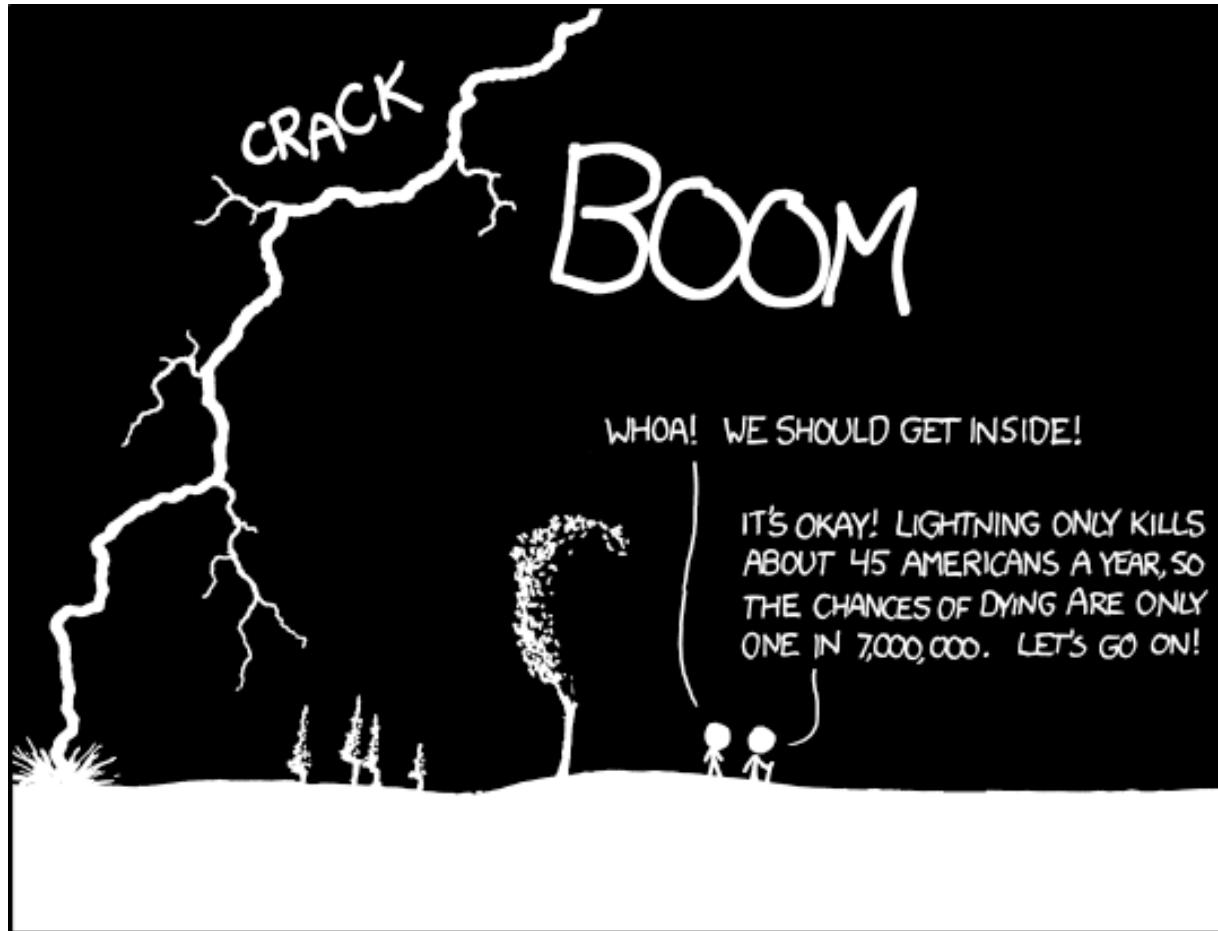
Two events A and B are
conditionally independent on C if:

$$P(AB|C) = P(A|C)P(B|C)$$

$$P(A|BC) = P(A|C)$$

Review

The Tragedy of Conditional Prob



THE ANNUAL DEATH RATE AMONG PEOPLE WHO KNOW THAT STATISTIC IS ONE IN SIX.

Thanks xkcd! <http://xkcd.com/795/>

And vs Condition

$P(AB)$ vs $P(A|B)$

$$P(AB) = P(A|B)P(B)$$

A Few Useful Formulas

- For any events A and B:

$$P(A \cap B) = P(B \cap A) \quad (\text{Commutativity})$$

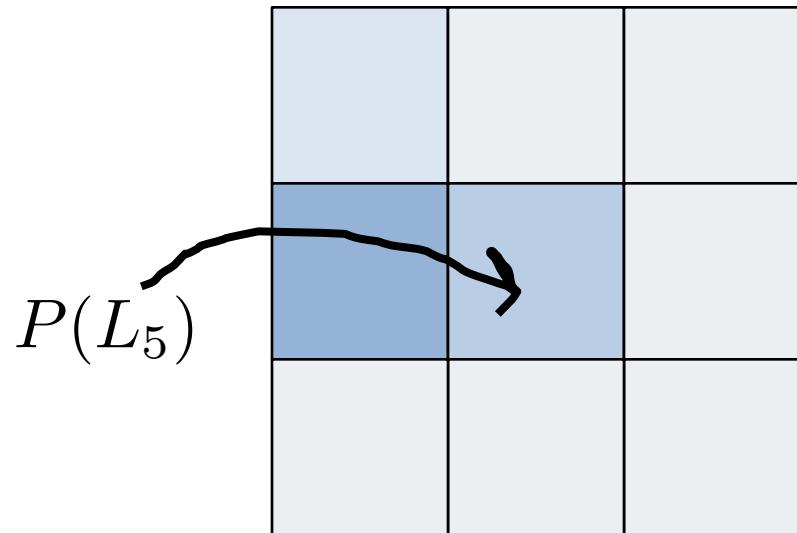
$$\begin{aligned} P(A \cap B) &= P(A | B) P(B) \\ &= P(B | A) P(A) \end{aligned} \quad (\text{Chain rule})$$

$$P(A \cap B^c) = P(A) - P(AB) \quad (\text{Intersection})$$

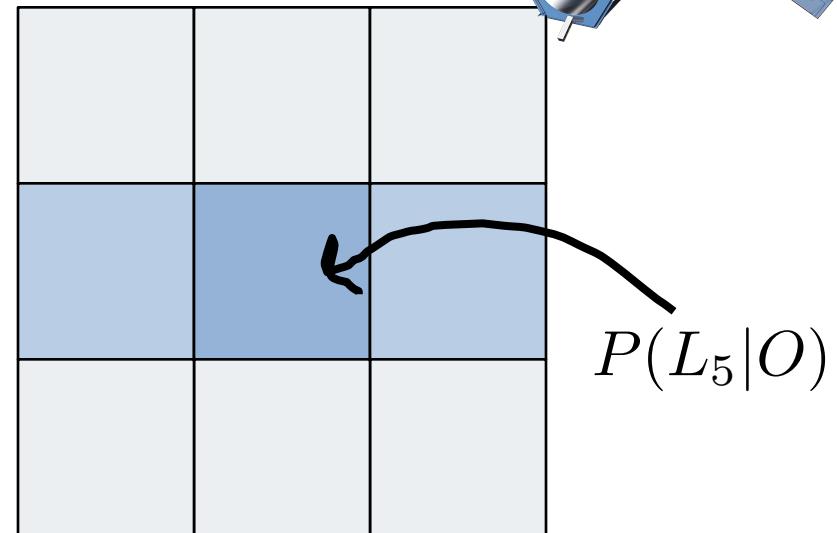
$$P(A) + P(A^c) = 1 \quad (\text{Total Probability})$$

$$P(A | B) = \frac{P(B | A) P(A)}{P(B)} \quad (\text{Bayes Theorem})$$

Bayes: Update Belief

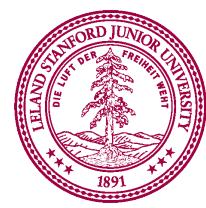


Before Observation



After Observation

$$P(L_5|O) = \frac{P(O|L_5)P(L_5)}{P(O)}$$



Generality of Conditional Probability

- For any events A , B , and E , you can condition consistently on E , and these formulas still hold:

$$P(A \cap B | E) = P(B | A \cap E)$$

$$P(A \cap B | E) = P(A | B \cap E) P(B | E)$$

$$P(A | B \cap E) = \frac{P(B | A \cap E) P(A | E)}{P(B | E)} \quad (\text{Bayes' Thm.})$$

- Can think of E as “everything you already know”
- Formally, $P(\cdot | E)$ satisfies 3 axioms of probability

BAE's Theorem?

