

Review: Normal random variable

An **normal** (= **Gaussian**) random variable is a good approximation to many other distributions. It often results from **sums or averages** of independent random variables.

$$X \sim N(\mu, \sigma^2)$$

$$f_X(x) = \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{1}{2} \left(\frac{x-\mu}{\sigma}\right)^2}$$

Review: Normal fact sheet

variance (σ = standard deviation)

PDF:
$$f_X(x) = \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{1}{2} \left(\frac{x-\mu}{\sigma}\right)^2}$$

CDF:
$$F_X(x) = \Phi\left(\frac{x-\mu}{\sigma}\right) = \int_{-\infty}^{x} dx f_X(x)$$

(no closed form)

expectation:
$$E[X] = \mu$$

variance:
$$Var(X) = \sigma^2$$

Review: Normal approximation to the binomial

large n, medium p

Linear transform of a normal

Adding a constant to a normal? Add the constant to the **mean**.

Multiplying a normal by a constant? Multiply the **mean** by the constant and the **variance** by the **square** of the constant.

$$X \sim N(\mu, \sigma^2)$$

 $aX + b \sim N(a\mu + b, a^2 \sigma^2)$

Most real-world problems involve multiple random variables

Joint distributions

A **joint distribution** combines multiple random variables. Its PDF or PMF gives the probability or relative likelihood of **both** random variables taking on specific values.

$$p_{X,Y}(a,b) = P(X=a,Y=b)$$

A table of probabilities

Two random variables: X, Y Each can take on values {0, 1, 2}

A just-for-fun demo

http://bit.ly/2tvr0Pu

	Single	In a relationship	It's complicated / Other	TOTALS
Freshman				
Sophomore				
Junior				
Senior				
Grad student / Other				
TOTALS				

Joint probability mass function

A joint probability mass function gives the probability of more than one discrete random variable each taking on a specific value (an AND of the 2+ values).

$$p_{X,Y}(a,b) = P(X=a,Y=b)$$

		Y				
		0	1	2		
X	0	0.05	0.20	0.10		
	1	0.10	0.10	0.10		
	2	0.05	0.10	0.20		

Joint probability density function

A joint probability density function gives the relative likelihood of more than one continuous random variable each taking on a specific value.

$$P(a_{1} < X \le a_{2}, b_{1} < Y \le b_{2}) = \int_{a_{2}}^{a_{2}} dx \int_{b_{1}}^{b_{2}} dy f_{X,Y}(x,y)$$

Joint probability density function $f_{x,y}(x,y)$

$$P(a_1 < X \le a_2, b_1 < Y \le b_2) = \int_{a_1}^{a_2} dx \int_{b_1}^{b_2} dy f_{X,Y}(x,y)$$

Multiple integrals (without tears)

X and Y are two continuous random variables:

$$0 \le X \le 1, 0 \le Y \le 2$$

$$f_{X,Y}(x,y) = \begin{cases} xy & \text{if } 0 \le x \le 1, 0 \le y \le 2\\ 0 & \text{otherwise} \end{cases}$$

$$\int_{y=0}^{2} dy \int_{x=0}^{1} dx (x y) = \int_{y=0}^{2} dy \left(\int_{x=0}^{1} dx (x y) \right)$$
 evaluate the inner integral (treat outer variable as constant)

$$= \int_{y=0}^{2} dy y \left[\frac{1}{2} x^{2} \right]_{x=0}^{1}$$

$$= \int_{y=0}^{2} dy \, y \left[\frac{1}{2} x^{2} \right]_{x=0}^{1}$$

$$= \int_{y=0}^{2} dy \, \frac{1}{2} y = \left[\frac{1}{4} y^{2} \right]_{y=0}^{2} = \frac{2^{2}}{4} = 1$$

$$= \int_{y=0}^{2} dy \, \frac{1}{2} y = \left[\frac{1}{4} y^{2} \right]_{y=0}^{2} = \frac{2^{2}}{4} = 1$$

Marginalization

Marginal probabilities give the distribution of a subset of the variables (often, just one) of a joint distribution.

