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Joint Distributions



Review: Normal random variable

An normal (= Gaussian) random variable is
a good approximation to many other

distributions. It often results from sums or
averages of independent random variables.
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Review: Normal fact sheet

mefn
XNN(M,?z)
variance (o = standard deviation)
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(no closed form)

expectation: E [ X]: vl

variance: var (X) — (52



Review: Normal approximation
to the binomial

large n, medium p
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| iInear transform of a normal

Adding a constant to a normal?
Add the constant to the mean.

Multiplying a normal by a constant?
Multiply the mean by the constant
and the variance by the

square of the constant.

X~N(u,0)
aX+b~N(au+b,a’o’)
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Most real-world problems
involve multiple random variables



Joint distributions

A joint distribution combines
multiple random variables. Its PDF
or PMF gives the probability or
relative likelihood of both random
variables taking on specific values.

pxyla,b)=P(X=a,Y=b)



A table of probabilities

Two random variables: X, Y
EFach can take on values {0, 1, 2!}

s all add
suptol




A just-for-fun demo

http://bit.ly/2tvr0Pu

Single

In a relationship

It's complicated / Other

TOTALS

Freshman
Sophomore

Junior

Senior

Grad student / Other

TOTALS



http://bit.ly/2tvr0Pu

Joint probability mass function

A joint probability mass function
gives the probability of more than
one discrete random variable each

taking on a specific value (an AND
of the 2+ values).

pxyla,b)=P(X=a,Y=b)

Y
O 1 2

O 0.05 0.20 0.10
x 1 0.10 0.10 0.10
2 0.05 0.10 0.20




Joint probability density function

A joint probability density function
gives the relative likelihood of
more than one continuous

random variable each taking on a
specific value.

P(a,<X<a, b,<Y <b,)=




Joint probability density function
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Multiple integrals (without tears)
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X and Y are two continuous
random variables:

O<X<1,0<cY<?2

xy 1H0=<x<1,0<y<2
0 otherwise

fX,Y(X’y):

evaluate the
inner integral

1
f dx (Xy) (treat outer variable
x=0

e

as constant)
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Marginalization

Marginal probabilities give the
distribution of a subset of the variables
(often, just one) of a joint distribution.

Sum/integrate over the variables you
don't care about.

:Z pX,Y(a:Y)

p(Y)

(x)d



https://academo.org/demos/3d-surface-plotter/?expression=1%2F(3*sqrt(2*pi))*exp(-0.5*((x%2F3)%5E2%2B(y%2F3)%5E2))&xRange=-10%2C10&yRange=-10%2C10&resolution=25

A just-for-fun demo

http://bit.ly/2tvr0Pu
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Defects on a hard drive

A single point defect is
uniformly distributed over a
disk or radius R.

(

L,
fX,Y(X,y): R it x+y"<R
\ 0 otherwise
fX(X):_J;dny,Y<X,y)
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Break time!




Joint cumulative distribution function

to 1 as

FX,Y<X5y):P(XSX,YSy> X —> +oo

Yy —> too

-10

plot by Academo



Probabilities from joint CDFs




Probabilities from joint CD

P(a,<X<a, b,<Y<b,)=F, ,(a,
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Probabilities from joint CD




Probabilities from joint CDFs



http://bit.ly/2tvr0Pu

Probabilities from joint CDFs




Probabilities from joint CDFs




Probabilities from joint CDFs




Probabilities from joint CDFs




Review: Linearity of expectation

Adding random variables or
constants? Add the expectations.
Multiplying by a constant? Multiply
the expectation by the constant.

ElaX+bY +c|=aE|X|+bE|Y |+c




-xpectation of a function
of two variables

Exactly like a function of one
variable, but with the joint PMF!

E[g(X,Y)]=ZXl 2 9(x,y)pyy(x,y)

Elg(X,Y)]= [ dx [ dygl,y)fc(x,)



Proof of expectation of sum

E[X+Y]=E[g(X,Y)]

=2, 2. 9(x,y)pyy(x,y)
‘Z,Zy, [x+y]pyy(x,y)
—Z,prxy (x,) +ZZprY
—Z Zp” (x,) +Zy2p”
—ZXPX +Zpr

E[X]+E[Y]




Another way to compute expectation

You can Iintegrate y
times the PMF, or
you can integrate 1
minus the CDF!
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https://academo.org/demos/3d-surface-plotter/?expression=1%2F(1%2Bexp(-x))*1%2F(1%2Bexp(-y))&xRange=-10%2C10&yRange=-10%2C10&resolution=25

Non-negative RV expectation lemma:
Rearranging terms

E[X]=0/PM+1P(X:1)+2P(X:2)+3p(X:3)+...

N G { e v
2 + é)(Xf:3)+-~
3...
= P(X=1)+ P(X=2)+ P(X=3)+
+|P(X=2)+ P(X=3)+-
+ [P(X=3)+:-
= P(X>1)
+|P(X>2)

[Addendum]



Non-negative RV expectation lemma:
Graphically
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[Addendum]



Defects on a hard drive

A single point defect is
uniformly distributed over a
disk or radius R.

(

fxy(X,y): 31;122 ifx2+y2§R2
0 otherwise
R
)= [ da 1__
0
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Multinomial random variable

An multinomial random variable
records the number of times each
outcome occurs, when an
experiment with multiple outcomes
(e.g. die roll) is run multiple times.

Xl,...,XmNMN(n,pljpz,...,pm)

/P(Xlzcl,X2=C2,...,XmZCm)

vector! n

Cl C2 Cm
— P1 P> -..Pn
C,,Coye..,C,




Roll all of the dice!

A 6-sided die is rolled / times.

What is the probability we get:
e 1 one

e 1 two

e O threes

e ? fours

e O fives

e 3 sixes?

11111 1)
'6°6°6°6°6°6
P(X,=1,X,=1,X,=0,X,=2,X.=0,X,=3)

{vao20alts] 3] (6] 5] (6] 5] =[5/

X,,..., X, ~MN(7
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