$$P(A | B E) = \frac{P(B | A E) P(A | E)}{P(B | E)}$$

End Review

Today, start with a cool program

G₁

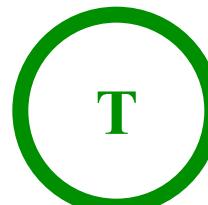
G₂

G₃

G₄

G₅

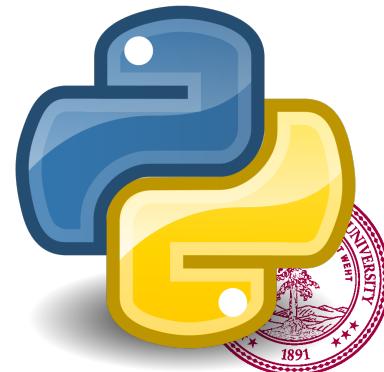
T



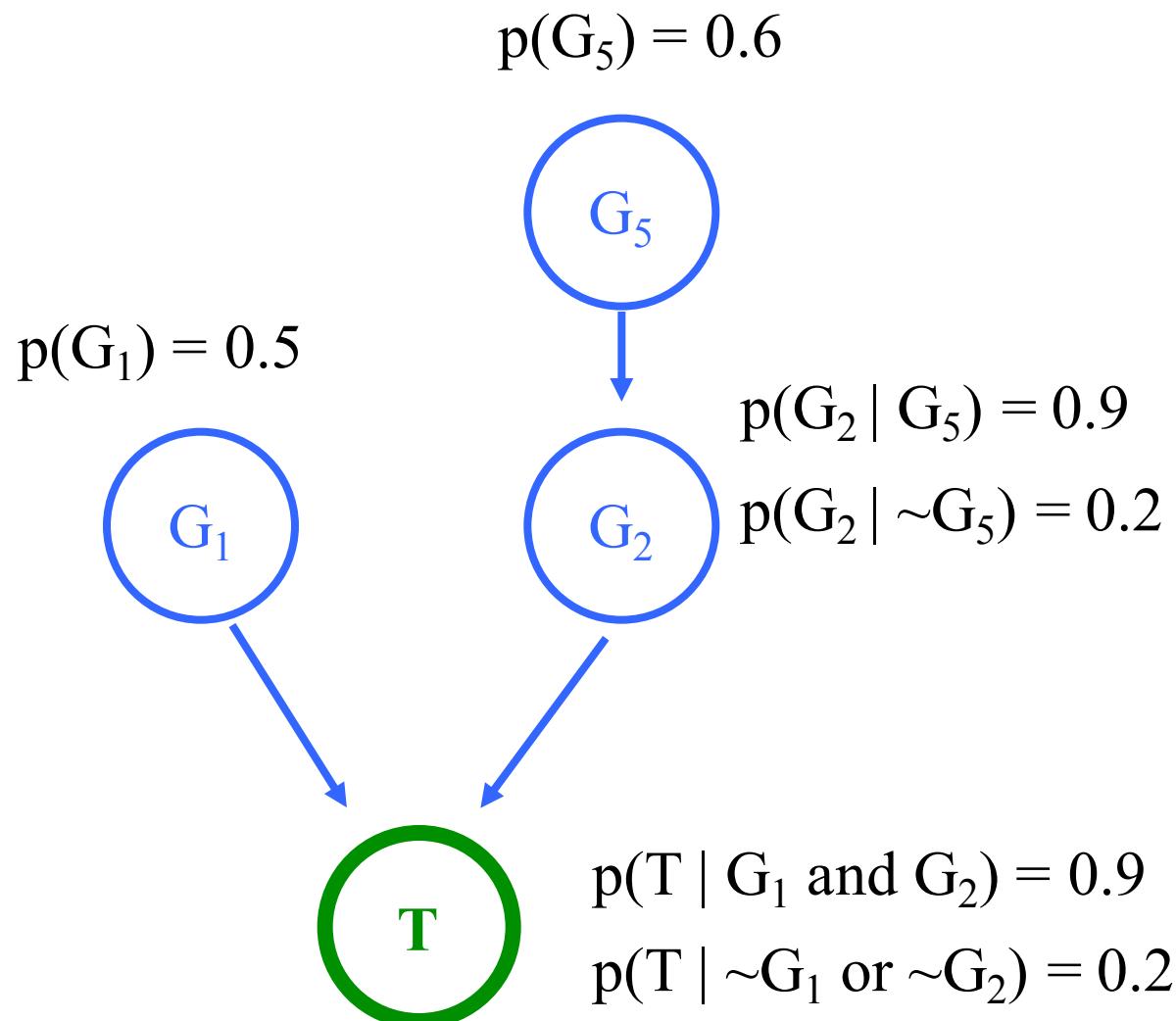
1 False, True, False, False, True, False
2 True, True, False, True, True, False
3 True, True, False, True, True, True
4 False, True, False, True, True, False
5 False, True, False, False, True, False
6 True, True, False, True, True, True
7 False, False, True, False, False, False
8 False, False, True, False, True, False
9 True, False, False, True, False, False
10 False, True, False, True, True, False
11 True, False, False, True, False, False
12 True, False, True, True, False, False
13 False, True, False, False, True, False
14 False, False, True, True, False, False
15 True, True, False, False, True, True
16 True, False, True, True, False, False
17 True, True, True, True, True, True
18 True, False, True, False, False, True
19 False, True, False, True, True, True
20 False, False, True, False, False, False
21 False, False, False, True, True, False
22 False, True, False, False, True, False
23 True, True, False, True, True, True
24 False, True, False, True, True, False
25 True, False, False, False, False, True
26 False, False, True, True, False, True
27 False, False, False, True, False, False
28 False, True, True, False, False, True
29 False, True, False, False, True, True
30 False, False, False, False, False, True
31 False, True, False, True, True, False
32 True, False, False, True, False, False
33 True, True, False, True, True, True
34 True, True, False, False, True, True
35 True, True, False, True, True, True
36 False, False, False, True, False, False
--

6 observations per sample

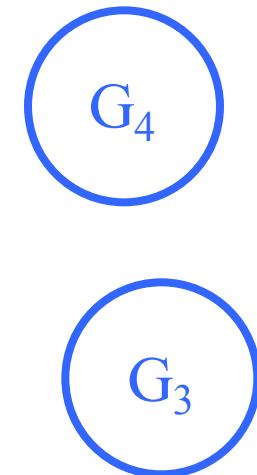
100,000
samples



Discovered Pattern



These genes
don't impact T



We've gotten ahead of ourselves

Source: The Hobbit

Start at the beginning

Source: The Ho

Independence

Two events A and B are called independent if:

$$P(AB) = P(A)P(B)$$

Or, equivalently:

$$P(A|B) = P(A)$$

Otherwise, they are called dependent events

Dice, Our Misunderstood Friends

- Roll two 6-sided dice, yielding values D_1 and D_2
 - Let E be event: $D_1 = 1$
 - Let F be event: $D_2 = 1$
- What is $P(E)$, $P(F)$, and $P(EF)$?
 - $P(E) = 1/6$, $P(F) = 1/6$, $P(EF) = 1/36$
 - $P(EF) = P(E) P(F)$ \rightarrow E and F independent
- Let G be event: $D_1 + D_2 = 5$ $\{(1, 4), (2, 3), (3, 2), (4, 1)\}$
- What is $P(E)$, $P(G)$, and $P(EG)$?
 - $P(E) = 1/6$, $P(G) = 4/36 = 1/9$, $P(EG) = 1/36$
 - $P(EG) \neq P(E) P(G)$ \rightarrow E and G dependent

Intuition through proofs:

Independence with Proofs

Let A and B be independent

$$P(A|B) = \frac{P(AB)}{P(B)}$$

Definition of
conditional probability

$$= \frac{P(A)P(B)}{P(B)}$$

Since A and B are
independent

$$= P(A)$$

Taking the bus to
cancel city

Knowing that event B happened, doesn't change
our belief that A will happen.

Independence

Given independent events A and B, prove that A and B^C are independent

We want to show that $P(AB^C) = P(A)P(B^C)$

$$\begin{aligned} P(AB^C) &= P(A) - P(AB) && \text{By Intersection Rule} \\ &= P(A) - P(A)P(B) && \text{By independence} \\ &= P(A)[1 - P(B)] && \text{Factoring} \\ &= P(A)P(B^C) && \text{Since } P(B) + P(B^C) = 1 \end{aligned}$$

So if A and B are independent A and B^C are also independent

Independence

Let A and B be independent

$$P(A|B) = P(A)$$

From our first proof

A and B^C are independent

From our second proof

And thus:

$$P(A|B^C) = P(A)$$

Since A and B^C are independent

$$P(A|B) = P(A) = P(A|B^C)$$

Put it all together

Intuitively, if A and B are independent, knowing whether B holds gives us no information about A

Generalization

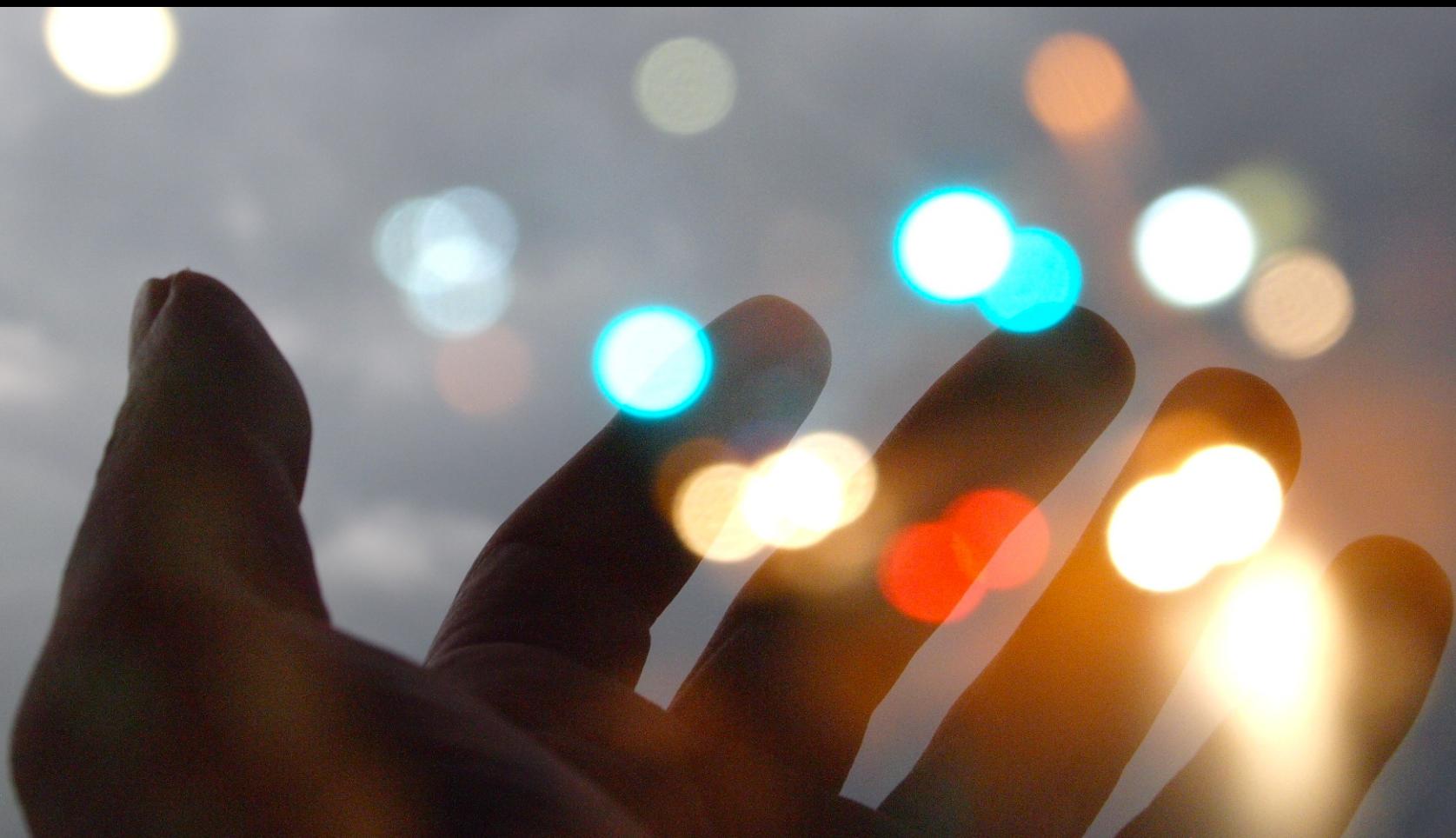
Generalized Independence

- General definition of Independence:
Events E_1, E_2, \dots, E_n are independent if for every subset with r elements (where $r \leq n$) it holds that:

$$\begin{aligned} P(E_{s_1}, E_{s_2}, E_{s_3}, \dots, E_{s_r}) \\ = P(E_{s_1})P(E_{s_2})P(E_{s_3}) \dots P(E_{s_r}) \end{aligned}$$

- Example: outcomes of n separate flips of a coin are all independent of one another
 - Each flip in this case is called a “trial” of the experiment

Math > Intuition



Two Dice

- Roll two 6-sided dice, yielding values D_1 and D_2
 - Let E be event: $D_1 = 1$
 - Let F be event: $D_2 = 6$
 - Are E and F independent? Yes!
- Let G be event: $D_1 + D_2 = 7$
 - Are E and G independent? Yes!
 - $P(E) = 1/6, P(G) = 1/6, P(E \cap G) = 1/36$ [roll (1, 6)]
 - Are F and G independent? Yes!
 - $P(F) = 1/6, P(G) = 1/6, P(F \cap G) = 1/36$ [roll (1, 6)]
 - Are E, F and G independent? No!
 - $P(E \cap F \cap G) = 1/36 \neq 1/216 = (1/6)(1/6)(1/6)$

New Ability

Generating Random Bits

- A computer produces a series of random bits, with probability p of producing a 1.
 - Each bit generated is an independent trial
 - E = first n bits are 1's, followed by a single 0
 - What is $P(E)$?
- Solution
 - $P(\text{first } n \text{ 1's}) = P(\text{1}^{\text{st}} \text{ bit}=1) P(\text{2}^{\text{nd}} \text{ bit}=1) \dots P(n^{\text{th}} \text{ bit}=1)$
 $= p^n$
 - $P(n+1 \text{ bit}=0) = (1 - p)$
 - $P(E) = P(\text{first } n \text{ 1's}) P(n+1 \text{ bit}=0) = p^n (1 - p)$

Coin Flips

- Say a coin comes up heads with probability p
 - Each coin flip is an independent trial
- $P(n \text{ heads on } n \text{ coin flips}) = p^n$
- $P(n \text{ tails on } n \text{ coin flips}) = (1 - p)^n$
- $P(\text{first } k \text{ heads, then } n - k \text{ tails}) = p^k (1 - p)^{n-k}$
- $P(\text{exactly } k \text{ heads on } n \text{ coin flips}) = ?$

Important Result

$P(\text{exactly } k \text{ heads on } n \text{ coin flips})?$

$$\binom{n}{k} p^k (1-p)^{n-k}$$

Think of the flips as ordered:

Ordering 1: T, H, H, T, T, T....

