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Learning Goals

1. Be able to recognize independent events
2. Use independence rules to calculate probabilities
3. Recognize and use conditional independencies




Summary

Two events A and B are called independent if:

P(AB) = P(A)P(B)  P(A|B) = P(A)

Otherwise, they are called dependent events

Two events A and B are
conditionally independent on C if:

P(AB|C) = P(A|C)P(B|C)
P(A|BC) = P(A|C)




Review



The Tragedy of Conditional Prob
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WHOA! WE SHOULD GET INSIDE!

af B ITS OKAY! LIGHTNING ONLY KILLS
e, ABOUT Y5 AMERICANS A YEAR, SO
THE CHANCES OF DYING ARE ONLY
ONE IN 7000000. LETS GO ON!

o)

-y

THE ANNUAL DEATH RATE AMONG PEORLE
WHO KNOW THAT STATISTIC 1S ONE. IN SIX.

Thanks xkcd! http://xkecd.com/795/



And vs Condition

F(A@ V5 P(P‘\Bw




A Few Useful Formulas

- For any events A and B:

P(AB) =P(BA)

P(AB) =P(A|B)P(B)
=P({B[A)PA)

P(A B®) = P(A)—- P(AB)

P(A) + P(A°) = 1

(Commutativity)

(Chain rule)

(Intersection)
(Total Probability)
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Generality of Conditional Probability

- Foranyevents A, B, and E, you can condition
consistently on E, and these formulas still hold:

P(AB|E)=P(BA|E)

PIAB|E)=P(A|BE)P(B | E)
PB|AE)PA|E
P(A|BE)= ( lP(B)| E() ) (Bayes’ Thm.)

- Can think of E as “everything you already know”

- Formally, P( ¢ | E) satisfies 3 axioms of probability
% 0“";?%




BAE’'s Theorem?

pia|BE)= P(B lPA(§)| E()A | E)
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End Review



Today, start with a cool program
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[ JOX ) dna.txt — dna
dna.txt .

False,True,False,False,True,False
True,True,False,True,True, False
True,True,False,True,True,True
False,True,False,True,True,False
False,True,False,False,True,False
True,True,False,True,True, True
False,False,True,False,False,False
False,False,True,False,True,False
True,False,False,True,False,False
10 False,True,False,True,True,False
11 True,False,False,True,False,False
12 True,False,True,True,False,False
13 False,True,False,False,True,False
14 False,False,True,True,False,False
15 True,True,False,False,True,True

16 True,False,True,True,False,False
17 True,True,True,True,True,True |

18 True,False,True,False,False,True
19 False,True,False,True,True,True

20 False,False,True,False,False,False
21 False,False,False,True,True,False
22 False,True,False,False,True,False
23 True,True,False,True,True,True

24 False,True,False,True,True,False
25 True,False,False,False,False,True
26 False,False,True,True,False,True
27 False,False,False,True,False,False
28 False,True,True,False,False,True
29 False,True,False,False,True,True
30 False,False,False,False,False,True
31 False,True,False,True,True,False
32 True,False,False,True,False,False
33 True,True,False,True,True,True

34 True,True,False,False,True,True

35 True,True,False,True,True,True

36 False,False,False,True,False,False

— _
6 observations per sample

LoOo~NOOULE WN P

100,000
samples




Discovered Pattern

These genes
don’t impact T

p(Gy)=0.5
p(G,| Gs) =0.9

¢
@ O= | @
\_/

p(T | Gl and Gz) — 09
p(T | NGl or NGz) =0.2

p(Gs) = 0.6




We've goften ahead of ourselves




Start at the begglnlng

f‘" ™

Source: The Hc



Independence

Two events A and B are called independent if:

P(AB) = P(A)P(B)

Or, equivalently:

P(A|B) = P(A)

Otherwise, they are called dependent events




Dice, Our Misunderstood Friends

- Roll two 6-sided dice, yielding values D, and D,

» Let E be event: D, = 1
« Let F be event: D, =1

- Whatis P(E), P(F), and P(EF)?
- P(E)=1/6, P(F)=1/6, P(EF)=1/36
- P(EF)=P(E)P(F) - E and F independent

- LetGbeevent:D; +D,=5 {(1,4), (2 3),(3,2), (4, 1)}
- Whatis P(E), P(G), and P(EG)?

P(E) =1/6, P(G)=4/36=1/9, P(EG)=1/36
P(EG)=P(E)P(G) = E and G dependent




Intuition through proofs:



Independence with Proofs

Let A and B be independent

Definition of
P(A|B) P(AB) conditional probability
~ P(B)
Since A and B are
_ P(A)P(B) ree pend 8 o
P(B)
Taking the bus t
- P(A) |Crllgnc:el ci’rYs )

Knowing that event B happened, doesnt change
our belief that A will happen.




