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We have learned many different distributions for random variables, and all of those distributions
had parameters: the numbers that you provide as input when you define a random variable. So
far when we were working with random variables, we either were explicitly told the values of the
parameters, or we could divine the values by understanding the process that was generating the
random variables.

What if we don’t know the values of the parameters and we can’t estimate them from our own expert
knowledge? What if instead of knowing the random variables, we have a lot of examples of data
generated with the same underlying distribution? In this chapter we are going to learn formal ways
of estimating parameters from data.

These ideas are critical for artificial intelligence. Almost all modern machine learning algorithms
work like this: (1) Specify a probabilistic model that has parameters. (2) Learn the value of those
parameters from data.

Parameters
Before we dive into parameter estimation, first let’s revisit the concept of parameters. Given a
model, the parameters are the numbers that yield the actual distribution. In the case of a Bernoulli
random variable, the single parameter was the value p. In the case of a Uniform random variable,
the parameters are the a and b values that define the min and max value. Here is a list of random
variables and the corresponding parameters. From now on, we are going to use the notation θ to be
a vector of all the parameters:

Distribution Parameters

Bernoulli(p) θ = p

Poisson(λ) θ = λ

Uniform(a, b) θ = (a, b)

Normal(µ, σ2) θ = (µ, σ2)

Y = mX + b θ = (m, b)

In the real world often you don’t know the “true” parameters, but you get to observe data. Next up,
we will explore how we can use data to estimate the model parameters.

It turns out there isn’t just one way to estimate the value of parameters. There are two main
approaches: Maximum Likelihood Estimation (MLE) and Maximum A Posteriori (MAP). Both of
these approaches assume that your data are IID samples: X1, X2, . . . Xn where all Xi are independent
and have the same distribution.
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Maximum Likelihood
Our first algorithm for estimating parameters is called maximum likelihood estimation (MLE).
The central idea behind MLE is to select that parameters (θ) that make the observed data the most
likely.

The data that we are going to use to estimate the parameters are going to be n independent and
identically distributed (IID) samples: X1, X2, . . . Xn.

Likelihood
We made the assumption that our data are identically distributed. This means that they must have
either the same probability mass function (if the data are discrete) or the same probability density
function (if the data are continuous). To simplify our conversation about parameter estimation,
we are going to use the notation f (X | θ) to refer to this shared PMF or PDF. Our new notation
is interesting in two ways. First, we have now included a conditional on θ which is our way of
indicating that the likelihood of different values of X depends on the values of our parameters.
Second, we are going to use the same symbol f for both discrete and continuous distributions.

What does likelihood mean and how is “likelihood” different than “probability”? In the case of
discrete distributions, likelihood is a synonym for the joint probability of your data. In the case of
continuous distribution, likelihood refers to the joint probability density of your data.

Since we assumed each data point is independent, the likelihood of all our data is the product of
the likelihood of each data point. Mathematically, the likelihood of our data given parameters θ is:

L(θ) =
n∏

i=1
f (Xi |θ)

For different values of parameters, the likelihood of our data will be different. If we have correct
parameters, our data will be much more probable than if we have incorrect parameters. For that
reason we write likelihood as a function of our parameters (θ).

Maximization
In maximum likelihood estimation (MLE) our goal is to chose values of our parameters (θ) that
maximizes the likelihood function from the previous section. We are going to use the notation θ̂ to
represent the best choice of values for our parameters. Formally, MLE assumes that:

θ̂ = arg max
θ

L(θ)

“Arg max” is short for argument of the maximum. The arg max of a function is the value of the
domain at which the function is maximized. It applies for domains of any dimension.

A cool property of arg max is that since log is a monotone function, the arg max of a function is
the same as the arg max of the log of the function! That’s nice because logs make the math simpler.
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If we find the arg max of the log of likelihood, it will be equal to the arg max of the likelihood.
Therefore, for MLE, we first write the log likelihood function (LL)

LL(θ) = log L(θ) = log
n∏

i=1
f (Xi |θ) =

n∑
i=1

log f (Xi |θ)

To use a maximum likelihood estimator, first write the log likelihood of the data given your
parameters. Then chose the value of parameters that maximize the log likelihood function. Argmax
can be computed in many ways. All of the methods that we cover in this class require computing
the first derivative of the function.