The coin flips are independent!

Ordering 2: H, T, H, T, T, T....

And so on...

$$P(F_i) = p^k (1-p)^{n-k}$$

Let's make each ordering with k heads an event... F_i

$P(\text{exactly } k \text{ heads on } n \text{ coin flips}) = P(\text{any one of the events})$

$P(\text{exactly } k \text{ heads on } n \text{ coin flips}) = P(F_1 \text{ or } F_2 \text{ or } F_3 \dots)$

Those events are mutually exclusive!

Moment of Crystallization

Add vs Multiply?

Batman vs Superman

COMING SOON
#BATMAN v SUPERMAN

SEE IT IN 3D

CONELANDUNUSUALFILMS

TM & © DC COMICS

DC COMICS
WARNER BROS. PICTURES INC.

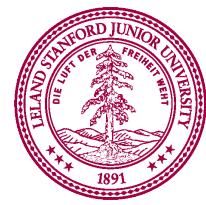
WARNER BROS. PICTURES INC.
©2015 Warner Bros. Entertainment Inc.
A Warner Bros. Entertainment Company

Add vs Multiply

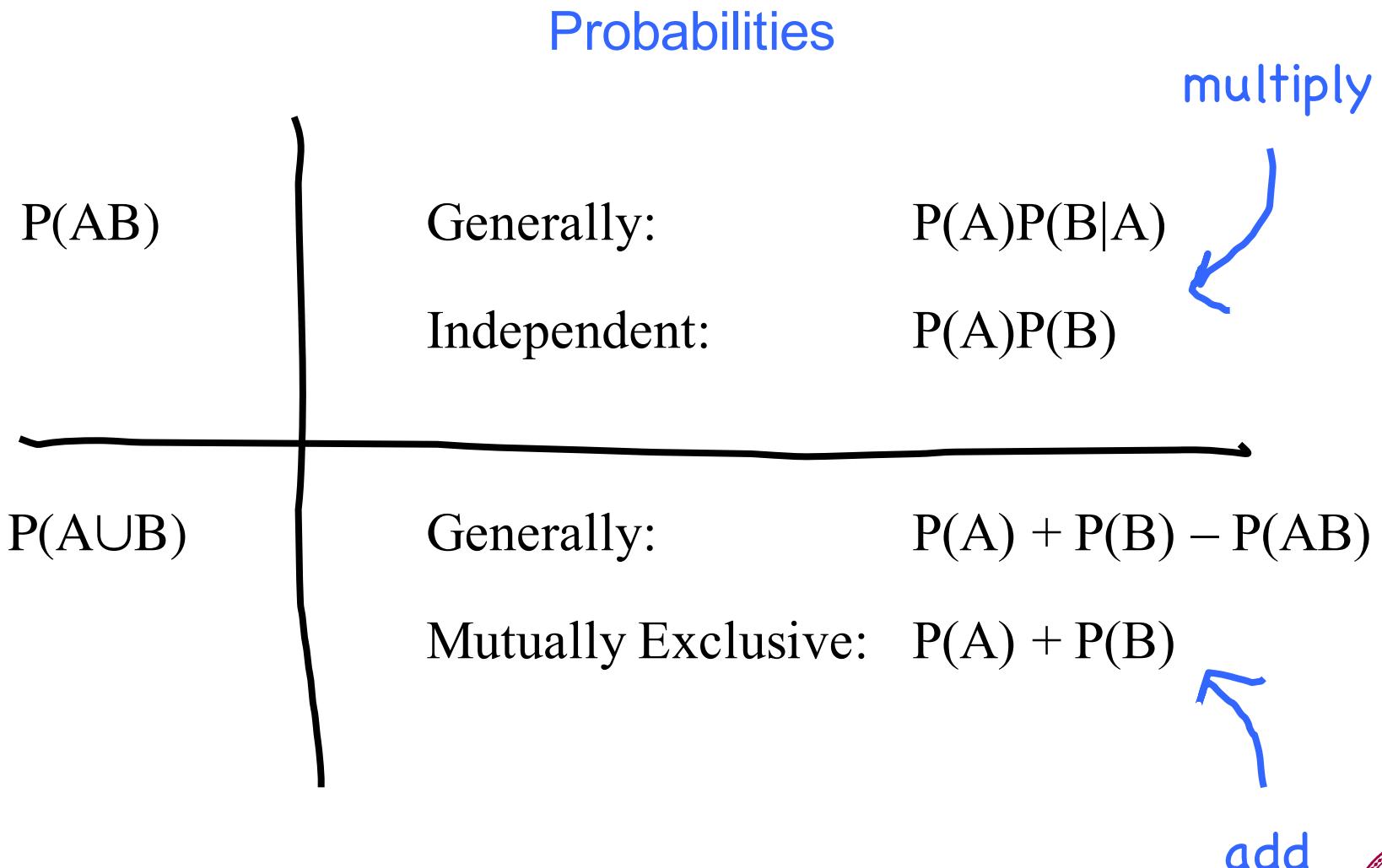
+

vs

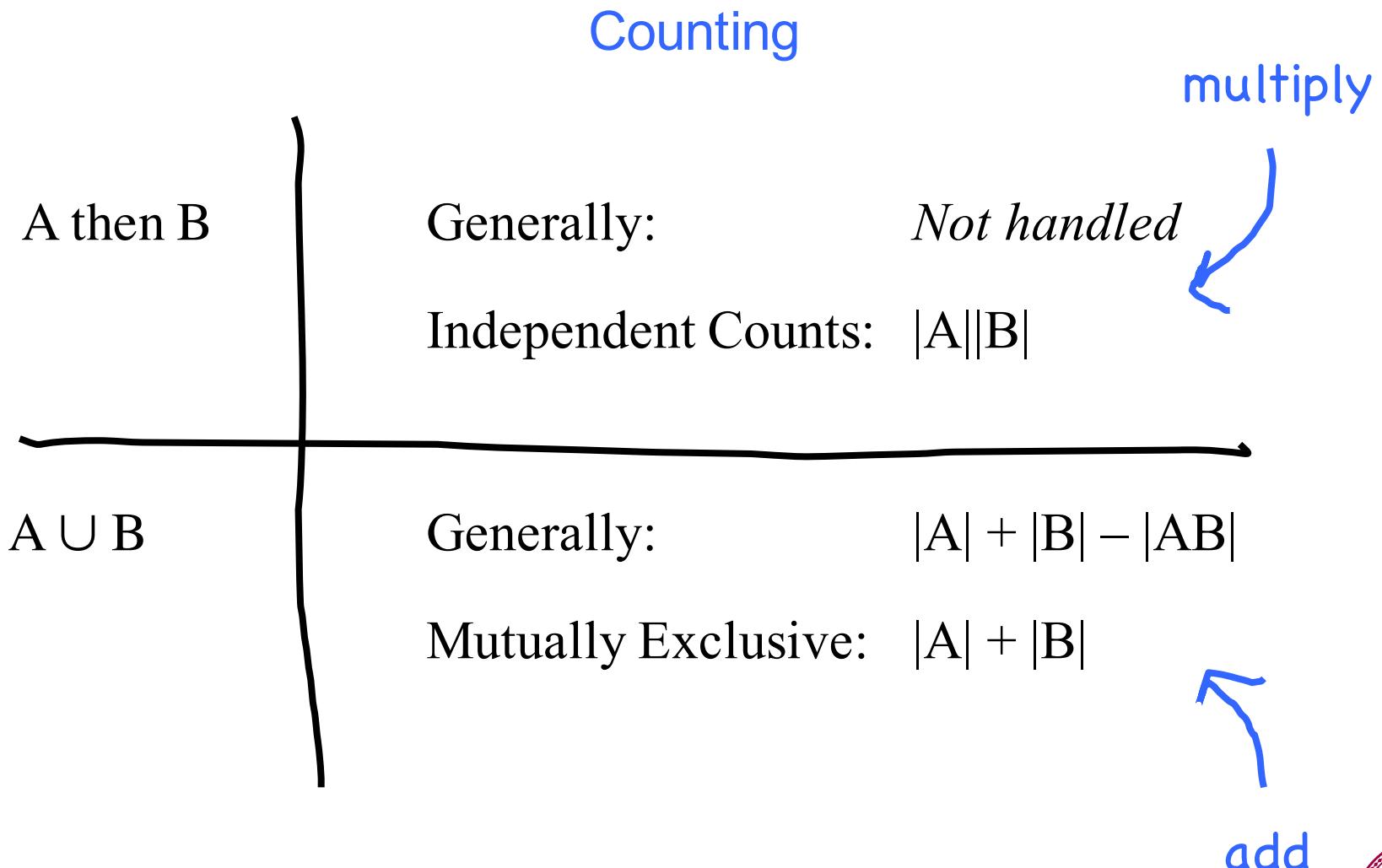
×



Add vs Multiply



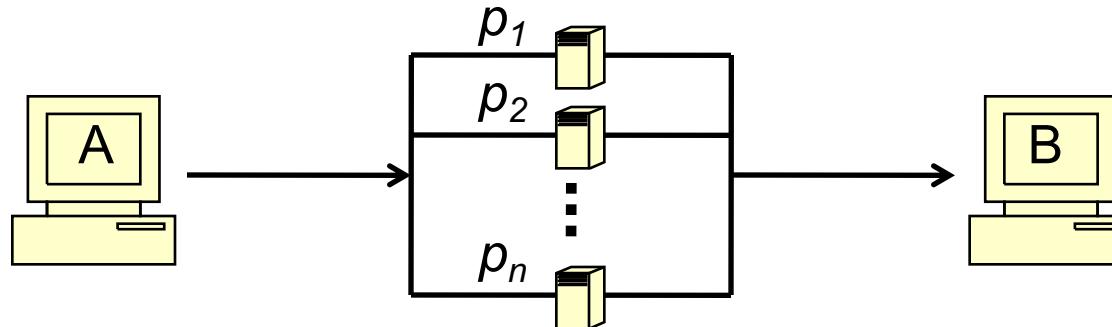
Add vs Multiply



Combining with Previous Skills

Sending a Message Through Network

- Consider the following parallel network:



- n independent routers, each with probability p_i of functioning (where $1 \leq i \leq n$)
- $E =$ functional path from A to B exists. What is $P(E)$?