Independence

Given independent events A and B, prove that A
and BC are independent

We want to show that P(ABC) = P(A)P(BC)

(A) — P(AB) By Intersection Rule
(A) — P(A)P(B) By independence
(A)[1 — P(B)] Factoring
(A)P(B®)  Since P(B) + P(BS) = 1

So if A and B are independent A and B¢ are also
independent




Independence

Let A and B be independent
P(A|B) = P(A) From our first proof

A and BC are independent ~ From our second proof

And thus:
Since A and BC are

P(A‘BC) = P(A) independent

P(A|B) = P(A) = P(A|B®) Putit all together

Intuitively, if A and B are independent, knowing
whether B holds gives us no information about A







Generalized Independence

.- General definition of Independence:

EventsE,, E,, ..., E, are independentif for every
subset with r elements (where r < n) it holds that:

P(ESUESQ,ESS,...EST)
— P(Esl)P(ESZ)P(ESS)"'P(EST)

- Example: outcomes of n separate flips of a coin
are all independent of one another




Math > Intuition




Two Dice

Roll two 6-sided dice, yielding values D, and D,
» Let E be event: D, = 1
« Let F be event: D, =6

« Are E and F independent? Yes!
Let Gbeevent:D, +D,=7

« Are E and G independent? Yes!
- P(E)=1/6, P(G)=1/6, P(E G)=1/36 [roll (1, 6)]
» Are F and G independent? Yes!

- P(F)=1/6, P(G)=1/6, P(FG)=1/36 [roll (1, 6)]
« Are E, F and G independent? No!

« P(EFG) = 1/36 = 1/216 = (1/6)(1/6)(1/6)




New Ability




Generating Random Bits

.- A computer produces a series of random bits,
with probability p of producing a 1.
» Each bit generated is an independent trial

« E =first n bits are 1’s, followed by a single O
« What is P(E)?

. Solution

. P(firstn 1's) = P(15t bit=1) P(29 bit=1) ... P(nt" bit=1)
= pn
. P(n+1 bit=0) = (1 — p)

« P(E) = P(first n 1's) P(n+1 bit=0) = p" (1 — p)




Coin Flips

- Say a coin comes up heads with probability p
« Each coin flip is an independent trial

. P(n heads on n coin flips) = p"
. P(n tails on n coin flips) = (1 — p)"

- P(first k heads, then n— k tails) =p (l_p)n—k

- P(exactly k heads on n coin flips) =




Important Result

n
P(exactly k heads on n coin flips)? (k) pk(l _ p)n—k
Think of the flips as ordered:
Ordering 1: T, H, H, T, T, T.... The coin flips are
Ordering 2: H, T, H, T, T, T.... independent!
And so on... P(E.)=pk(1—p)”"k

Let’'s make each ordering with k heads an event... F;

P(exactly k heads on n coin flips) = P(any one of the events)
P(exactly k heads on n coin flips) = P(F,or F, or F;...)

Those events are mutually exclusive!




Moment of Crystallization



Add vs Multiply?



COMING SOON

#BATMANVSUPERMAN
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Add vs Multiply




Add vs Multiply

Probabilities
multiply
\
P(AB) Generally: P(A)P(B|A) Z
Independent: P(A)P(B)
P(AUB) Generally: P(A) + P(B) — P(AB)
Mutually Exclusive: P(A) + P(B)




Add vs Multiply

Counting
multiply
\
A then B Generally: Not handled 8
Independent Counts: |A||B|
AUB Generally: |A| + |B| — |AB|
Mutually Exclusive: |A| + |B| ﬁ




Combining with Previous Skills
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Sending a Message Through Network

Consider the following parallel network:

P1
P2 ﬁ
A al B

P,

« n independent routers, each with probability p; of
functioning (where 1 <i=<n)

« E =functional path from A to B exists. What is P(E)?