Bernoulli MLE Estimation
For our first example, we are going to use MLE to estimate the p parameter of a Bernoulli
distribution. We are going to make our estimate based on n data points which we will refer to as IID
random variables X1, X2, . . . Xn. Every one of these random variables is assumed to be a sample
from the same Bernoulli, with the same p, Xi ∼ Ber(p). We want to find out what that p is.

Step one of MLE is to write the likelihood of a Bernoulli as a function that we can maximize. Since
a Bernoulli is a discrete distribution, the likelihood is the probability mass function.

You may not have realized before that the probability mass function of a Bernoulli X can be written
as f (X ) = pX (1 − p)1−X . Interesting! Where did that come from? It’s an equation that allows us to
say that the probability that X = 1 is p and the probability that X = 0 is 1 − p. Convince yourself
that when Xi = 0 and Xi = 1 the PMF returns the right probabilities. We write the PMF this way
because it is differentiable.

Let’s do some maximum likelihood estimation:

L(θ) =
n∏

i=1
pXi (1 − p)1−Xi first write the likelihood function

LL(θ) =
n∑

i=1
log pXi (1 − p)1−Xi then take the log

=

n∑
i=1

Xi (log p) + (1 − Xi) log(1 − p)

= Y log p + (n − Y ) log(1 − p) where Y =
n∑

i=1
Xi

Wehave a formula for the log likelihood. Nowwe simply need to chose the value of p that maximizes
our log likelihood. As your calculus teacher probably taught you, one way to find the value which
maximizes a function that is to find the first derivative of the function and set it equal to 0.

δLL(p)
δp

= Y
1
p
+ (n − Y )

−1
1 − p

= 0

p̂ =
Y
n
=

∑n
i=1 Xi

n
All that work to find out that the maximum likelihood estimate is simply the sample mean...
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Normal MLE Estimation
Practice is key. Next, we will estimate the best parameter values for a normal distribution. All
we have access to are n samples from our normal, which we represent as IID random variables
X1, X2, . . . Xn. We assume that for all i, Xi ∼ N (µ = θ0, σ

2 = θ1). This example seems trickier
because a normal has two parameters that we have to estimate. In this case, θ is a vector with two
values. The first is the mean (µ) parameter, and the second is the variance (σ2) parameter.

L(θ) =
n∏

i=1
f (Xi |θ)

=

n∏
i=1

1
√

2πθ1
e−

(Xi−θ0)2
2θ1 Likelihood for a continuous variable is the PDF

LL(θ) =
n∑

i=1
log

1
√

2πθ1
e−

(Xi−θ0)2
2θ1 We want to calculate log likelihood

=

n∑
i=1

[
− log(

√
2πθ1) −

1
2θ1

(Xi − θ0)2
]

Again, the last step of MLE is to choose values of θ that maximize the log likelihood function. In
this case, we can calculate the partial derivative of the LL function with respect to both θ0 and θ1,
set both equations to equal 0, and then solve for the values of θ. Doing so results in the equations
for the values µ̂ = θ̂0 and σ̂2 = θ̂1 that maximize likelihood. The result is: µ̂ = 1

n
∑n

i=1 Xi and
σ̂2 = 1

n
∑n

i=1(Xi − µ̂)2.

Maximum A Posteriori Estimation
MLE is great, but it is not the only way to estimate parameters! This section introduces an alternate
algorithm, Maximum A Posteriori (MAP).The paradigm of MAP is that we should chose the value
for our parameters that is the most likely given the data. At first blush this might seem the same
as MLE; however, remember that MLE chooses the value of parameters that makes the data most
likely. Formally, for IID random variables X1, . . . , Xn:

θMAP = arg max
θ

f (θ |X1, X2, . . . Xn)

In the equation above we trying to calculate the conditional probability of unobserved random
variables given observed random variables. When that is the case, think Bayes’ Theorem! Expand
the function f using the continuous version of Bayes’ Theorem:

θMAP = arg max
θ

f (θ |X1, X2, . . . Xn)

= arg max
θ

f (X1, X2, . . . , Xn |θ)g(θ)
h(X1, X2, . . . Xn)

by Bayes’ Theorem

Note that f , g and h are all probability densities. I used different symbols to make it explicit that
they may have different functions. Now we are going to leverage two observations. First, the data is
assumed to be IID so we can decompose the density of the data given θ. Second, the denominator
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is a constant with respect to θ. As such, its value does not affect the arg max, and we can drop that
term. Mathematically:

θMAP = arg max
θ

∏n
i=1 f (Xi |θ)g(θ)

h(X1, X2, . . . Xn)
Since the samples are IID

= arg max
θ

n∏
i=1

f (Xi |θ)g(θ) Since h is constant with respect to θ

As before, it will be more convenient to find the arg max of the log of the MAP function, which
gives us the final form for MAP estimation of parameters.