- Solution:

$$\begin{aligned} P(E) &= 1 - P(\text{all routers fail}) \\ &= 1 - (1 - p_1)(1 - p_2) \dots (1 - p_n) \\ &= 1 - \prod_{i=1}^n (1 - p_i) \end{aligned}$$

Yet More Hash Tables

- m strings are hashed (unequally) into a hash table with n buckets
 - Each string hashed is an independent trial, with probability p_i of getting hashed to bucket i
 - $E = \text{At least 1 of}$ buckets 1 to k has ≥ 1 string hashed to it
- Solution
 - $F_i = \text{at least one string hashed into } i\text{-th bucket}$
 - $P(E) = P(F_1 \cup F_2 \cup \dots \cup F_k) = 1 - P((F_1 \cup F_2 \cup \dots \cup F_k)^c)$
 $= 1 - P(F_1^c F_2^c \dots F_k^c)$ (DeMorgan's Law)
 - $P(F_1^c F_2^c \dots F_k^c) = P(\text{no strings hashed to buckets 1 to } k)$
 $= (1 - p_1 - p_2 - \dots - p_k)^m$
 - $P(E) = 1 - (1 - p_1 - p_2 - \dots - p_k)^m$

The Hardest Example

- m strings are hashed (unequally) into a hash table with n buckets
 - Each string hashed is an independent trial, with probability p_i of getting hashed to bucket i
 - $E = \text{Each of}$ buckets 1 to k has ≥ 1 string hashed to it
- Solution
 - $F_i = \text{at least one string hashed into } i\text{-th bucket}$
 - $P(E) = P(F_1 F_2 \dots F_k) = 1 - P((F_1 F_2 \dots F_k)^c)$
 $= 1 - P(F_1^c \cup F_2^c \cup \dots \cup F_k^c)$ (DeMorgan's Law)
 - $= 1 - P\left(\bigcup_{i=1}^k F_i^c\right) = 1 - \sum_{r=1}^k (-1)^{(r+1)} \sum_{i_1 < \dots < i_r} P(F_{i_1}^c F_{i_2}^c \dots F_{i_r}^c)$

where $P(F_{i_1}^c F_{i_2}^c \dots F_{i_r}^c) = (1 - p_{i_1} - p_{i_2} - \dots - p_{i_r})^m$

Phew...

Conditional Independence

Recall, two events A and B are independent if:

$$P(A) = P(A)P(B)$$

$$P(A|B) = P(A)$$

Two events E and F are
conditionally independent on C if:

$$P(AB|C) = P(A|C)P(B|C)$$

$$P(A|BC) = P(A|C)$$

NETFLIX

And Learn

Netflix and Learn

What is the probability
that a user will watch
Life is Beautiful?

$$P(E)$$

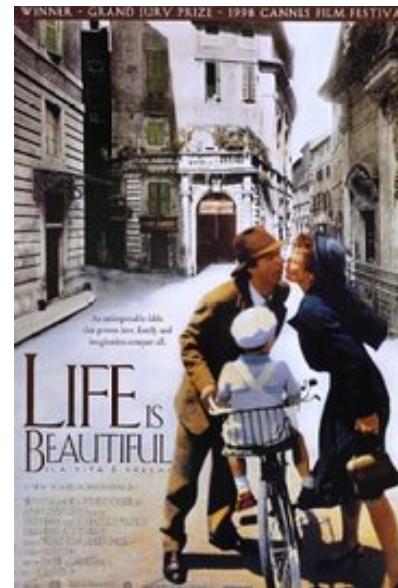
$$P(E) = \lim_{n \rightarrow \infty} \frac{n(E)}{n} \approx \frac{\text{\#people who watched movie}}{\text{\#people on Netflix}}$$

$$P(E) = 10,234,231 / 50,923,123 = 0.20$$

Netflix and Learn

What is the probability that a user will watch Life is Beautiful, given they watched Amelie?

$$P(E|F)$$



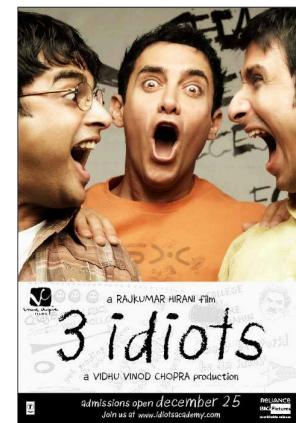
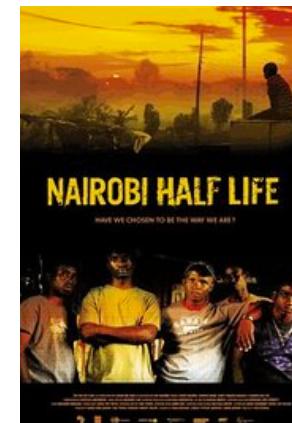
$$P(E|F) = \frac{P(EF)}{P(F)} = \frac{\text{\#people who watched both}}{\text{\#people who watched } F}$$

$$P(E|F) = 0.42$$

Conditioned on watching a set of movies?

Netflix and Learn

Each event corresponds to watching a particular movie



E_1

E_2

E_3

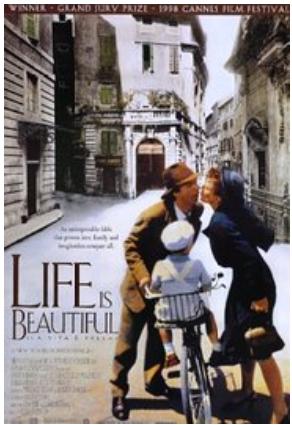
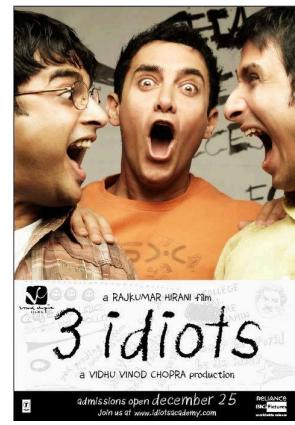
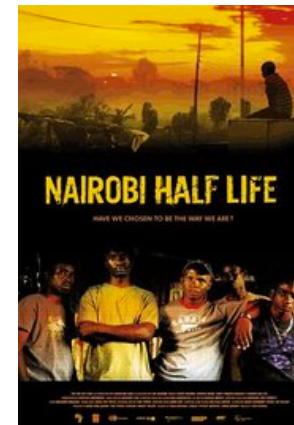
E_4

$P(E_4|E_1, E_2, E_3) ?$

Is E_4 independent of E_1, E_2, E_3 ?

Netflix and Learn

Is E_4 independent of E_1, E_2, E_3 ?



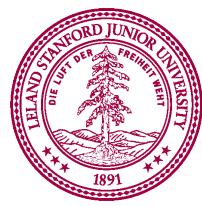
E_1

E_2

E_3

E_4

$$P(E_4|E_1, E_2, E_3) \stackrel{?}{=} P(E_4)$$



Netflix and Learn

- What is the probability that a user watched four particular movies?
 - There are 13,000 titles on Netflix
 - The user watches 30 random titles
 - E = movies watched include the given four.
- Solution:

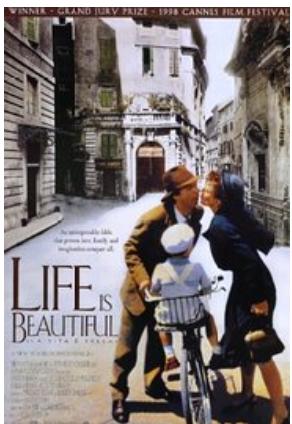
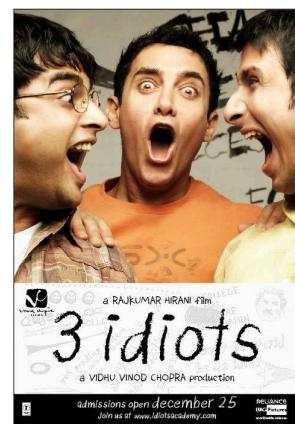
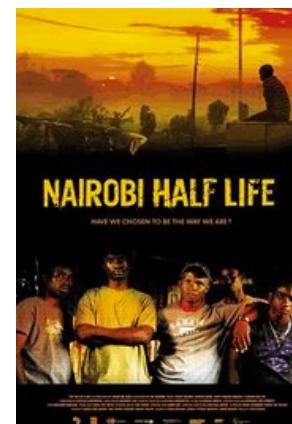
$$P(E) = \frac{\binom{4}{4} \binom{12996}{24}}{\binom{13000}{30}} = 10^{-11}$$

Watch those four

Choose 24 movies not in the set

Choose 30 movies from netflix

Netflix and Learn



E_1

E_2

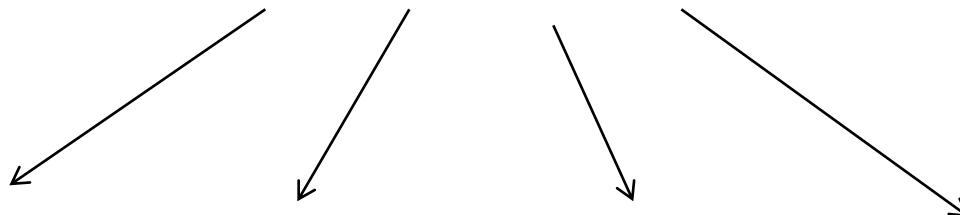
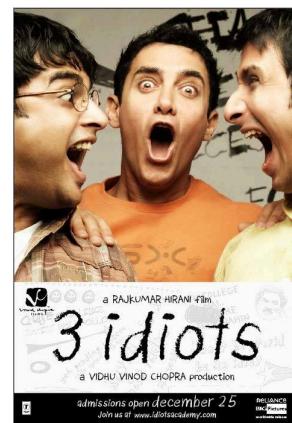
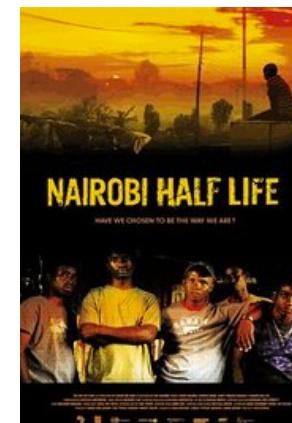
E_3

E_4

Netflix and Learn

G

Like foreign emotional comedies



E_1

E_2

E_3

E_4

Assume E_1, E_2, E_3 and E_4 are conditionally independent given G

Netflix and Learn

G

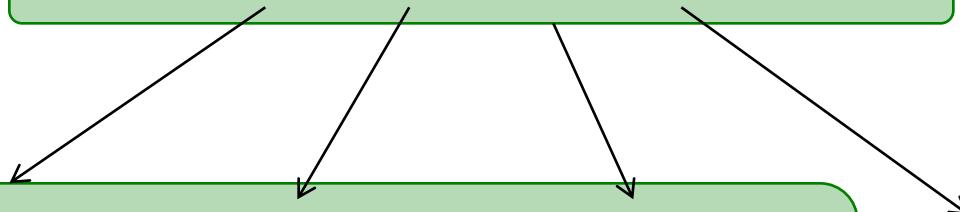
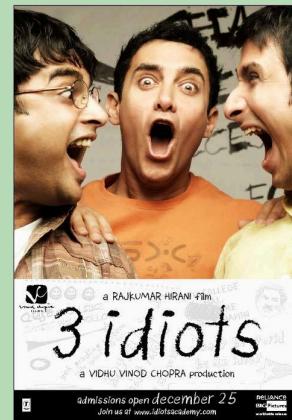
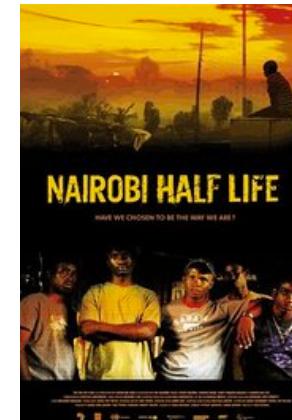
Like foreign emotional comedies