. Solution:
- P(E) =1-P(all routers fail)
=1=(1=p)(1=p2)...(1 = py)

n

= I_H(l_pi)




Yet More Hash Tables

- m strings are hashed (unequally) into a hash table
with n buckets

« Each string hashed is an independent trial, with
probability p; of getting hashed to bucket i

« E =Atleast 1 of buckets 1 to k has = 1 string hashed to it
Solution

» F,; = at least one string hashed into i-th bucket

=1-P(F*F,°...F,°) (DeMorgan’ s Law)
« P(F{°F,°...F°) = P(no strings hashed to buckets 1 to k)
=(1=p1—=p2—-..— pa)”

- PE) =1-(1-p1—p2—... = pu)"




The Hardest Example

- m strings are hashed (unequally) into a hash table
with n buckets

« Each string hashed is an independent trial, with
probability p; of getting hashed to bucket i

« E =Each of buckets 1 to k has = 1 string hashed to it

Solution

» F,; = at least one string hashed into i-th bucket
- P(E) =P(FF,...F,)=1-=P((F,F,...F))°)
=1-P(F,°UF,°U...UF,°) (DeMorgan’ s Law)

= 1 _P(0E0)=1_§( 1)(r+1) EP(

where P(F,"F.°..F,")=(1-p, - p, —... —p,—r)m

1 2




Phew...



Conditional Independence

Recall, two events A and B are independent if:

P(A|B) = P(A)

Two events E and F are
conditionally independent on C if:

P(ABI|C) = P(A|C)P(B|C)
P(A|BC) = P(A|C)




NETELIX



Netflix and Learn

What is the probability
that a user will watch
Life is Beautiful?

P(E)




Netflix and Learn

ALBREY TAUTOU i MATHIER KASSOVITZ

What is the probability
that a user will watch
Life is Beautiful, given
they watched Amelie?

P(E|F)

LIFE, g

lS .I\- | s s ol 204% re

BEAUTIFUL SR bty S g o

AR ' ITMENE i
faw 4w i JEANPEARE JONET

P(EF)  #people who watched both

P(E\F) = =
(E]F) P(F) #people who watched F

P(E|F)=0.42




Conditioned on watching a set of movies?



Netflix and Learn

Each event corresponds to watching a particular movie

NAIROBI HALF LIFE

LIH:_B o

B[AUTIH | s
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Is E, iIndependent of E,E,,E;?



Netflix and Learn

Is E, independentof E4,E,,E5?

NAIROBI HALF LIFE

s AR W)
\;E\"l'w '




Netflix and Learn

- What is the probability that a user watched four
particular movies?

« There are 13,000 titles on Netflix

» The user watches 30 random titles

« E = movies watched include the given four.

) SOlUtiOﬂ: Watch those four Ch:ci)seJrﬁlf;ncJ)rvies
not in the se
\-'<4> (12996) <
_\4 24 . —11
P(E) B (13000) = 10
30

e

Choose 30 movies
from netflix




Netflix and Learn

ALBREY TAUTOU e MATRER KASSONIT7

NAIROBI HALF LIFE

a RAJKUMAR HIRANI £ilm

IOD CHOPRA produc

3 D{d tofs \;g“?:?g




Netflix and Learn

G

Like foreign emotional comedies

L Fabuleux 4 Distin )
0 Uﬂ?}g? géfﬁg Poulain

toe fom oo JEAN-PIRRE JONET




Netflix and Learn

G

Like foreign emotional comedies

e

ALeREY TALTOU par s




Netflix and Learn

G

Like foreign emotional comedies

AN

ALBREY TAUTOU T M Kassovinz

’,’1‘ TR
-

NAIROBI HALF LIFE




Netflix and Learn

G

Like foreign emotional comedies




Conditional independence is a
practical, real world way of
decomposing hard probability
guestions.



Big Deadl

“Exploiting conditional independence to
generate fast probabilistic computations is one
of the main contributions CS has made to
probability theory”

-Judea Pearl wins 2011 Turing Award, “For
fundamental contributions to artificial intelligence through
the development of a calculus for probabilistic and causal
reasoning”




When we introduced conditions



|dentities of probability remain the
same



But sometimes independence /
dependence relationships change



What the fish?



What does independence look
like”?



Independence

) ) Independence Definition 1:

P(AB) = P(A)P(B)

AB AB| _|4] B
A S| 1S 1S
Independence Definition 2:
| P(A|B) = P(4)
B AB| _ |4
Bl |5




Independence?

) Independence Definition 1:
P(AB) = P(A)P(B)

0
AP Al |B

_X_

S| IS 1S




Independence?

Independence Definition 2:
P(A|B) = P(A)
AB| 2 |A]
Bl |9

AB




Independence

) ) Independence Definition 1:

P(AB) = P(A)P(B)

AB AB| _|4] B
A S| 1S 1S
Independence Definition 2:
| P(A|B) = P(4)
B AB| _ |4
Bl |5




Friday Night Fever

Population of 10,000 people.

« Of those, 300 have Malaria (event M) and 200 have
Bacterial Infection (event B). 6 people have both.

