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The Poisson Distribution
Based on a chapter by Chris Piech

Binomial in the Limit
Recall the example of sending a bit string over a network. In our last class we used a binomial
random variable to represent the number of bits corrupted out of 4with a high corruption probability
(each bit had independent probability of corruption p = 0.1). That example was relevant to sending
data to spacecraft, but for earthly applications like HTML data, voice or video, bit streams are much
longer (length ≈ 104) and the probability of corruption of a particular bit is very small (p ≈ 10−6).
Extreme n and p values arise in many cases: # visitors to a website, #server crashes in a giant data
center.

Unfortunately, X ∼ Bin(104, 10−6) is unwieldy to compute. However, when values get that extreme,
we can make approximations that are accurate and make computation feasible. Recall that the
parameters of the binomial distribution are n = 104 and p = 10−6. First, define λ = np. We can
rewrite the binomial PMF as follows:
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This equation can be made simpler using some approximations that hold when n is sufficiently
large and p is sufficiently small:

n(n − 1) . . . (n − i − 1)
ni ≈ 1

(1 − λ/n)n ≈ e−λ

(1 − λ/n)i ≈ 1

Using these reduces our original equation to:

P(X = i) =
λi

i!
e−λ

This simplification, derived by assuming extreme values of n and p, turns out to be so useful that
it gets its own random variable type: the Poisson random variable.
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Poisson Random Variable
A Poisson random variable approximates Binomial where n is large, p is small, and λ = np is
“moderate”. Interestingly, to calculate the things we care about (PMF, expectation, variance), we
no longer need to know n and p. We only need to provide λ, which we call the rate.

There are different interpretations of “moderate”. Commonly accepted ranges are n > 20 and
p < 0.05 or n > 100 and p < 0.1.

Here are the key formulas you need to know for Poisson. If Y is a Poisson random variable, denoted
Y ∼ Poi(λ), then:

P(Y = i) =
λi

i!
e−λ

E[Y ] = λ
Var(Y ) = λ

Example 1
Let’s say you want to send a bit string of length n = 104 where each bit is independently corrupted
with p = 10−6. What is the probability that the message will arrive uncorrupted? You can solve this
using a Poisson with λ = np = 10410−6 = 0.01. Let X ∼ Poi(0.01) be the number of corrupted
bits. Using the PMF for Poisson:

P(X = 0) =
λi

i!
e−λ

=
0.010

0!
e−0.01

≈ 0.9900498

We could have also modeled X as a binomial such that X ∼ Bin(104, 10−6). That would have been
harder to compute but would have resulted in the same number (to 8 decimal places).

Example 2
The Poisson distribution is often used to model the number of events that occur independently
at any time in an interval of time or space, with a constant average rate. Earthquakes are a good
example of this. Suppose there are an average of 2.8 major earthquakes in the world each year.
What is the probability of getting more than one major earthquake next year?

Let X ∼ Poi(2.8) be the number of major earthquakes next year. We want to know P(X > 1).
We can use the complement rule to rewrite this as 1 − P(X = 0) − P(X = 1). Using the PMF for
Poisson:

P(X > 1) = P(X = 0) − P(X = 1)

= 1 − e−2.8 2.80

0!
− e−2.8 2.81

1!
= 1 − e−2.8 − 2.8e−2.8

≈ 1 − 0.06 − 0.17
= 0.77