Assume E_1, E_2, E_3 and E_4 are conditionally independent given G

Netflix and Learn

G

Like foreign emotional comedies



E_1

E_2

E_3

E_4

Assume E_1, E_2, E_3 and E_4 are conditionally independent given G

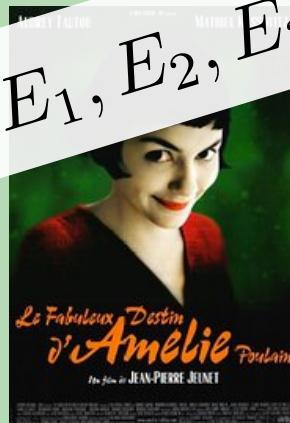
Netflix and Learn

G

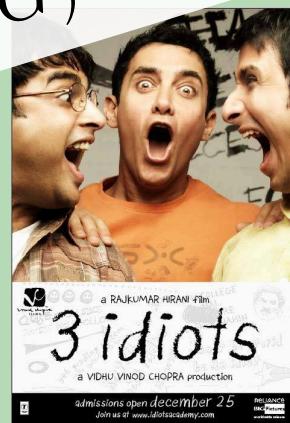
Like foreign emotional comedies

$$P(E_4|E_1, E_2, E_3, G) = P(E_4|G)$$

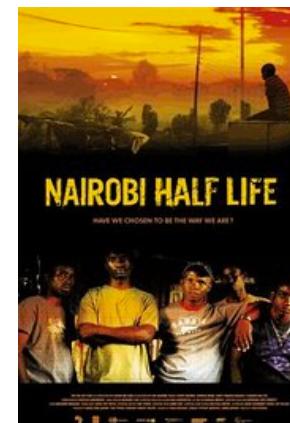
E_1



E_2



E_3



E_4

Assume E_1, E_2, E_3 and E_4 are conditionally independent given G

Conditional independence is a practical, real world way of decomposing hard probability questions.

Big Deal

“Exploiting conditional independence to generate fast probabilistic computations is one of the main contributions CS has made to probability theory”

-Judea Pearl wins 2011 Turing Award, “*For fundamental contributions to artificial intelligence through the development of a calculus for probabilistic and causal reasoning*”

When we introduced conditions

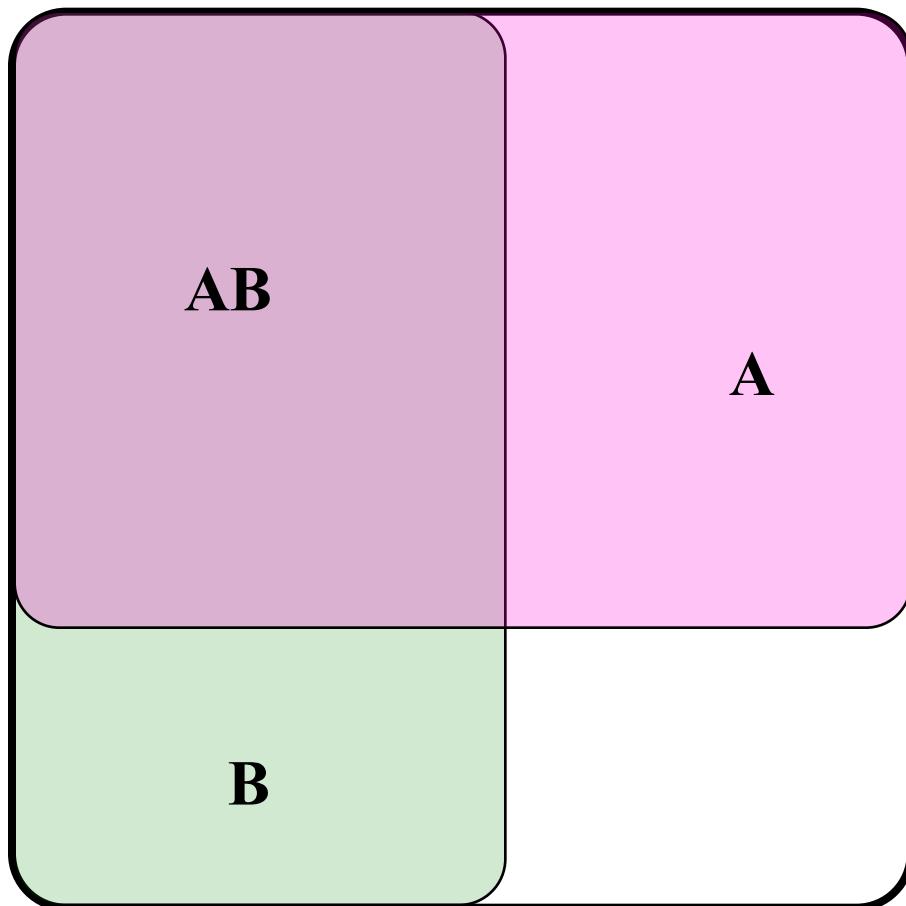
Identities of probability remain the same

But sometimes independence /
dependence relationships change

What the fish?

What does independence look
like?

Independence



Independence Definition 1:

$$P(AB) = P(A)P(B)$$

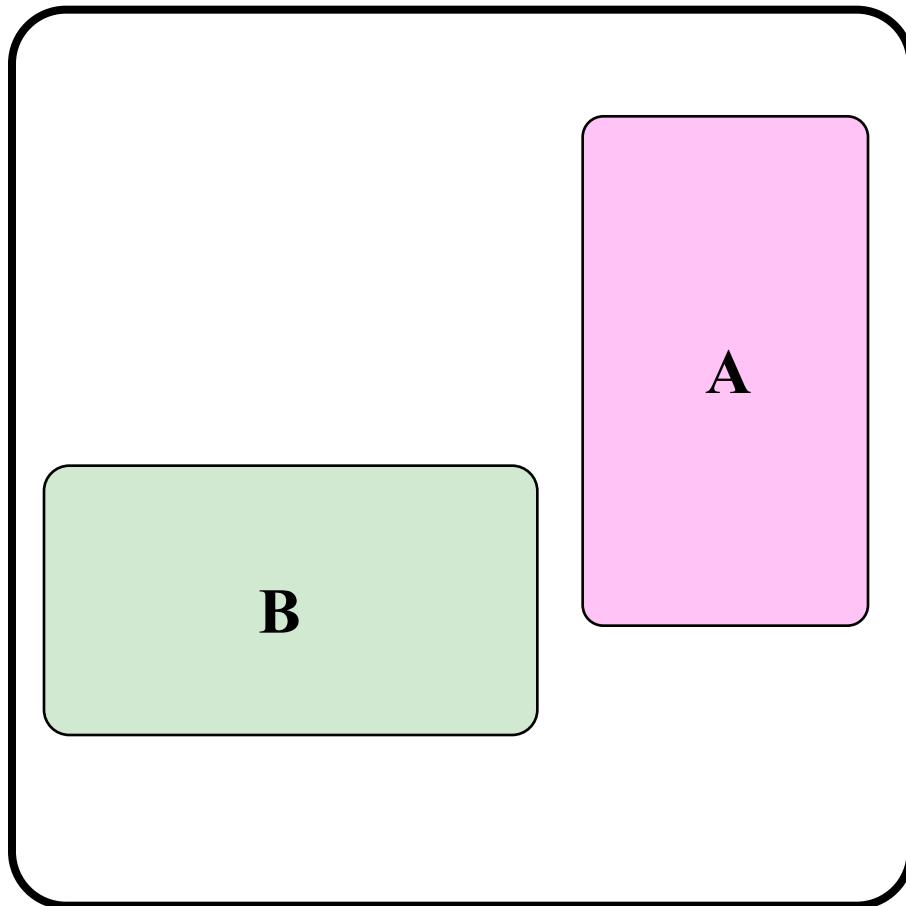
$$\frac{|AB|}{|S|} = \frac{|A|}{|S|} \times \frac{|B|}{|S|}$$

Independence Definition 2:

$$P(A|B) = P(A)$$

$$\frac{|AB|}{|B|} = \frac{|A|}{|S|}$$

Independence?



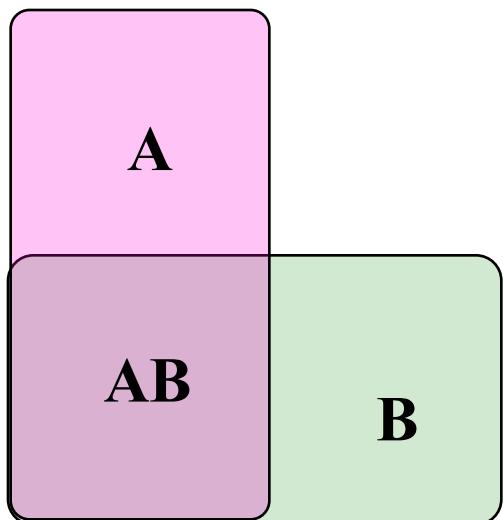
Independence Definition 1:

$$P(AB) = P(A)P(B)$$

$$\frac{|AB|}{|S|} = \frac{|A|}{|S|} \times \frac{|B|}{|S|}$$

Independence?

S



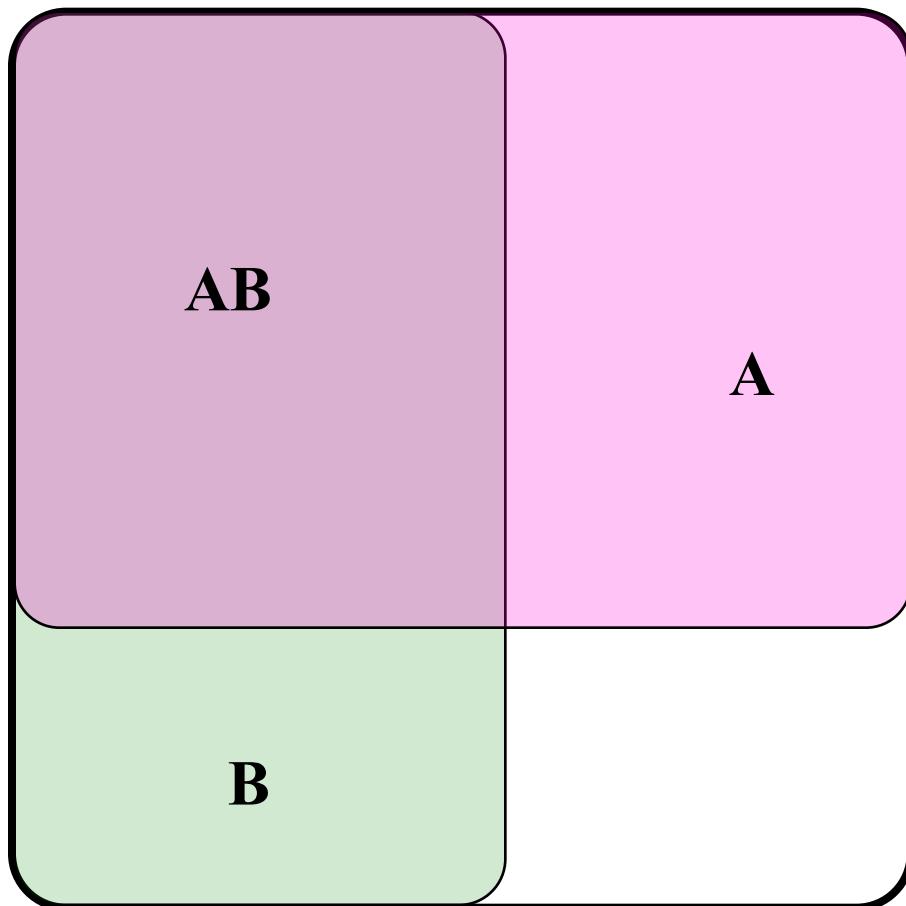
Independence Definition 2:

$$P(A|B) \stackrel{?}{=} P(A)$$

$$\frac{|AB|}{|B|} \stackrel{?}{=} \frac{|A|}{|S|}$$

$$\frac{1}{2} \neq \frac{2}{16}$$

Independence



Independence Definition 1:

$$P(AB) = P(A)P(B)$$

$$\frac{|AB|}{|S|} = \frac{|A|}{|S|} \times \frac{|B|}{|S|}$$

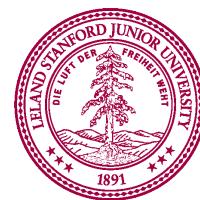
Independence Definition 2:

$$P(A|B) = P(A)$$

$$\frac{|AB|}{|B|} = \frac{|A|}{|S|}$$

Friday Night Fever

- Population of 10,000 people.
 - Of those, 300 have Malaria (event M) and 200 have Bacterial Infection (event B). 6 people have both.
 - Have Fever if and only if you have Malaria or Bacteria.
 - Are M and B independent?
- Solution:
 - $P(M) = 300 / 10,000 = 0.03$
 - $P(B) = 200 / 10,000 = 0.02$
 - $P(MB) = 6 / 10,000 = 0.0006$
 - $P(M)P(B) = 0.0006$
 - $P(M)P(B) = P(MB)$
 - Independent



