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Independent Random Variables
Based on a chapter by Chris Piech

Independence with Multiple RVs
Discrete: Two discrete random variables X and Y are called independent if:

P(X = x,Y = y) = P(X = x)P(Y = y) for all x, y

Intuitively: knowing the value of X tells us nothing about the distribution of Y . If two variables are
not independent, they are called dependent. This is a similar conceptually to independent events,
but we are dealing with multiple variables. Make sure to keep your events and variables distinct.

Continuous: Two continuous random variables X and Y are called independent if:

P(X ≤ a,Y ≤ b) = P(X ≤ a)P(Y ≤ b) for all a, b

This can be stated equivalently as:

FX,Y (a, b) = FX (a)FY (b) for all a, b
f X,Y (a, b) = f X (a) fY (b) for all a, b

More generally, if you can factor the joint density function, then your continuous random variables
are independent:

f X,Y (x, y) = h(x)g(y) where −∞ < x, y < ∞

Example 1
Let N be the number of requests to a web server/day and that N ∼ Poi(λ). Each request comes
from a human (probability = p) or from a “bot” (probability = (1 − p)), independently. Define X to
be the number of requests from humans/day and Y to be the number of requests from bots/day.

Since requests come in independently, the probability of X conditioned on knowing the number of
requests is a Binomial. Specifically, conditioned:

(X |N ) ∼ Bin(N, p)
(Y |N ) ∼ Bin(N, 1 − p)

Calculate the probability of getting exactly i human requests and j bot requests. Start by expanding
using the chain rule:

P(X = i,Y = j) = P(X = i,Y = j |X + Y = i + j)P(X + Y = i + j)
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We can calculate each term in this expression:

P(X = i,Y = j |X + Y = i + j) =
(
i + j

i

)
pi (1 − p) j

P(X + Y = i + j) = e−λ
λi+ j

(i + j)!

Now we can put those together and simplify:

P(X = i,Y = j) =
(
i + j

i

)
pi (1 − p) je−λ

λi+ j

(i + j)!

As an exercise you can simplify this expression into two independent Poisson distributions.

Symmetry of Independence
Independence is symmetric. That means that if random variables X and Y are independent, X is
independent of Y and Y is independent of X . This claim may seem meaningless but it can be very
useful. Imagine a sequence of events X1, X2, . . . . Let Ai be the event that Xi is a “record value" (eg
it is larger than all previous values). Is An+1 independent of An? It is easier to answer that An is
independent of An+1. By symmetry of independence both claims must be true.

Expectations of Products Lemma
We know that the expectation of the sum of two random variables is equal to the sum of the
expectations of the two variables. However, the expectation of the product of two random variables
only has a nice decomposition in the case where the random variables are independent of one
another.

E[g(X )h(Y )] = E[g(X )]E[h(Y )] if X and Y are independent

Convolution of Distributions
Convolution is the result of adding two different random variables together. For some particular
random variables computing convolution has intuitive closed form equations. Importantly convo-
lution is the sum of the random variables themselves, not the addition of the probability density
functions (PDF)s that correspond to the random variables.

Independent Binomials with equal p
For any two Binomial random variables with the same “success" probability: X ∼ Bin(n1, p) and
Y ∼ Bin(n2, p) the sum of those two random variables is another binomial: X+Y ∼ Bin(n1+n2, p).
This does not hold when the two distribution have different parameters p.

Independent Poissons
For any two Poisson random variables: X ∼ Poi(λ1) and Y ∼ Poi(λ2) the sum of those two
random variables is another Poisson: X + Y ∼ Poi(λ1 + λ2). This holds even if λ1 is not the same
as λ2.
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Example 2
Let’s say we have two independent random Poisson variables for requests received at a web server
in a day: X = number of requests from humans/day, X ∼ Poi(λ1) and Y = number of requests
from bots/day, Y ∼ Poi(λ2). Since the convolution of Poisson random variables is also a Poisson
we know that the total number of requests (X + Y ) is also a Poisson: (X + Y ) ∼ Poi(λ1 + λ2).
What is the probability of having k human requests on a particular day given that there were n total
requests?

P(X = k | X + Y = n) =
P(X = k,Y = n − k)

P(X + Y = n)
=

P(X = k)P(Y = n − k)
P(X + Y = n)

=
e−λ1λk

1
k!

·
e−λ2λn−k

2
(n − k)!

·
n!

e−(λ1+λ2) (λ1 + λ2)n

=

(
n
k

) (
λ1

λ1 + λ2

) k (
λ2

λ1 + λ2

)n−k

∴ (X | X + Y = n) ∼ Bin
(
n,

λ1
λ1 + λ2

)

Independent Normals
For any two normal random variables X ∼ N (µ1, σ

2
1) and Y ∼ N (µ2, σ

2
2) the sum of those two

random variables is another normal: X + Y ∼ N (µ1 + µ2, σ
2
1 + σ

2
2).

General Independent Case
For two general independent random variables (aka cases of independent random variables that
don’t fit the above special situations) you can calculate the CDF or the PDF of the sum of two
random variables using the following formulas:

FX+Y (a) = P(X + Y ≤ a) =
∫ ∞

y=−∞

FX (a − y) fY (y)dy

f X+Y (a) =
∫ ∞

y=−∞

f X (a − y) fY (y)dy

There are direct analogies in the discrete case where you replace the integrals with sums and change
notation for CDF and PDF.

Example 3
What is the PDF of X + Y for independent uniform random variables X ∼ Uni(0, 1) and Y ∼
Uni(0, 1)? First plug in the equation for general convolution of independent random variables:

f X+Y (a) =
∫ 1

y=0
f X (a − y) fY (y)dy

f X+Y (a) =
∫ 1

y=0
f X (a − y)dy because fY (y) = 1
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It turns out that is not the easiest thing to integrate. By trying a few different values of a in the range
[0, 2] we can observe that the PDF we are trying to calculate is discontinuous at the point a = 1
and thus will be easier to think about as two cases: a < 1 and a > 1. If we calculate f X+Y for both
cases and correctly constrain the bounds of the integral we get simple closed forms for each case:

f X+Y (a) =




a if 0 < a ≤ 1
2 − a if 1 < a ≤ 2
0 else


