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Advanced Expectation
Based on a handout by Chris Piech

Conditional Expectation
Let X and Y be joint random variables. Recall that the conditional probability mass function (if
they are discrete) and probability density function (if they are continuous) are respectively:

pX |Y (x |y) =
pX,Y (x, y)

pY (y)

f X |Y (x |y) =
f X,Y (x, y)

fY (y)

We define the conditional expectation of X given Y = y to be:

E[X | Y = y] =
∑

x

xpX |Y (x |y)

E[X | Y = y] =
∫ ∞

−∞

dx x f X |Y (x |y)

Where the first equation applies if X andY are discrete and the second applies if they are continuous.

Properties of Conditional Expectation
Here are some helpful, familiar properties of conditional expectation:

E[g(X ) | Y = y] =
∑

x

g(x)pX |Y (x |y) if X and Y are discrete

E[g(X ) | Y = y] =
∫ ∞

−∞

dx g(x) f X |Y (x |y) if X and Y are continuous

E[
n∑

i=1
Xi | Y = y] =

n∑
i=1

E[Xi | Y = y]

E[E[X | Y ]] = E[X]

The last property may look a bit weird. Because Y is a random variable, E[X | Y ] is a random
variable too (it depends on Y ). The outer expectation is over values of Y .

Example 1
You roll two 6-sided dice D1 and D2. Let X = D1 + D2 and let Y = the value of D2. What is
E[X |Y = 6]?

E[X |Y = 6] =
∑

x

xP(X = x | Y = 6)

=

(
1
6

)
(7 + 8 + 9 + 10 + 11 + 12) =

57
6
= 9.5

Which makes intuitive sense since 6 + E[value of D1] = 6 + 3.5 = 9.5.
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Example 2
Consider the following code with random numbers:

int recurse() {
int x = randomInt(1, 3); // Equally likely values
if (x == 1) return 3;
else if (x == 2) return (5 + recurse());
else return (7 + recurse());

}

Let Y = value returned by recurse. What is E[Y ]? In other words, what is the expected return
value? (In fact, the function has been constructed such that the return value roughly corresponds to
the running time as well.)

We can use the nested expectation property:

E[Y ] = E[E[Y | X]] = E[Y |X = 1]P(X = 1) + E[Y |X = 2]P(X = 2) + E[Y |X = 3]P(X = 3)

We’ll need to calculate each of the conditional expectations:

E[Y |X = 1] = 3
E[Y |X = 2] = E[5 + Y ] = 5 + E[Y ]
E[Y |X = 3] = E[7 + Y ] = 7 + E[Y ]

Now we can plug those values into the equation. Note that the probability of X taking on 1, 2, or 3
is 1/3:

E[Y ] = E[Y |X = 1]P(X = 1) + E[Y |X = 2]P(X = 2) + E[Y |X = 3]P(X = 3)
= 3(1/3) + (5 + E[Y ])(1/3) + (7 + E[Y ])(1/3)
= 5 + (2/3)E[Y ]

(1/3)E[Y ] = 5
E[Y ] = 15

Fun with Approximation
The examples below use some advanced approximation methods to solve some cool algorithmic
problems.
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Example 3: Hiring Software Engineers
You are interviewing n software engineer candidates and will hire only 1 candidate. All orderings
of candidates are equally likely. Right after each interview, you must decide to hire or not hire.
You cannot go back on a decision. At any point in time you can know the relative ranking of the
candidates you have already interviewed.

The strategy that we propose is that we interview the first k candidates and reject them all. Then
you hire the next candidate that is better than all of the first k candidates. What is the probability
that the best of all the n candidates is hired for a particular choice of k? Let’s denote that result
Pk (Best). Let X be the position in the ordering of the best candidate:

Pk (Best) =
n∑

i=1
Pk (Best|X = i)P(X = i)

=
1
n

n∑
i=1

Pk (Best|X = i) since each position is equally likely

What is Pk (Best|X = i)? If i ≤ k, then the probability is 0, because the best candidate will be
rejected without consideration. Otherwise we will chose the best candidate, who is in position i,
only if the best of the first i − 1 candidates is among the first k interviewed. If the best among the
first i−1 is not among the first k, that candidate will be chosen over the true best. Since all orderings
are equally likely, the probability that the best among the i − 1 candidates is in the first k is:

k
i − 1

if i > k

Now we can plug this back into our original equation:

Pk (Best) =
1
n

n∑
i=1

Pk (Best|X = i)

=
1
n

n∑
i=k+1

k
i − 1

since we know Pk (Best|X = i)

≈
1
n

∫ n

i=k+1

k
i − 1

di by Riemann sum approximation

=
k
n

ln(i − 1)
����
n

k+1
=

k
n

ln
n − 1

k
≈

k
n

ln
n
k

If we think of Pk (Best) = k
n ln n

k as a function of k, we can find the value of k that optimizes it by
taking its derivative and setting it equal to 0. It turns out that the optimal value of k is n/e, where
e ≈ 2.718 is Euler’s number.

Quicksort Analysis
In CS 106B/X, they told you that the Quicksort sorting algorithm was O(n2) in the worst case, but
on average it’s O(n log n), and it’s fast in practice. Where does that O(n log n) claim come from?
At this point we don’t have to take anyone’s word for it: we can prove it ourselves.

As a reminder, the high-level algorithm for Quicksort has four steps:
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1. Pick an element to serve as the “pivot”.

2. “Partition” the array: move all elements less than the pivot before the pivot, and move all
elements greater than or equal to the pivot after it.