Causality

Malaria (M)

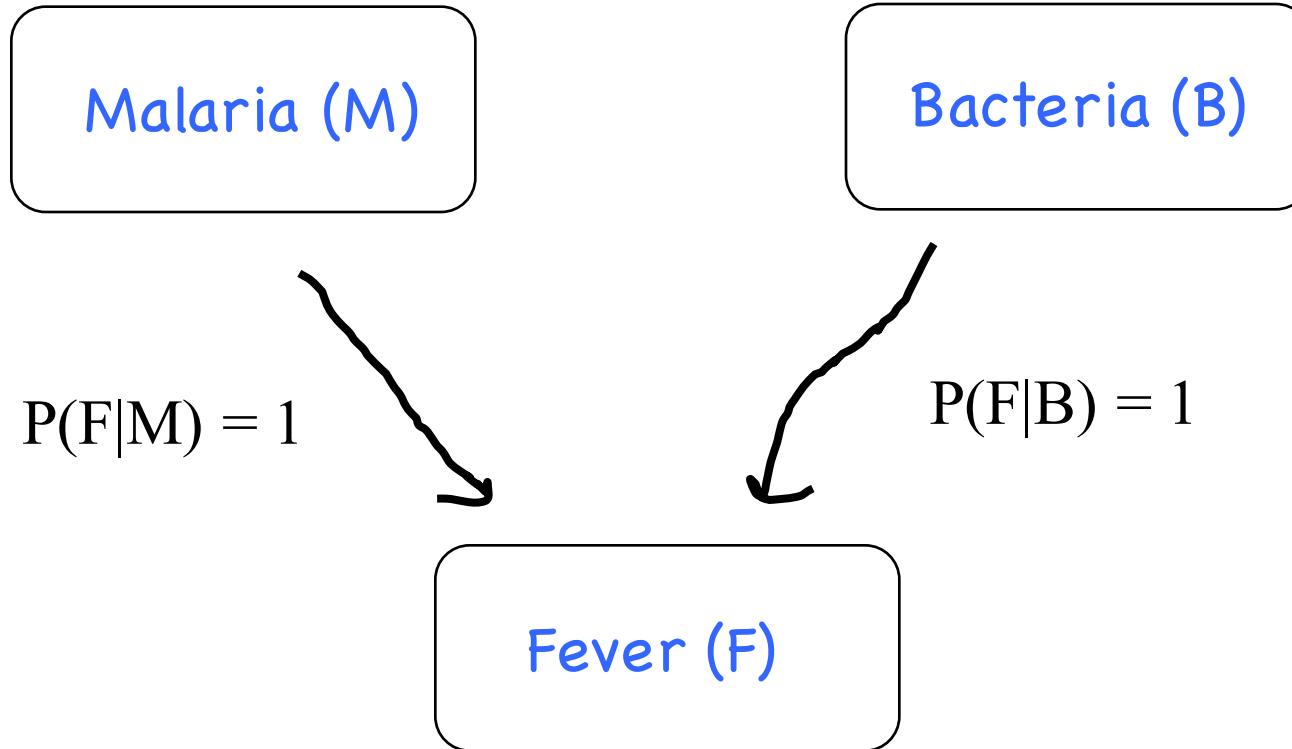
Bacteria (B)

Malaria does not cause Bacteria and
Bacteria does not cause Malaria

This is 9/10 important

*This is a “causal” diagram. It helps explain why things are independent

Causality



*This is a “causal” diagram. It helps explain why things are independent

Friday Night Fever

- Population of 10,000 people.
 - Of those, 300 have Malaria (event M) and 200 have Bacterial Infection (event B). 6 people have both.
 - Have Fever if and only if you have Malaria or Bacteria.
 - Are M and B independent **given F?**
- Solution:
 - Total people with Fever = $200+300 - 6 = 494$
 - $P(M|F) = 300 / 494 = 0.61$
 - $P(B|F) = 200 / 494 = 0.40$
 - $P(MB|F) = 6 / 494 = 0.012$
 - $P(M|F)P(B|F) = 0.224$
 - $P(M|F)P(B|F) \neq P(MB|F)$
 - **Conditionally dependent**

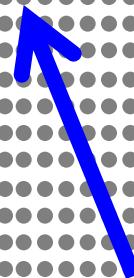
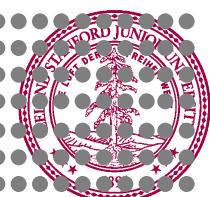
Conditional Dependence

10000 people

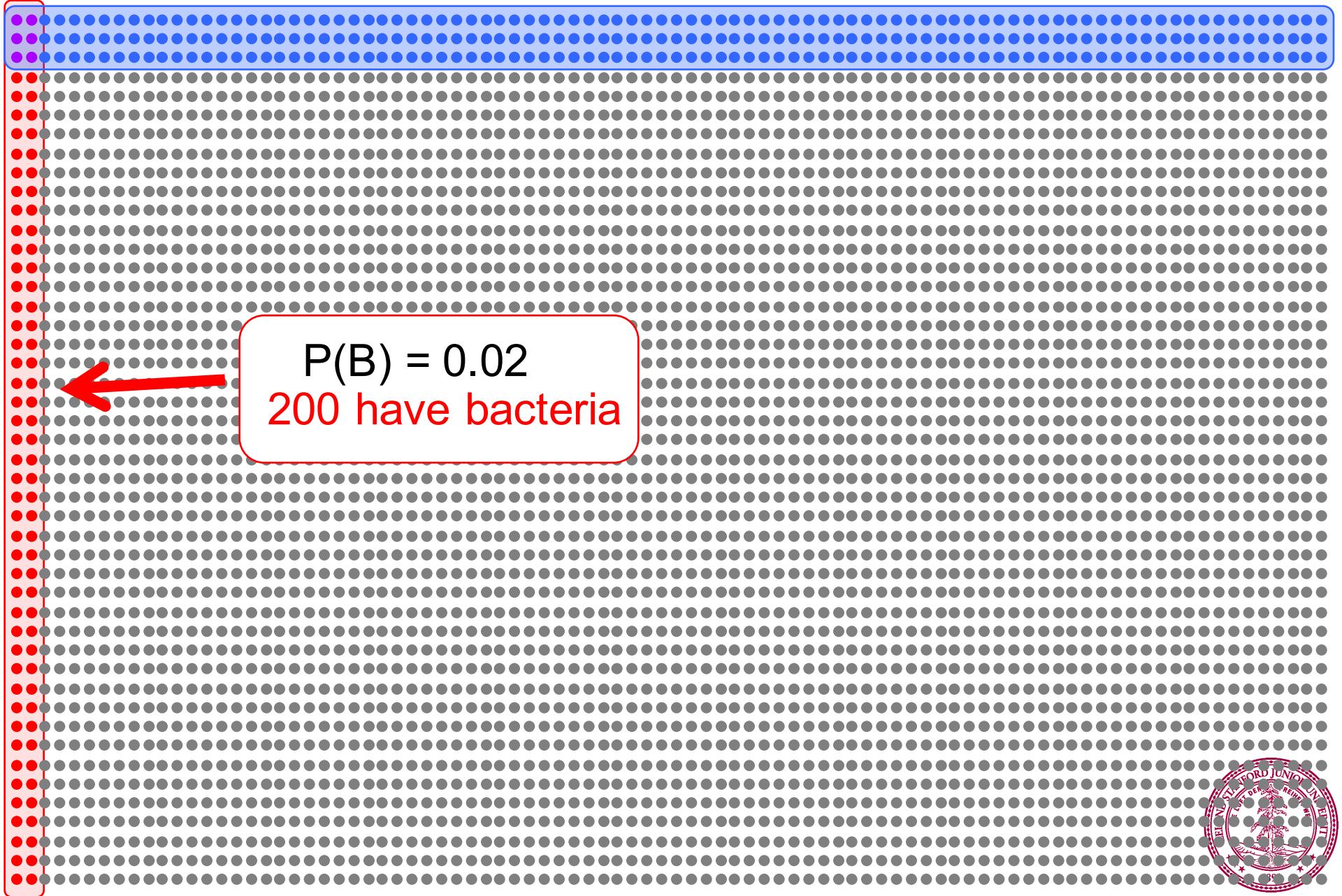
• =

Conditional Dependence

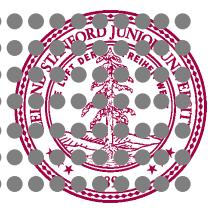
$P(M) = 0.03$
300 have malaria



Conditional Dependence



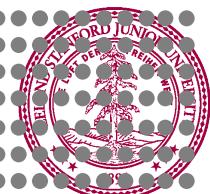
$P(B) = 0.02$
200 have bacteria



Conditional Dependence

$P(BM) = 0.006$

6 have both



Conditional Dependence

If we condition
on B, the same
ratio of people
have malaria

$$P(M|B) = 6/200 = 0.03$$

$$P(M) = 300/10000 = 0.03$$

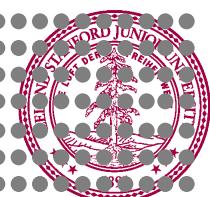
$$P(M) = P(M|B)$$

That's the math
definition of
independence

Conditional Dependence

$$P(B|M) = 0.006$$

6 have both



Conditional Dependence

If we condition
on M, the same
ratio of people
have bacteria

There it is again!