θMAP =argmax
θ

*
,
log(g(θ)) +

n∑
i=1

log( f (Xi |θ))+
-

Using Bayesian terminology, the MAP estimate is the mode of the “posterior” distribution for θ. If
you look at this equation side by side with the MLE equation you will notice that MAP is the arg
max of the exact same function plus a term for the log of the prior.

Parameter Priors
In order to get ready for the world of MAP estimation, we are going to need to brush up on
our distributions. We will need reasonable distributions for each of our different parameters. For
example, if you are predicting a Poisson distribution, what is the right random variable type for the
prior of λ?

A desiderata for prior distributions is that the resulting posterior distribution has the same functional
form. We call these “conjugate” priors. In the case where you are updating your belief many times,
conjugate priors makes programming in the math equations much easier.

Here is a list of different parameters and the distributions most often used for their priors:

Parameter Distribution

Bernoulli p Beta
Binomial p Beta
Poisson λ Gamma
Exponential λ Gamma
Multinomial pi Dirichlet
Normal µ Normal
Normal σ2 Inverse Gamma

We won’t cover the inverse gamma distribution in this class. The remaining two, Dirichlet and
gamma, you will not be required to know, but details for them are included below for completeness.

The distributions used to represent your “prior” belief about a random variable will often have
their own parameters. For example, a Beta distribution is defined using two parameters (a, b).
Do we have to use parameter estimation to evaluate a and b too? No. Those parameters are called
“hyperparameters”. That is a term we reserve for parameters in our model that we fix before running
parameter estimate. Before you run MAP you decide on the values of (a, b).
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Dirichlet
The Dirichlet distribution generalizes beta in same way multinomial generalizes Bernoulli. A
random variable X that is Dirichlet is parametrized as X ∼ Dir(a1, a2, . . . , am). The PDF of the
distribution is:

f (X1 = x1, X2 = x2, . . . , Xm = xm) = K
m∏

i=1
xai−1

i

Where K is a normalizing constant.

You can intuitively understand the hyperparameters of a Dirichlet distribution: imagine you have
seen

∑m
i=1 ai − m imaginary trials. In those trials you had (ai − 1) outcomes of value i. As an

example, consider estimating the probability of getting different numbers on a six-sided “skewed
die” (where each side is a different shape). We will estimate the probabilities of rolling each side
of this die by repeatedly rolling the die n times. This will produce n IID samples. For the MAP
paradigm, we are going to need a prior on our belief of each of the parameters p1 . . . p6. We want
to express that we lightly believe that each roll is equally likely.

Before you roll, let’s imagine you had rolled the diee six times and had gotten one of each possible
value. Thus, the “prior” distribution would be Dir(2, 2, 2, 2, 2, 2). After observing n1 + n2 + · · · + n6
new trials with ni results of outcome i, the “posterior” distribution is Dir(2 + n1, . . . 2 + n6). Using
a prior which represents one imagined observation of each outcome is called “Laplace smoothing”
and it guarantees that none of your probabilities are 0 or 1.

Gamma
The Gamma(k, θ) distribution is the conjugate prior for the λ parameter of the Poisson distribution.
(It is also the conjugate for the λ in the exponential, but we won’t cover that here.)

The hyperparameters can be interpreted as: you saw k total imaginary events during θ imaginary
time periods. After observing n events during the next t time periods the posterior distribution is
Gamma(k + n, θ + t).

For example, Gamma(10, 5) would represent having seen 10 imaginary events in 5 time periods.
It is like imagining a rate of 2 with some degree of confidence. If we start with that Gamma as a
prior and then see 11 events in the next 2 time periods our posterior is Gamma(21, 7), which is
equivalent to an updated rate of 3.


