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Announcements: Problem Set 2

(Cell phone location sensing)

Due this Wednesday, 7/12, at 12:30pm (before class).



  

Announcements: Midterm

Two weeks from tomorrow:

Tuesday, July 25, 7:00-9:00pm

Tell me by the end of this
week if you have a conflict!



  

Review: Random variables

A random variable takes on 
values probabilistically.

P(X=2)=
1

36

P(X= x)

x



  

Review: Probability mass function

The probability mass function 
(PMF) of a random variable is 
a function from values of the 
variable to probabilities.

P(Y =k )

k

pY (k )=P(Y=k)



  

Review:
Cumulative distribution function

The cumulative distribution function 
(CDF) of a random variable is a function 
giving the probability that the random 
variable is less than or equal to a value.

P(Y ≤k )

k

FY (k)=P(Y≤k)

2 3 4 5 6 7 8 9 10 11 12
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1



  

Review: Expectation

The expectation of a random variable is 
the “average” value of the variable 
(weighted by probability).

E [X ]= ∑
x : p(x)>0

p(x)⋅x

P(X=x)

x

E[X] = 7



  

Review: Linearity of expectation

Adding random variables or 
constants? Add the expectations. 
Multiplying by a constant? Multiply 
the expectation by the constant.

E [aX+bY +c ]=aE [X ]+bE [Y ]+c

X

2X

2X + 4



  

Review: Variance

Variance is the average square of 
the distance of a variable from the 
expectation. Variance measures 
the “spread” of the variable.

Var(X )=E [(X−E [X ])
2
]

P(X=x)

x

E[X]

=E [X2
]−(E [X ])

2

Var(X) ≈ (2.42)2



  

Today: Basic distributions

X∼Bin (n , p)

Many types of random variables 
come up repeatedly. Known 
frequently-occurring distributions 
lets you do computations without 
deriving formulas from scratch.

family parametersvariable

We have ________ independent _________,
                  INTEGER                          PLURAL NOUN

each of which ________ with probability
                     VERB ENDING IN -S

________. How many of the ________ 
REAL NUMBER                                              REPEAT PLURAL NOUN

________?
REPEAT VERB -S



  

Bernoulli random variable

An indicator variable (a possibly 
biased coin flip) obeys a Bernoulli 
distribution. Bernoulli random 
variables can be 0 or 1.

X∼Ber ( p)

pX (1)=p
pX (0)=1−p        (0 elsewhere)



  

Review: Indicator variable

An indicator variable is a “Boolean” 
variable, which takes values 0 or 1 
corresponding to whether an event 
takes place.

I=�[A ]={1 if event A  occurs
0 otherwise



  

Bernoulli: Fact sheet

probability of “success” (e.g., heads)

X∼Ber ( p)



  

Program crashes

Run a program, crashes with prob. p, works with prob. (1 – p)

X: 1 if program crashes

P(X = 1) = p
P(X = 0) = 1 - p

X ~ Ber(p)



  

Ad revenue

Serve an ad, clicked with prob. p, ignored with prob. (1 – p)

C: 1 if ad is clicked

P(C = 1) = p
P(C = 0) = 1 - p

C ~ Ber(p)



  

Bernoulli: Fact sheet

probability of “success” (heads, ad click, ...)

X∼Ber ( p)
?

image (right): Gabriela Serrano

PMF:

expectation:

pX (1)=p
pX (0)=1−p        (0 elsewhere)



  

Expectation of an indicator variable

I=�[A ]={1 if event A  occurs
0 otherwise

E [ I ]=P(A)⋅1+[1−P(A)]⋅0

=P (A )



  

Bernoulli: Fact sheet

probability of “success” (heads, ad click, ...)

X∼Ber ( p)
?

image (right): Gabriela Serrano

PMF:

expectation: E [X ]=p

variance:

pX (1)=p
pX (0)=1−p        (0 elsewhere)



  

Variance of a Bernoulli RV

E [X2
]=p⋅12

+(1−p)⋅02

=p

pX (1)=p
pX (0)=1−p        (0 elsewhere)

Var(X )=E [X2
]−(E [X ])

2

=p−( p)2

=p⋅(1−p)

https://www.flickr.com/photos/gabrielaserrano/6336519698


  

Bernoulli: Fact sheet

probability of “success” (heads, ad click, ...)

X∼Ber ( p)
?

image (right): Gabriela Serrano

PMF:

expectation: E [X ]=p

variance: Var(X )=p(1−p)

pX (1)=p
pX (0)=1−p        (0 elsewhere)



  

Jacob Bernoulli

Swiss mathematician (1654-1705)

Came from a family of competitive mathematicians (!)

image (right): The Gazette Review



  

Jacob Bernoulli

Swiss mathematician (1654-1705)

Came from a family of competitive mathematicians (!)

image (right): The Gazette Review

https://www.flickr.com/photos/gabrielaserrano/6336519698


  

Binomial random variable

The number of heads on n 
(possibly biased) coin flips obeys a 
binomial distribution.

pX (k)={(
n
k) p

k
(1− p)n−k if k∈ℕ ,0≤k≤n

0 otherwise

X∼Bin (n , p)



  

Binomial: Fact sheet

probability of “success” (heads, crash, ...)