$$P(B|M) = 6/300 = 0.02$$

$$P(B) = 200/10000 = 0.02$$

$$P(B|M) = P(B)$$

Conditional Dependence

Conditioned on Fever

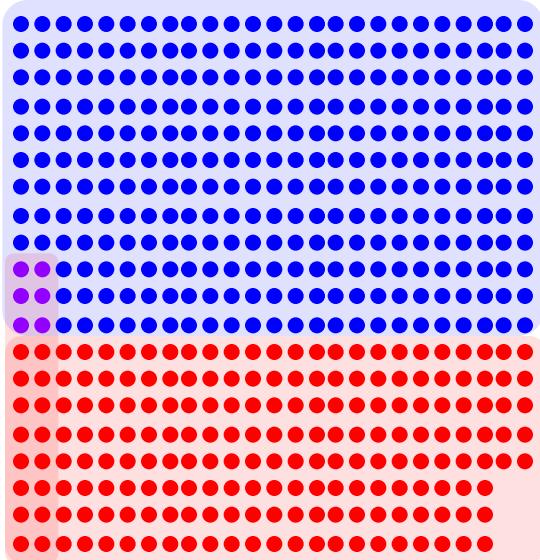
If we condition on F ,
we are left with only
the people who have
malaria and bacteria

Conditioned on Fever

$$P(B|F) = 200/494 = 0.40$$

$$P(M|F) = 300/494 = 0.61$$

Conditioned on Fever

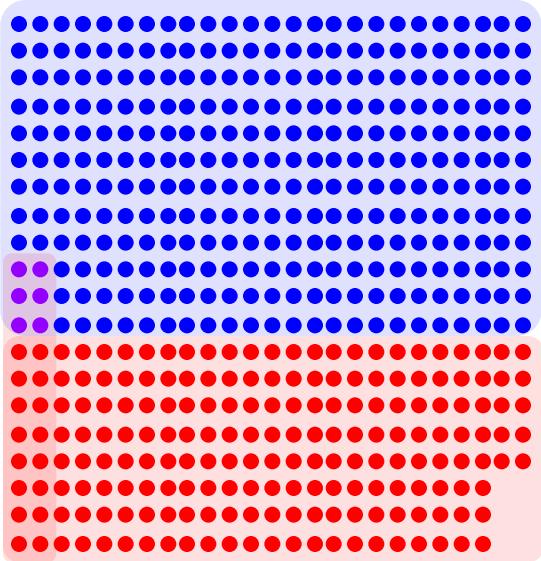


Conditioned on Fever

$$P(B|F) = 200/494 = 0.40$$

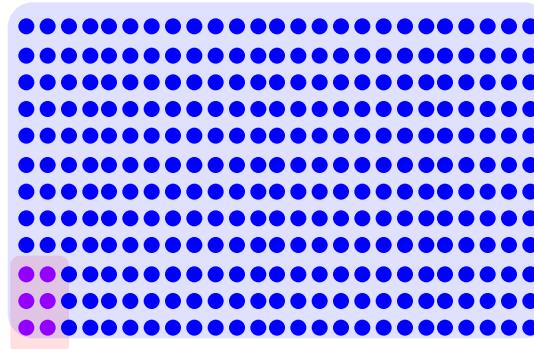
$$P(M|F) = 300/494 = 0.61$$

Conditioned on Fever



Test shows
Malaria

Conditioned on Fever + Malaria



$$P(B|MF) = 6/300 = 0.02$$

$$P(B|F) \neq P(B|MF)$$

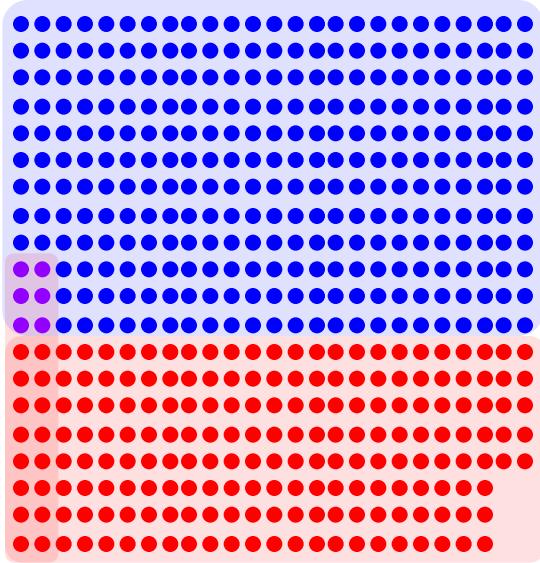
That's the math definition
of conditional dependence

Conditioned on Fever

Conditioned on Fever

$$P(B|F) = 200/494 = 0.40$$

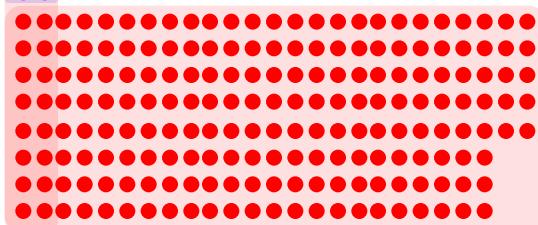
$$P(M|F) = 300/494 = 0.61$$



Test shows
Malaria

Conditioned on
Fever + Bacteria

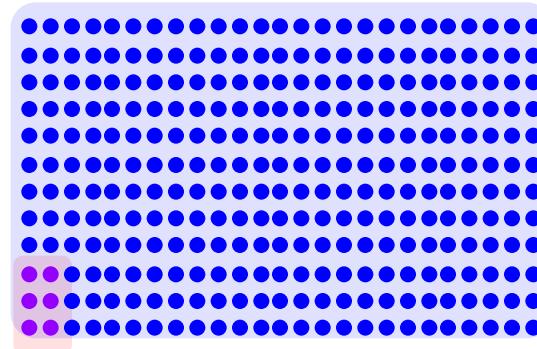
Test shows
Bacteria



$$P(M|BF) = 6/200 = 0.03$$

$$P(M|F) \neq P(M|BF)$$

Conditioned on Fever + Malaria

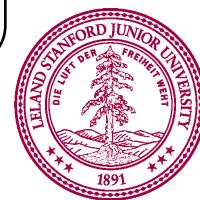


$$P(B|MF) = 6/300 = 0.02$$

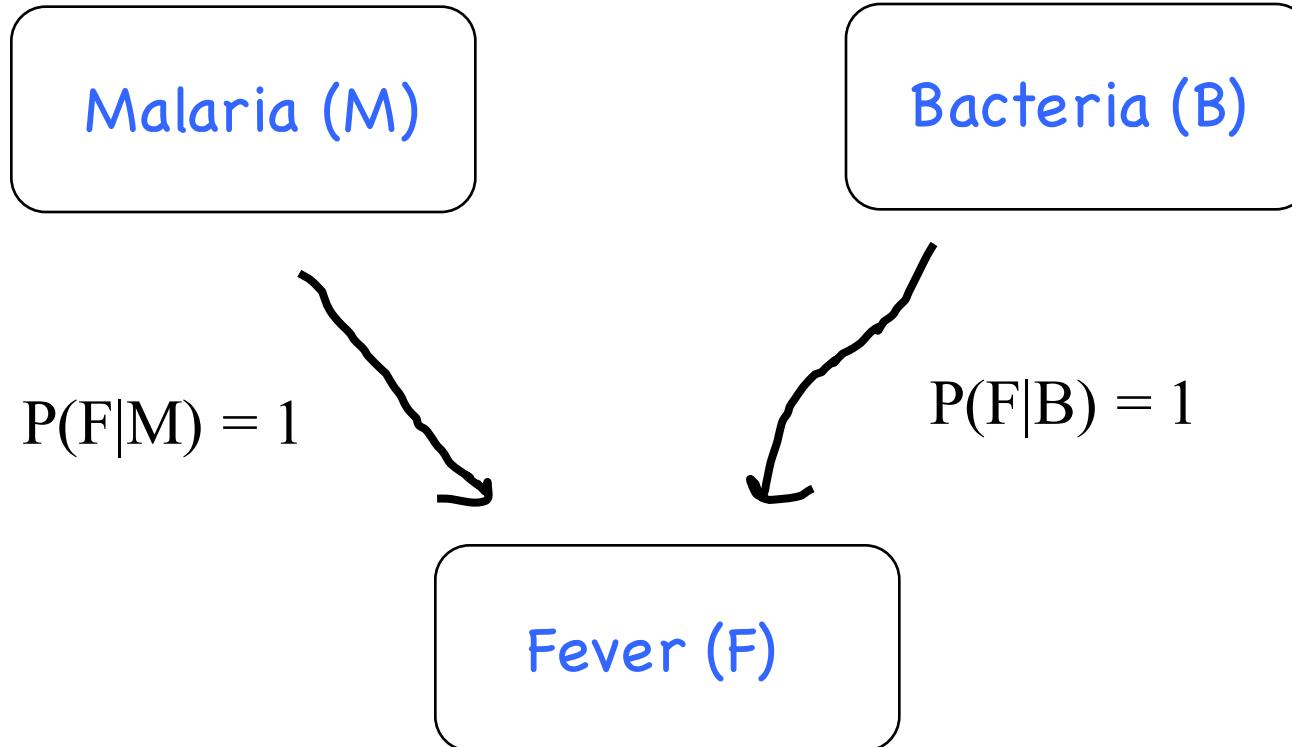
$$P(B|F) \neq P(B|MF)$$

That's the math definition
of conditional dependence

If we condition on F, the
events bacteria and malaria
become dependent



Conditional Dependence



*This is a “causal” diagram. It helps explain why things are independent

Parents With a Common Child

Say two independent parents have a common child:
When conditioned on the child they are no longer independent

And Here We Are

G₁

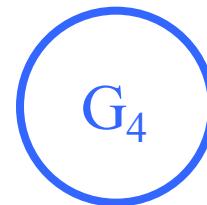
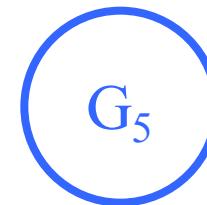
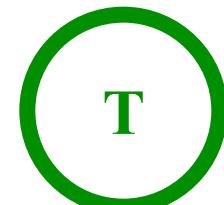
G₂

G₃

G₄

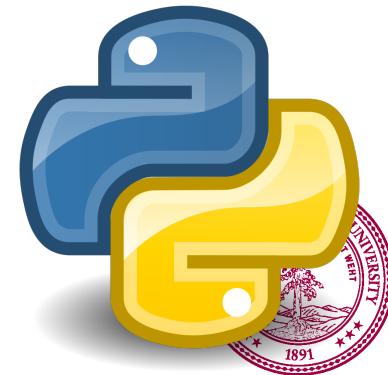
G₅

T



6 observations per sample

100,000
samples



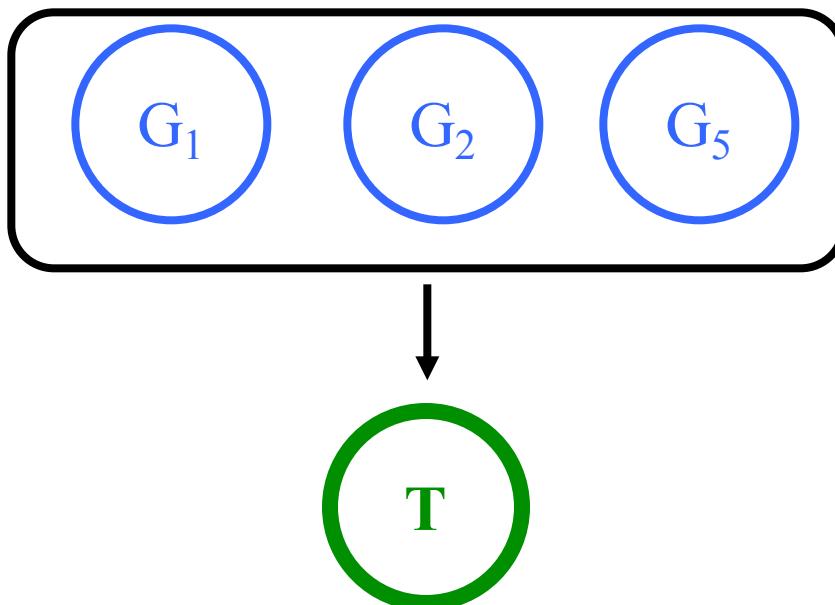
Correlation does not imply
causation

Independence implies lack of causation

Model Discovery

$p(G1) = 0.500$
 $p(G2) = 0.545$
 $p(G3) = 0.299$
 $p(G4) = 0.701$
 $p(G5) = 0.600$
 $p(T) = 0.390$

