
  

More discrete distributionsMore discrete distributions

Will MonroeWill Monroe
July 14, 2017July 14, 2017

with materials by
Mehran Sahami
and Chris Piech



  

Announcements: Problem Set 3

(election prediction)

Posted yesterday on the course website.

Due next Wednesday, 7/19, at 12:30pm (before class).

(Moby Dick)



  

Announcements: Problem Set 3

(election prediction)

Posted yesterday on the course website.

Due next Wednesday, 7/19, at 12:30pm (before class).

Everybody gets an extra late day! (4 total)

(Moby Dick)



  

Review: Bernoulli random variable

An indicator variable (a possibly 
biased coin flip) obeys a Bernoulli 
distribution. Bernoulli random 
variables can be 0 or 1.

X∼Ber ( p)

pX (1)=p
pX (0)=1−p        (0 elsewhere)



  

Review: Bernoulli fact sheet

probability of “success” (heads, ad click, ...)

X∼Ber ( p)
?

image (right): Gabriela Serrano

PMF:

expectation: E [X ]=p

variance: Var(X )=p(1−p)

pX (1)=p
pX (0)=1−p        (0 elsewhere)

https://www.flickr.com/photos/gabrielaserrano/6336519698


  

Review: Binomial random variable

The number of heads on n 
(possibly biased) coin flips obeys a 
binomial distribution.

pX (k)={(
n
k) p

k
(1−p)n−k if k∈ℕ ,0≤k≤n

0 otherwise

X∼Bin (n , p)



  

Review: Binomial fact sheet

probability of “success” (heads, crash, ...)

X∼Bin (n , p)

PMF:

expectation: E [X ]=np

variance: Var(X )=np(1−p)

number of trials (flips, program runs, ...)

Ber(p)=Bin (1 , p)note:

pX (k )={(
n
k) p

k
(1−p)

n−k if k∈ℕ ,0≤k≤n

0 otherwise



  

Review: Poisson random variable

The number of occurrences of an 
event that occurs with constant 
rate λ (per unit time), in 1 unit of 
time, obeys a Poisson distribution.

pX (k)={e
−λ λ

k

k !
if k∈ℤ , k≥0

0 otherwise

X∼Poi (λ)



  

Review: Poisson fact sheet

rate of events (requests, earthquakes,
                        chocolate chips, …)
per unit time (hour, year, cookie, ...)

X∼Poi (λ)

PMF:

expectation: E [X ]=λ

variance: Var(X )=λ

pX (k )={e
−λ λ

k

k !
if k∈ℤ , k≥0

0 otherwise



  

Geometric random variable

The number of trials it takes to get 
one success, if successes occur 
independently with probability p, 
obeys a geometric distribution.

X∼Geo( p)

pX (k )={(1−p)
k−1

⋅p if k∈ℤ , k≥1
0 otherwise



  

Catching Pokémon
Wild Pokémon are captured by 
throwing Poké Balls at them.

Each ball has probability p of 
capturing the Pokémon.
How many are needed on 
average for a successful capture?

X: number of Poké Balls until (and 
including) capture

C
i
: event that Pokémon is 

captured on the i-th throw

P(X=k)=P(C1
CC2

C
…Ck−1

CCk)

=P(C1
C
)P(C2

C
)…P(Ck−1

C
)P(Ck)

=(1−p)
k−1 p



  

Geometric: Fact sheet

PMF: pX (k )={(1−p)
k−1

⋅p if k∈ℤ ,k≥1
0 otherwise

X∼Geo( p)

probability of “success” (catch, heads, crash, ...)



  

Catching Pokémon
X: number of Poké Balls until (and including) capture

P(X=k)=(1−p)
k−1

⋅p

E [X ]=∑
k=1

∞

k⋅(1−p)
k−1

⋅p

=∑
k=1

∞

(k−1+1)⋅(1−p)
k−1

⋅p

=∑
k=1

∞

(k−1)⋅(1−p)
k−1

⋅p+∑
k=1

∞

(1−p)k−1
⋅p

=∑
j=0

∞

j⋅(1−p)
j
⋅p+∑

j=0

∞

(1−p) j
⋅p

=(1−p)∑
j=0

∞

j⋅(1−p)
j−1

⋅p+ p⋅∑
j=0

∞

(1−p)
j

∑
j=0

∞

x j
=

1
1−x

=(1−p)E [X ]+ p⋅
1

1−(1−p)
=(1−p)E [X ]+1

E [X ]=(1−p)E [X ]+1

(1−(1− p))E [X ]=1

p E [X ]=1

E [X ]=
1
p



  

Geometric: Fact sheet

PMF:

expectation: E [X ]=
1
p

pX (k )={(1−p)
k−1

⋅p if k∈ℤ ,k≥1
0 otherwise

X∼Geo( p)

probability of “success” (catch, heads, crash, ...)