« Have Fever if and only if you have Malaria or Bacteria.
« Are M and B independent?

. Solution:

- P(M)=300/10,000 =0.03
- P(B) =200/10,000 =0.02

- P(MB)=6/10,000 = 0.0006
- P(M)P(B) = 0.0006

- P(M)P(B) = P(MB)

= Independent




Causality

Malaria (M) Bacteria (B)

Malaria does not cause Bacteria and
Bacteria does not cause Malaria

This 1s 9/10 important

*This is a “causal” diagram. It helps explain why things are independent




Causality

{ Malaria (M) } { Bacteria (B) }
P(FM) = 1\ / P(F|B) =1

Fever (F) }

s
*This is a “causal” diagram. It helps explain why things are independent [ 2. %



Friday Night Fever

Population of 10,000 people.

« Of those, 300 have Malaria (event M) and 200 have
Bacterial Infection (event B). 6 people have both.

« Have Fever if and only if you have Malaria or Bacteria.
« Are M and B independent given F?

. Solution:

« Total people with Fever = 200+300 — 6 =494
« P(M|F) =300/494 = 0.61

« P(B|F)=200/494 =0.40

- P(MB|F) =6/494 =0.012

« P(M|F)P(B|F) = 0.224

- P(M|F)P(B|F) # P(MBJF)

« Conditionally dependent




Conditional Dependence




Conditional Dependence

Tossttssttttttsttttttsttteeteseeeeeey 300 have malaria [sssessssccessescecees

s/
ooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo
ooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo
ooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo
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Conditional Dependence

P(B) = 0.02 Jsszsssszssssssssssssseszszsszzszsszsseszszzszzs
B

200 have DacCteria [reeeseseeeeceeeeeeceoccccccrceccccecceccceccces

................................................................................
................................................................................
000000000000000000000000000000000000000000000000000000000000000000000000000000000¢,; 99 9
( X J .....................................................O......................O.. 228,
...................................................................................




Conditional Dependence

6 have both  |eesssssssssssssssssssssssssssssasssssssssssssass

................................................................................
................................................................................
000000000000000000000000000000000000000000000000000000000000000000000000000000000¢,; 99 9
( X J .....................................................O......................O.. 228,
...................................................................................




Conditional Dependence

4 )

If we condition
on B, the same
ratio of people
have malaria

N /

P(MIB) = 6/200 = 0.03
P(M) = 300/10000 = 0.03
P(M) = P(MIB)

)

Thats the math
definition of
independence




Conditional Dependence

PBM) =0006 [ttt ittt i
6 have both

................................................................................
................................................................................
000000000000000000000000000000000000000000000000000000000000000000000000000000000¢,; 99 9
( X J .....................................................O......................O.. 228,
...................................................................................




Conditional Dependence

Y

~

4 If we condition
on M, the same
ratio of people
have bacteria

‘nl

+ i 069%™ P(BIM) = 6/300 = 0.02

Ther® P(B) = 200/10000 = 0.02
Z P(BIM) = P(B)




Conditional Dependence

s/
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Conditioned on Fever

0000000000000 0000000000000000000000000000000000000000000000000000000000000000000000000000
| 000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
( X J
(X J
(X J
( X J
( X J
(X J

/If we condition on F,
o we are left with only

b the people who have
oo malaria and bacteria

~




Conditioned on Fever

Conditioned on Fever

P(B|F) = 200/494 = 0.40
P(M|F) = 300/494 = 0.61




Conditioned on Fever

Conditioned on Fever

P(B|F) = 200/494 = 0.40 Conditioned on Fever + Malaria
P(M|F) = 300/494 = 0.61

e [cstshows cecsesesesessesesesessese

Soeeesesessesssessssasass Malaria esesseseseseesesesassasee

ceccccccsssccccsscccccces P(B|MF) = 6/300 = 0.02
cocccccccccosssesssscscse P(B|F) # P(B|MF)

That's the math definition
of conditional dependence




Conditioned on Fever

Conditioned on Fever

P(B|F) = 200/494 = 0.40
P(M|F) = 300/494 = 0.61

Conditioned on Fever + Malaria

B CStshows cecseesescscsesesescsssese
1443434044444+ Malaria cocescccccssecsssssssssce

P(B|MF) = 6/300 = 0.02
P(B|F) != P(B|MF)

lTest shows

That's the math definition
of conditional dependence

«e Conditioned on Bacteria

ve Fever + Bacteria

P(M|BF) = 6/200 = 0.03
P(M|F) # P(M|BF)

If we condition on F, the
events bacteria and malaria
become dependent




Conditional Dependence

{ Malaria (M) } { Bacteria (B) }
P(FM) = 1\ / P(F|B) =1

Fever (F) }

*This is a “causal” diagram. It helps explain why things are independent (= 7+ 42



Parents With a Common Child
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And Here We Are







000101010

[ JOX ) dna.txt — dna
dna.txt .