$p(T \text{ and } G1) = 0.291, P(T)p(G1) = 0.195$
 $p(T \text{ and } G2) = 0.300, P(T)p(G2) = 0.213$
 $p(T \text{ and } G3) = 0.116, P(T)p(G3) = 0.117$
 $p(T \text{ and } G4) = 0.273, P(T)p(G4) = 0.273$
 $p(T \text{ and } G5) = 0.309, P(T)p(G5) = 0.234$



Model Discovery

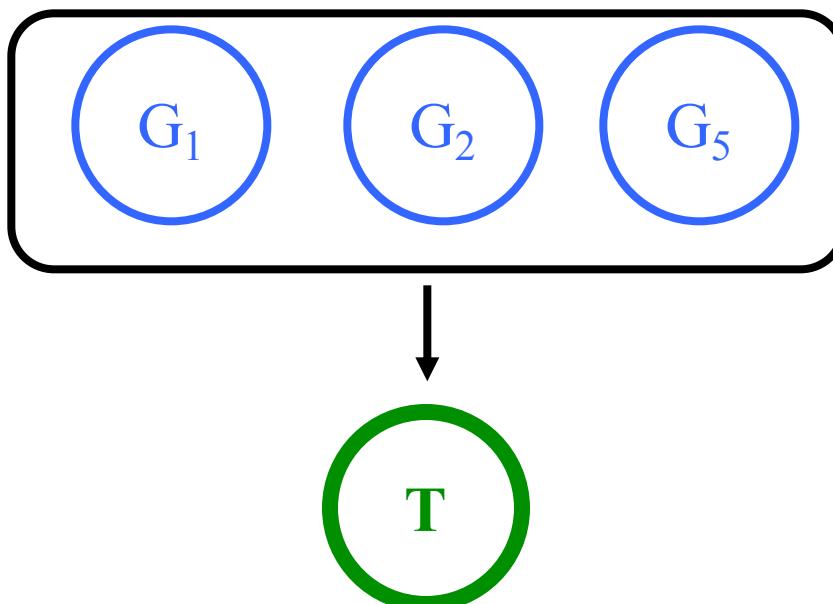
T is independent of G3

T is independent of G4

G1 is independent of G2

G1 is independent of G5

T is independent of G5 | G2



Model Discovery

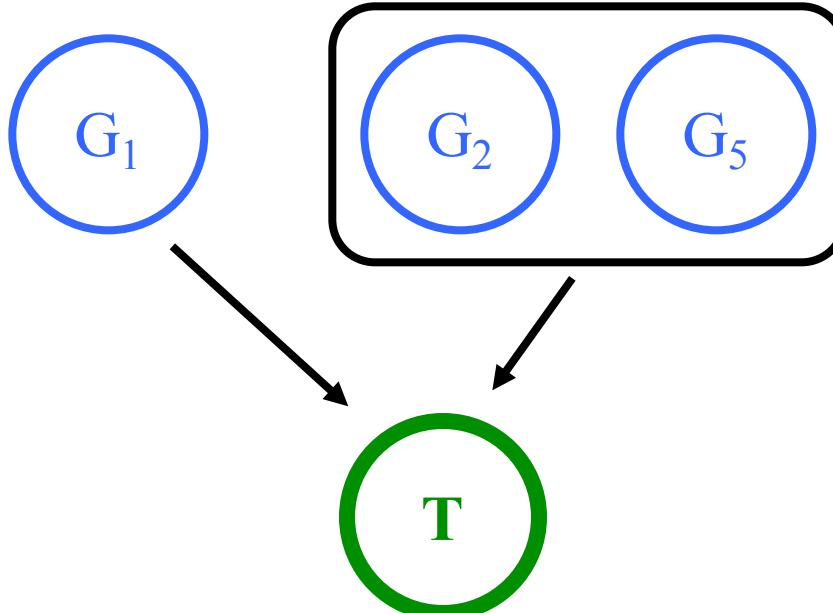
T is independent of G3

T is independent of G4

G1 is independent of G2

G1 is independent of G5

T is independent of G5 | G2



Model Discovery

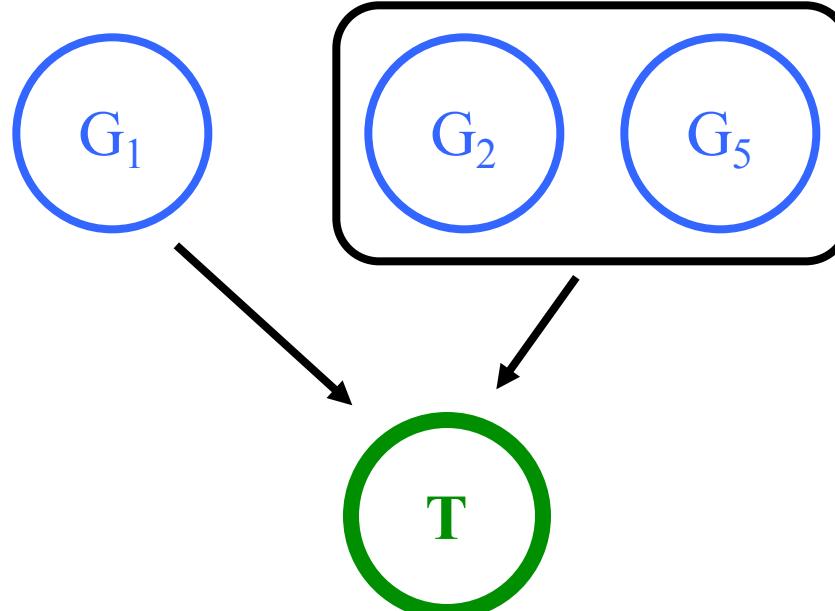
T is independent of G3

T is independent of G4

G1 is independent of G2

G1 is independent of G5

T is independent of G5 | G2



Model Discovery

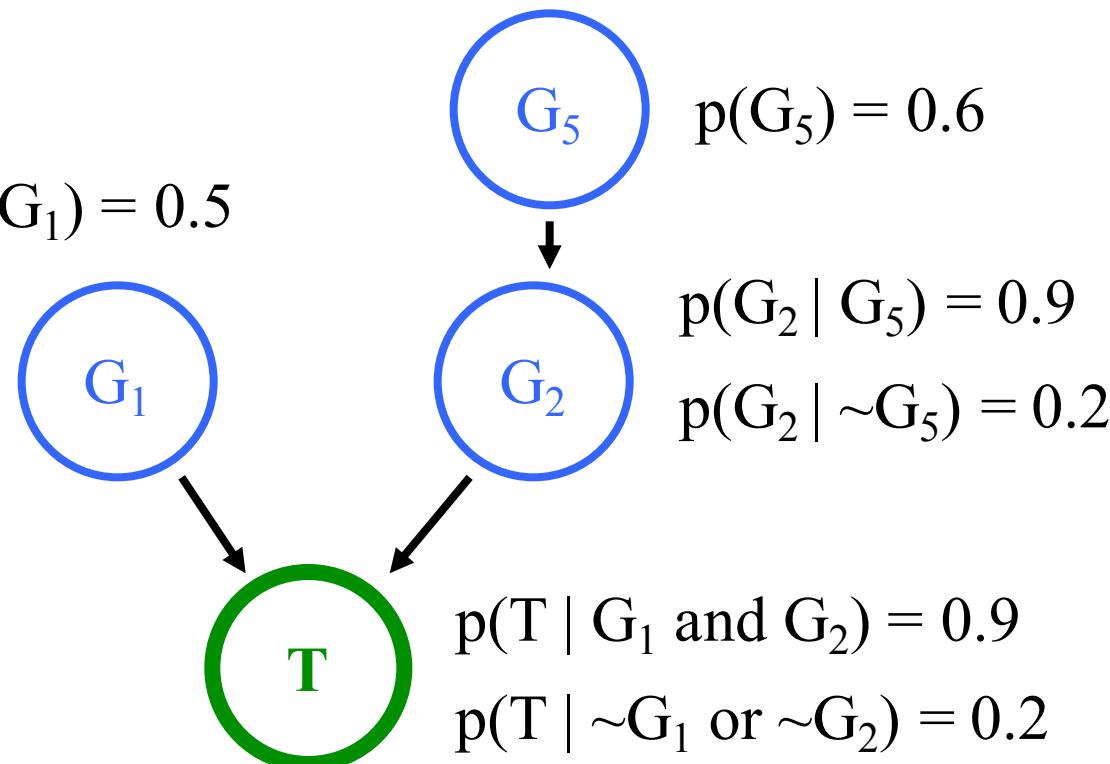
T is independent of G3

T is independent of G4

G1 is independent of G2

G1 is independent of G5

T is independent of G5 | G2



Summary

Two events A and B are called independent if:

$$P(AB) = P(A)P(B) \quad P(A|B) = P(A)$$

Otherwise, they are called dependent events

Two events A and B are
conditionally independent on C if:

$$P(AB|C) = P(A|C)P(B|C)$$

$$P(A|BC) = P(A|C)$$

Advanced Reading

W Chow-Liu tree - Wikipedia Chris Piech

Secure https://en.wikipedia.org/wiki/Chow-Liu_tree

Not logged in [Talk](#) [Contributions](#) [Create account](#) [Log in](#)

Article [Talk](#) Read [Edit](#) [View history](#) Search Wikipedia

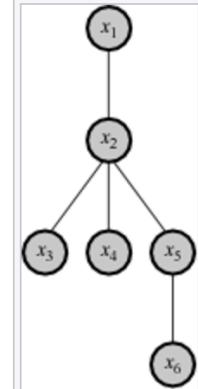
Chow–Liu tree

From Wikipedia, the free encyclopedia

In probability theory and statistics **Chow–Liu tree** is an efficient method for constructing a second-order product approximation of a **joint probability distribution**, first described in a paper by [Chow & Liu \(1968\)](#). The goals of such a decomposition, as with such **Bayesian networks** in general, may be either **data compression** or **inference**.

Contents [hide]

- [1 The Chow–Liu representation](#)
- [2 The Chow–Liu algorithm](#)
- [3 Variations on Chow–Liu trees](#)
- [4 See also](#)
- [5 Notes](#)
- [6 References](#)

A first-order dependency tree representing the product on the left.

The Chow–Liu representation [edit]

The Chow–Liu method describes a **joint probability distribution** $P(X_1, X_2, \dots, X_n)$ as a product of second-order conditional and marginal distributions. For example, the six-dimensional distribution $P(X_1, X_2, X_3, X_4, X_5, X_6)$ might be approximated as

$$P'(X_1, X_2, X_3, X_4, X_5, X_6) = P(X_6|X_5)P(X_5|X_4)P(X_4|X_3)P(X_3|X_2)P(X_2|X_1)P(X_1)$$

where each new term in the product introduces just one new variable, and the product can be represented as a first-order dependency tree as shown in the figure. The Chow–Liu algorithm (below) determines which variables should be included in the tree and the edges between them.