  

Catching Pokémon
Wild Pokémon are captured by 
throwing Poké Balls at them.

Each ball has probability p = 0.1 
of capturing the Pokémon.
How many are needed so that 
probability of successful 
capture is at least 99%?

X: number of Poké Balls until 
(and including) capture

C
i
: event that Pokémon is 

captured on the i-th throwP(X≤k)=1−P(X>k)
=1−P(C1

CC2
C
…Ck

C
)

=1−P(C1
C
)P(C2

C
)…P(C k

C
)

=1−(1−p)
k



  

Cumulative distribution function

The cumulative distribution function 
(CDF) of a random variable is a function 
giving the probability that the random 
variable is less than or equal to a value.

P(Y ≤k )

k

FY (k)=P(Y≤k)

2 3 4 5 6 7 8 9 10 11 12
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(CDF of the sum
of two dice)



  

Geometric: Fact sheet

PMF:

expectation: E [X ]=
1
p

pX (k )={(1−p)
k−1

⋅p if k∈ℤ ,k≥1
0 otherwise

X∼Geo( p)

probability of “success” (catch, heads, crash, ...)

CDF: F X (k )={1−(1−p)
k if k∈ℤ , k≥1

0 otherwise



  

Catching Pokémon
Wild Pokémon are captured by 
throwing Poké Balls at them.

Each ball has probability p = 0.1 
of capturing the Pokémon.
How many are needed so that 
probability of successful 
capture is at least 99%?

X: number of Poké Balls until 
(and including) capture

P(X≤k)=1−(1−p)k≥0.99
0.01≥(1−p)k

log 0.01≥k log (1−p)

43.7≈
log 0.01

log(1−p)
≤ k



  

Geometric: Fact sheet

PMF:

expectation: E [X ]=
1
p

variance: Var(X )=
1−p
p2

pX (k )={(1−p)
k−1

⋅p if k∈ℤ ,k≥1
0 otherwise

X∼Geo( p)

probability of “success” (catch, heads, crash, ...)

CDF: F X (k )={1−(1−p)
k if k∈ℤ , k≥1

0 otherwise



  

Break time!



  

Negative binomial random variable

The number of trials it takes to get r 
successes, if successes occur 
independently with probability p, 
obeys a negative binomial distribution.

pX (n)={(
n−1
r−1) p

r
(1−p)

n−r if n∈ℤ , n≥r

0 otherwise

X∼NegBin (r , p)



  

Getting that degree
A conference accepts papers 
(independently and randomly?) 
with probability p = 0.25.

A hypothetical grad student needs 
3 accepted papers to graduate. 
What is the probability this takes 
exactly 10 submissions?

X: number of tries to get 3 accepts
Y: number of accepts in first 9 tries

P(X=10)=P(Y=2)⋅p

=(92)(1−p)
7 p2

⋅p≈0.075

accept on 10th try



  

Getting that degree
A conference accepts papers 
(independently and randomly?) 
with probability p.

A hypothetical grad student needs 
r accepted papers to graduate. 
What is the probability this takes 
exactly n submissions?

X: number of tries to get r accepts
Y: number of accepts in
    first n – 1 tries

P(X=10)=P(Y=r−1)⋅p

=(n−1
r−1)(1−p)

n−r pr−1
⋅p

accept on nth try



  

Negative binomial: Fact sheet

PMF: pX (n)={(
n−1
r−1) p

r
(1−p)

n−r if n∈ℤ , n≥r

0 otherwise

probability of “success”

X∼NegBin (r , p)

number of sucesses (heads, crash, ...)

number of trials (flips, 
program runs, ...)