Sum/integrate over the variables you don't care about.

$$p_X(a) = \sum_{y} p_{X,Y}(a,y)$$
$$f_X(a) = \int_{-\infty}^{\infty} dy f_{X,Y}(a,y)$$

A just-for-fun demo

http://bit.ly/2tvr0Pu

	Single	In a relationship	It's complicated / Other	TOTALS
Freshman				
Sophomore				
Junior				
Senior				
Grad student / Other				
TOTALS				

Defects on a hard drive

A single point defect is uniformly distributed over a disk or radius *R*.

$$f_{X,Y}(x,y) = \begin{cases} \frac{1}{\pi R^2} & \text{if } x^2 + y^2 \le R^2 \\ 0 & \text{otherwise} \end{cases}$$

$$f_{X}(x) = \int_{-\infty}^{\infty} dy \, f_{X,Y}(x,y)$$

$$= \frac{1}{\pi R^{2}} \int_{y:x^{2}+y^{2} \le R^{2}} dy$$

$$= \frac{1}{\pi R^{2}} \int_{y=-\sqrt{R^{2}-x^{2}}}^{+\sqrt{R^{2}-x^{2}}} dy = \frac{2\sqrt{R^{2}-x^{2}}}{\pi R^{2}}$$

Break time!

Joint cumulative distribution function

Review: Linearity of expectation

Adding random variables or constants? **Add** the expectations. Multiplying by a <u>constant</u>? **Multiply** the expectation by the constant.

$$E[aX+bY+c]=aE[X]+bE[Y]+c$$

Expectation of a function of two variables

Exactly like a function of one variable, but with the joint PMF!

$$E[g(X,Y)] = \sum_{x} \sum_{y} g(x,y) p_{X,Y}(x,y)$$

$$E[g(X,Y)] = \int_{-\infty}^{\infty} dx \int_{-\infty}^{\infty} dy g(x,y) f_{X,Y}(x,y)$$

Proof of expectation of sum

$$E[X+Y] = E[g(X,Y)]$$

$$= \sum_{x} \sum_{y} g(x,y) p_{X,Y}(x,y)$$

$$= \sum_{x} \sum_{y} [x+y] p_{X,Y}(x,y)$$

$$= \sum_{x} \sum_{y} x p_{X,Y}(x,y) + \sum_{x} \sum_{y} y p_{X,Y}(x,y)$$

$$= \sum_{x} \sum_{y} p_{X,Y}(x,y) + \sum_{y} y \sum_{x} p_{X,Y}(x,y)$$

$$= \sum_{x} x p_{X}(x) + \sum_{y} y p_{Y}(y)$$

$$= E[X] + E[Y]$$

Another way to compute expectation

You can integrate y times the PMF, **or** you can integrate 1 minus the CDF!

$$E[Y] = \int_{0}^{\infty} dy P(Y > y)$$
$$= \int_{0}^{\infty} dy (1 - F_{Y}(y))$$

Non-negative RV expectation lemma: Rearranging terms

$$E[X] = 0P(X=0) + 1P(X=1) + 2P(X=2) + 3P(X=3) + \cdots$$

$$= P(X=1) + P(X=2) + P(X=3) + \cdots$$

$$= P(X=1) + P(X=2) + P(X=3) + \cdots$$

$$= P(X=1) + P(X=2) + P(X=3) + \cdots$$

$$+ P(X=2) + P(X=3) + \cdots$$

$$+ P(X=3) + \cdots$$

$$= P(X \ge 1)$$

$$= P(X \ge 1)$$

$$= P(X \ge 1)$$

$$= P(X \ge 2)$$

Non-negative RV expectation lemma: Graphically

Defects on a hard drive

A single point defect is uniformly distributed over a disk or radius *R*.

$$f_{X,Y}(x,y) = \begin{cases} \frac{1}{\pi R^2} & \text{if } x^2 + y^2 \le R^2 \\ 0 & \text{otherwise} \end{cases}$$

$$D = \sqrt{X^{2} + Y^{2}}$$

$$E[D] = \int_{0}^{R} da P(D > a) = \int_{0}^{R} da \left(1 - \frac{a^{2}}{R^{2}}\right)$$

$$= \left[a - \frac{a^{3}}{3R^{2}}\right]_{a=0}^{R} = \frac{2}{3}R$$

Multinomial random variable

An multinomial random variable records the number of times each outcome occurs, when an experiment with multiple outcomes (e.g. die roll) is run multiple times.

Roll all of the dice!

A 6-sided die is rolled 7 times.

What is the probability we get:

- 1 one
- 1 two
- 0 threes
 - 2 fours
 - O fives
 - 3 sixes?

$$X_1, \dots, X_6 \sim MN(7, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6})$$

$$P(X_1=1, X_2=1, X_3=0, X_4=2, X_5=0, X_6=3)$$

$$= {1 \choose 1, 1, 0, 2, 0, 3} {1 \choose 6}^1 {1 \choose 6}^1 {1 \choose 6}^0 {1 \choose 6}^2 {1 \choose 6}^2 {1 \choose 6}^0 {1 \choose 6}^3 = 420 {1 \choose 6}^7$$