X∼Bin (n , p)

number of trials (flips, program runs, ...)

https://www.flickr.com/photos/gabrielaserrano/6336519698


  

Program crashes

n runs of program, each crashes with prob. p, works with prob. (1 – p)

H: number of crashes

P(H = k) =       (nk )pk
(1−p)

n−k

H ~ Bin(n, p)



  

Ad revenue

n ads served, each clicked with prob. p, ignored with prob. (1 – p)

H: number of clicks

(nk )pk
(1−p)

n−k

H ~ Bin(n, p)

P(H = k) =       

http://gazettereview.com/2016/03/what-happened-to-charlie-sheen-hiv-update/


  

Binomial: Fact sheet

probability of “success” (heads, crash, ...)

X∼Bin (n , p)

PMF:

number of trials (flips, program runs, ...)

pX (k )={(
n
k) p

k
(1−p)

n−k if k∈ℕ ,0≤k≤n

0 otherwise

http://gazettereview.com/2015/04/ice-cubes-large-deal/


  

The Galton board

n trials
“success”“failure”

X = final position = number of “successes”

X∼Bin (n ,0.5)



  

PMF of Binomial
X∼Bin (10, 0.5)

k

P(X=k )



  

PMF of Binomial
X∼Bin (10, 0.3)

k

P(X=k )



  

Break time!



  

Binomial: Fact sheet

probability of “success” (heads, crash, ...)

X∼Bin (n , p)

PMF:

expectation:

number of trials (flips, program runs, ...)

pX (k )={(
n
k) p

k
(1−p)

n−k if k∈ℕ ,0≤k≤n

0 otherwise



  

E [X ]=∑
k=0

n

P(X=k)⋅k

=∑
k=0

n

(nk) p
k
(1−p)

n−k k

=∑
k=1

n
n !

(k−1)!(n−k)!
pk

(1−p)
n−k

=∑
k=1

n

n⋅(n−1
k−1) p⋅pk−1

(1−p)
n−k

pX (k)={(
n
k) p

k
(1−p)n−k if k∈ℕ ,0≤k≤n

0 otherwise

=np∑
j=0

n−1

(n−1
j ) p

j
(1−p)

n−1− j
=( p+1−p)n−1

=np

Expectation of a binomial



  

X=∑
i=1

n

X i

X = number of “successes”
X

i
 = indicator variable for success on i-th trial

E [X ]=E [∑
i=1

n

X i]

Expectation of a binomial

X i∼Ber (p)



  

Review: Linearity of expectation

Adding random variables or 
constants? Add the expectations. 
Multiplying by a constant? Multiply 
the expectation by the constant.

E [aX+bY +c ]=aE [X ]+bE [Y ]+c

X

2X

2X + 4



  

X=∑
i=1

n

X i

X = number of “successes”
X

i
 = indicator variable for success on i-th trial

E [X ]=E [∑
i=1

n

X i]=∑
i=1

n

E [ X i ]

=∑
i=1

n

p

=np

Expectation of a binomial

X i∼Ber (p)



  

Binomial: Fact sheet

probability of “success” (heads, crash, ...)

X∼Bin (n , p)

PMF:

expectation: E [X ]=np

variance: Var(X )=np(1−p)

number of trials (flips, program runs, ...)

Ber (p)=Bin (1 , p)note:

pX (k )={(
n
k) p

k
(1−p)

n−k if k∈ℕ ,0≤k≤n

0 otherwise



  

Eye color

Parents each have one brown (B) and one blue (b) gene.*
Brown is dominant: Bb → brown eyes.

Parents have 4 children.
X: number of children with brown eyes

E [X ]=np=4⋅0.75=3

*Don’t get your genetics information from CS 109!
Eye color is influenced by more than one gene.

X∼Bin (4,0.75)



  

Eye color

Parents each have one brown (B) and one blue (b) gene.*
Brown is dominant: Bb → brown eyes.

Parents have 4 children.
X: number of children with brown eyes

P(X=3)=(4
3)(0.75)

3
(0.25)

1
=4⋅

33

44≈0.422

*Don’t get your genetics information from CS 109!
Eye color is influenced by more than one gene.

X∼Bin (4,0.75)



  

Sending satellite messages
Sending a 4-bit message 
through space. Each bit 
corrupted (flipped) with 
probability p = 0.1.

X: number of bits flipped
X ~ Bin(4, 0.1)

(bit flip = “success”.
not much of a success!)

P(X=0)=(40)(0.1)
0
(0.9)

4−0

=(0.9)
4

≈0.656



  

Hamming codes
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Hamming codes
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Hamming codes
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Hamming codes

35
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Send as: 1 0 0 1 1 0 0

Receive: 1 0 0 1 0 0 0

Correct to: 1 0 0 1 1 0 0
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Sending satellite messages
Sending a 4-bit message 
through space. Each bit 
corrupted (flipped) with 
probability p = 0.1.

X: number of bits flipped
X ~ Bin(4, 0.1)

P(X≤1)=P(X=0)+P(X=1)

≈0.478+0.372=0.850

=(0.9)
7
+7⋅(0.1)⋅(0.9)

6

=(70)(0.1)
0
(0.9)

7−0
+(71)(0.1)

1
(0.9)

7−1
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