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Probability Bounds
Based on a chapter by Chris Piech

The following inequalities are useful when you know very little about your distribution, but you
would still like to make probabilistic claims. They most often show up in proofs.

Simple Bounds on Expectation
We’ll start out with two simple statements about expectation that will be useful for proving the
more complex statements below:

P(X ≥ a) = 1 ⇒ E[X] ≥ a (1)
P(X ≥ Y ) = 1 ⇒ E[X] ≥ E[Y ] (2)

Markov’s Inequality
If X is a non-negative random variable:

P(X ≥ a) ≤
E[X]

a
for all a > 0

We can prove this statement with our good friend the indicator variable. Let I = 1 if X ≥ a,
0 otherwise. If X ≥ a, then X

a ≥ 1 = I. But if X < a, then I = 0, and since we know X is
non-negative, X

a > 0. So regardless, I ≤ X
a . A bit of manipulation of expectation gives us the result:

I ≤
X
a

E[I] ≤ E
[

X
a

]
by (2) above

E[I] ≤
E[X]

a
linearity of expectation

P(X ≥ a) ≤
E[X]

a
expectation of an indicator variable

While the practical use of this is often to put limits on probabilities for distributions whose
expectation is known, the intuition for why it is true is a bit clearer if you see it as limiting the
expectation given the probability:

E[X] ≥ a · P(X ≥ a)

If we hold the probability that X ≥ a fixed, and we know that X ≥ 0, but we want to make the
expectation as small as possible, the best we can do is push all the probability density of X that is
greater than a down to a, and all the probability density that is less than a down to 0. If we did that,
the expectation would become

E[X] = 0 · P(X = 0) + a · P(X = a)
= 0 · P(X < a) + a · P(X ≥ a)

Markov’s inequality tells us this is as low as the expectation can go.
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Chebyshev’s Inequality
If X is a random variable with E[X] = µ and Var(X ) = σ2:

P( |X − µ| ≥ k) ≤
σ2

k2 for all k > 0

We could prove this using indicator variables as above, but it’s easier to prove it using Markov’s
inequality (code re-use!). Let Y = (X − µ)2. Then E[Y ] = Var(X ) = σ2. Applying Markov’s
inequality to Y with a = k2 gives us

P(Y ≥ k2) ≤
E[Y ]

k2

P((X − µ)2 ≥ k2) ≤
Var(X )

k2

P( |X − µ| ≥ k) ≤
σ2

k2

The intuition is also similar: if we know the expectation and the probability that X is at least k
away from the expectation (in either direction), then minimizing the variance means pushing the
probability mass inside the interval (µ− k, µ+ k) all inward to µ, and pushing the probability mass
outside that interval inward to µ ± k. So the smallest variance possible is

σ2 = E[(X − µ)2] ≥ 02 · P(|X − µ| = 0) + k2 · P( |X − µ| = k)

= k2 · P( |X − µ| ≥ k)

There’s also a pair of “one-sided” inequalities named after Chebyshev, which say that

P(X ≥ µ + a) ≤
σ2

σ2 + a2

P(X ≤ µ − a) ≤
σ2

σ2 + a2

Example 1
Problem: An example has a mean score of 82.2 out of 120 and a standard deviation of 18.5
(variance σ2 = 342.25). What’s highest possible fraction of students that scored at least 100?
Solution: Assuming scores are nonnegative, Markov’s inequality tells us that

P(X ≥ 100) ≤
E[X]
100

= 0.822

The one-sided Chebyshev’s inequality tells us

P(X ≥ 100 = 82.2 + 17.8) ≤
σ2

σ2 + 17.82 =
342.25

342.25 + 17.82 ≈ 0.519

We can see that Chebyshev’s inequality gives us a tighter bound. This is because we know the
variance in addition to the mean.

Still, both are very loose bounds; the actual fraction who got greater than 100 on this particular
exam was 0.109.
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Problem: What’s the highest possible fraction of students that scored more than two standard
deviations away from the mean?

Solution: Chebyshev’s (two-sided) inequality shows us that

P(|X − µ| > 2σ) ≤
σ2

σ2 + 4σ2 = 0.2

In fact, the real fraction of students who were more than two standard deviations from the mean (in
either direction) was 0.072.

Jensen’s Inequality
If X is a random variable and f (x) is a convex function (that is, f ′′(x) ≥ 0 for all x), then Jensen’s
inequality says that

E[ f (X )] ≥ f (E[X])

A convex function is, roughly speaking, “bowl-shaped”, curving upwards. So one way to remember
which way the inequality goes is to set up the simplest possible probability distribution: probability
0.5 of being at a and probability 0.5 of being at b. Which is greater: f ( a+b

2 ) or f (a)+ f (b)
2 ?

Since f curves upward, f ( a+b
2 ) is going to lie below (or at most on) the straight line between

(a, f (a)) and (b, f (b)). The average f (a)+ f (b)
2 is going to lie on that line at x = a+b

2 , so f (a)+ f (b)
2 is

greater.

(Note that this isn’t a proof of the inequality, which holds for other probability distributions besides
this simple one.)

You can also show from this that if f is concave ( f ′′(x) ≤ 0 for all x), then E[ f (X )] ≤ f (E[X]).

Law of Large Numbers
Consider IID random variables X1, X2, . . . , Xn such that E[Xi] = µ and Var(Xi) = σ2. Then for any
ε > 0, the weak law of large numbers states:

lim
n→∞

P(| X̄ − µ| ≥ ε) = 0

The strong law of large numbers states:

P
(

lim
n→∞

(
X1 + X2 + · · · + Xn

n

)
= µ

)
= 1

Both of these say that the sample mean converges to the true mean as we get more samples. The
weak version takes the limit of a probability: as you take more samples, the probability of extreme
values of the sample mean converges to zero. The strong version takes the probability of a limit: if
you imagine the whole (infinite) sequence of random variables consisting of sample means of each
size out to infinity, then the limit of that sequence exists and is the true mean µ, with probability 1.