3. Sort the left partition (with a recursive call).

4. Sort the right partition (with a recursive call).

In code, it looks like this:

void quicksort(int arr[], int n)
{
if (n < 2) return;

int boundary = partition(arr, n);

// Sort subarray up to pivot
quicksort(arr, boundary);

// Sort subarray after pivot to end
quicksort(arr + boundary + 1, n - boundary - 1);

}

So simple! Of course, that simplicity is obtained mostly by abstraction: most of the work is done
by the second line, the function call to partition. Here’s the code for partition:

int partition(int arr[], int n)
{
int lh = 1, rh = n - 1;

int pivot = arr[0];
while (true) {
while (lh < rh && arr[rh] >= pivot) rh--;
while (lh < rh && arr[lh] < pivot) lh++;
if (lh == rh) break;
swap(arr[lh], arr[rh]);

}
if (arr[lh] >= pivot) return 0;
swap(arr[0], arr[lh]);
return lh;

}
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There is lot of looping to keep track of here, but knowing the intuition helps: we choose the first
element as the pivot, and we keep two pointers, the “left hand” and the “right hand”, which start at
the second element and the end (respectively) and move towards each other. As they move inwards,
each “hand” stops when it reaches an element that is on the wrong side of the pivot. Once both
hands have stopped, we swap the two elements they are pointing at to allow them to continue.
When they meet, everything to the left of the hands (except the pivot) is less than the pivot, and
everything to the right is greater than or equal. Finally, we swap the pivot into its place between the
two partitions (where the hands are) and return.

Probability of the Worst Case
The fact that all of the swapping and comparing is done in partition tells us that we should focus
on the inner loops of partition to determine the running time of the algorithm. In particular, we
can measure how long the algorithm takes by counting the number of comparisons that are made
to pivots.

An important fact to note here is that once two elements are separated by the partitioning step,
they can never be compared again. That means that the worst case will be when we never separate
elements in partition—every pivot chosen is either the smallest or largest element remaining. In
this case, every element gets to be the pivot, and we compare it to every other element that hasn’t
been the pivot yet: a total of

(
n
2

)
=

n(n−1)
2 = O(n2) comparisons. What is the probability of this

worst case?

This should remind you of the degenerate binary tree example. The size of the sample space is the
number of orderings of picking pivots: n!. For the event space, at each step, we have 2 “worst”
choices: the minimum and maximum of the remaining elements. The total number of steps is the
number of times we still have at least two elements remaining, which is n − 1. So assuming every
ordering of picking pivots is equally likely, the probability of the worst case of Quicksort is 2n−1

n! .
Since n! grows much faster than 2n−1, this probability shrinks very rapidly!

Average Case Analysis
On the other hand, this doesn’t guarantee us better than O(n2) average running time. For that, we’ll
need to compute the expectation of the number of comparisons. Whenever you see a problem that
requires computing the expectation of a number of events that happen, you should think about
rewriting it as a sum of indicator variables.

Call the total number of comparisons X . Let’s define Y1, . . .Yn to be the elements of the array in
sorted order, such that Y1 is the smallest element in the array, Y2 is the second-smallest, and so on.
Let Ia,b be an indicator variable for the event that Ya and Yb are ever compared. We don’t want to
double-count comparisons, so we will enforce that b is always greater than a:

E[X] = E


n−1∑
a=1

n∑
b=a+1

Iab


=

n−1∑
a=1

n∑
b=a+1

E[Iab] =
n−1∑
a=1

n∑
b=a+1

P(Ya and Yb ever compared)

What is the probability that Ya and Yb are ever compared? There are three cases to consider:
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• Either Ya or Yb is chosen as the pivot. Then the pivot is compared to everything, so Ya and Yb
will be compared.

• A pivot is chosen that is between Ya and Yb. Then Ya and Yb are separated by the partition
around that pivot, so they will not compared.

• A pivot is chosen that is less than Ya or greater than Yb. In this case we’ve only delayed
the decision: Ya and Yb aren’t compared now, but they are still in the same partition to be
compared in a future recursive call.

So in the end, the question of whether Ya and Yb are ever compared reduces to the question of which
happens first: Ya or Yb becoming the pivot, or one of the values between them? Again assuming
all choices of pivot are equally likely, the probability of Ya or Yb being the pivot before any of the
b − a − 1 elements between them is 2

b−a+1 .

What’s left is a lot of math and a healthy dose of approximations. Let’s finish this off:

E[X] =
n−1∑
a=1

n∑
b=a+1

2
b − a + 1

As in the hiring example, we can approximate the sum with a Riemann integral:

n∑
b=a+1

2
b − a + 1

≈

∫ n

b=a+1
db

2
b − a + 1

= [2 ln(b − a + 1)]n
b=a+1

= 2 ln(n − a + 1) − 2 ln 2
≈ 2 ln(n − a + 1) for large n

Plugging this into the outer sum:

n−1∑
a=1

n∑
b=a+1

2
b − a + 1

≈

n−1∑
a=1

2 ln(n − a + 1)

≈

∫ n−1

a=1
da 2 ln(n − a + 1) yet another Riemann approximation

= −2
∫ 2

y=n
dy ln y letting y = n − a + 1

= −2[y ln y − y]2
y=n integration by parts1

= −2[(2 ln 2 − 2) − (n ln n − n)]
= O(n ln n)

Victory! You can rest easy now, knowing that your Quicksort routine is as fast (on average) as you
always knew it was.

1Using u = ln y and dv = dy. Of course, it may just be easier to memorize
∫

dy ln y = y ln y − y + C.