False,True,False,False,True,False
True,True,False,True,True, False
True,True,False,True,True,True
False,True,False,True,True,False
False,True,False,False,True,False
True,True,False,True,True, True
False,False,True,False,False,False
False,False,True,False,True,False
True,False,False,True,False,False
10 False,True,False,True,True,False
11 True,False,False,True,False,False
12 True,False,True,True,False,False
13 False,True,False,False,True,False
14 False,False,True,True,False,False
15 True,True,False,False,True,True

16 True,False,True,True,False,False
17 True,True,True,True,True,True |

18 True,False,True,False,False,True
19 False,True,False,True,True,True

20 False,False,True,False,False,False
21 False,False,False,True,True,False
22 False,True,False,False,True,False
23 True,True,False,True,True,True

24 False,True,False,True,True,False
25 True,False,False,False,False,True
26 False,False,True,True,False,True
27 False,False,False,True,False,False
28 False,True,True,False,False,True
29 False,True,False,False,True,True
30 False,False,False,False,False,True
31 False,True,False,True,True,False
32 True,False,False,True,False,False
33 True,True,False,True,True,True

34 True,True,False,False,True,True

35 True,True,False,True,True,True

36 False,False,False,True,False,False

— _
6 observations per sample

LoOo~NOOULE WN P

100,000
samples




Correlation does not imply
causation



Independence implies lack of
causation



Model Discovery

p(G1)

= 0.500 p(T and G1) = 0.291 , P(T)p(Gl) = 0.195
p(G2) = 0.545 p(T and G2) = 0.300 , P(T)p(G2) = 0.213
p(G3) = 0.299 p(T and G3) = 0.116 , P(T)p(G3) = 0.117
p(G4) = 0.701 p(T and G4) = 0.273 , P(T)p(G4) = 0.273
gégi)_=00éggﬁ p(T and G5) = 0.309 , P(T)p(G5) = 0.234

WOO




Model Discovery

T is independent of G3
T is independent of G4

Gl is independent of G2
Gl is independent of G5
1S 1ndependent o 2

WOO




Model Discovery

T is independent of G3
T is independent of G4

Gl is independent of G2
Gl is independent of G5
1S 1ndependent o

@ OE
N/




Model Discovery

T is independent of G3
T 1is independent of G4
Gl is independent of G2

Gl is independent of G5
| T is independent of G5 | G2 l




Model Discovery

T is independent of G3
T 1is independent of G4
Gl is independent of G2
Gl is independent of G5
T is independent of G5 | G2

<::::> p(G;) = 0.6
p(G;)=0.5

v

p(G,| Gs) =0.9
p(G, | ~Gs) =0.2

p(T | Gl and Gz) =0.9
p(T | NGl or NGz) — 02




Summary

Two events A and B are called independent if:

P(AB) = P(A)P(B)  P(A|B) = P(A)

Otherwise, they are called dependent events

Two events A and B are
conditionally independent on C if:

P(AB|C) = P(A|C)P(B|C)
P(A|BC) = P(A|C)




Advanced Reading

® © ®  \y Chow-Liutree - Wikipedia ~ x Chris Piech
& C (0 @& Secure https://enwikipedia.org/wiki/Chow-Liu_tree w* & 0O :

& Not logged in Talk Contributions Create account Log in
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Q1 e Article  Talk Read Edit View history |Search Wikipedia Q
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WikipepiA ~ Chow—Liu tree
The Free Encyclopedia From Wikipedia, the free encyclopedia
S In probability theory and statistics Chow-Liu tree is an efficient method for constructing a second-order Q
Contents

product approximation of a joint probability distribution, first described in a paper by Chow & Liu (1968). The

Featured content . . . . . .
goals of such a decomposition, as with such Bayesian networks in general, may be either data compression or

Current events

Random article inference. @
Donate to Wikipedia .
Wikipedia store Contents [hide]

1 The Chow-Liu representation
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Upload file

The Chow-Liu method describes a joint probability distribution P(X1, X3, ..., X, ) as a product of second-

Special pages
order conditional and marginal distributions. For example, the six-dimensional distribution P(X7, X5, X3, X4, X5, X¢) might be
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where each new term in the product introduces just one new variable, and the product can be represented as a first-order
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