  

Getting that degree
A conference accepts papers 
(independently and randomly?) 
with probability p = 0.25.

A hypothetical grad student needs 
3 accepted papers to graduate. 
How many submissions will be 
necessary on average?

X: number of tries to get 3 accepts

E [X ]=?
3⋅0.25

3
0.25

30.25

34

https://bit.ly/1a2ki4G → https://b.socrative.com/login/student/
Room: CS109SUMMER17

A)

B) D)

C)



  

Getting that degree
A conference accepts papers 
(independently and randomly?) 
with probability p.

A hypothetical grad student needs 
r accepted papers to graduate. 
How many submissions will be 
necessary on average?

X: number of tries to get r accepts

E [X ]=
r
p

https://bit.ly/1a2ki4G → https://b.socrative.com/login/student/
Room: CS109SUMMER17



  

Negative binomial: Fact sheet

PMF:

expectation: E [X ]=
r
p

variance: Var(X )=
r (1−p)

p2

pX (n)={(
n−1
r−1) p

r
(1−p)

n−r if n∈ℤ , n≥r

0 otherwise

probability of “success”

X∼NegBin (r , p)

number of sucesses (heads, crash, ...)

number of trials (flips, 
program runs, ...)

Geo(p)=NegBin (1 , p)
note:



  

A few optional (but hopefully
interesting) distributions

(these won’t be on tests or problem sets)



  

Hypergeometric distribution

PMF: pX (k)={
(mk )(N−m

n−k )

(Nn )
if k∈ℤ ,0≤k≤min (n ,m)

0 otherwise

X∼HypG (n , N ,m)

balls to draw

number of red balls drawn 
without replacement

number of red balls

total number of balls
(black + red)

expectation:

variance:

E [X ]=n
m
N

Var (X )=
nm(N−n)(N−m)

N 2
(N−1)



  

Benford distribution

PMF: pX (d)={logb(1+
1
d
) if d∈ℤ ,0≤d<b

0 otherwise

X∼Benford (b)

base of number system (e.g. 10)

first digit of naturally 
occurring number

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

1 2 3 4 5 6 7 8 9

F
re

qu
en

cy

First Digit

Benford's Law

Physical Constants



  

Zipf distribution

PMF: pX (k)={
1 /k s

∑
n=1

N

(1 /ns
)

if k∈ℤ ,0≤k≤N

0 otherwise

vocabulary size

X∼Zipf (s , N )

“power law” exponent (often close to 1)

rank of randomly 
chosen word



  

A grid of random variables

X∼Geo(p)

number of successes time to get successes

One
trial

Several
trials

Interval
of time X∼Exp(λ)

One
success

Several
successes

One success 
after interval 

of time

X∼NegBin (r , p)

X∼Ber(p)

X∼Bin(n , p)

X∼Poi(λ)
(coming soon!)

n = 1

One
success

One
success

r = 1



  

Rapid-fire random variables

number of Snapchats you receive today

Ber (p)

Bin (n , p)

Geo(p)

NegBin (r , p)

https://bit.ly/1a2ki4G → https://b.socrative.com/login/student/
Room: CS109SUMMER17

A)

B) E)

D)

Poi(λ)C)



  

Rapid-fire random variables

number of children until the first one with brown eyes

Ber (p)

Bin (n , p)

Geo(p)

NegBin (r , p)

https://bit.ly/1a2ki4G → https://b.socrative.com/login/student/
Room: CS109SUMMER17

A)

B) E)

D)

Poi(λ)C)

with r = 1



  

Rapid-fire random variables

whether the stock market went up today
(1 = up, 0 = down)

Ber (p)

Bin (n , p)

Geo(p)

NegBin (r , p)

https://bit.ly/1a2ki4G → https://b.socrative.com/login/student/
Room: CS109SUMMER17

A)

B) E)

D)

C) Poi(λ)

with n = 1



  

Rapid-fire random variables

number of years in some decade
with more than 6 Atlantic hurricanes

Ber (p)

Bin (n , p)

Geo(p)

NegBin (r , p)

https://bit.ly/1a2ki4G → https://b.socrative.com/login/student/
Room: CS109SUMMER17

A)

B) E)

D)

C) Poi(λ)
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