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Announcement: Problem Set #4

Due this Monday before class 
(12:30pm).

More algorithm analysis, and 
detecting an impostor coin flipper!
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Discrete conditional distributions

The value of a random variable, 
conditioned on the value of some 
other random variable, has a 
probability distribution.

pX∣Y (x , y)=
P(X=x ,Y= y)

P(Y= y)

=
pX ,Y (x , y)

pY ( y)



  

Continuous conditional distributions

The value of a random variable, 
conditioned on the value of some 
other random variable, has a 
probability distribution.

f X∣Y (x∣y)=
f X ,Y (x , y )

f Y ( y)



  

Beta random variable

An beta random variable models the 
probability of a trial’s success, given 
previous trials. The PDF/CDF let you 
compute probabilities of probabilities!

X∼Beta (a ,b)

f X (x)={C xa−1
(1−x)b−1 if 0<x<1
0 otherwise



  

Beta: Fact sheet

PDF:

expectation: E [X ]=
a

a+b
variance: Var(X )=

ab
(a+b)2

(a+b+1)

number of 
successes + 1

X∼Beta (a ,b)

number of
failures + 1

probability
of success

f X (x)={C xa−1
(1−x)b−1 if 0<x<1
0 otherwise



  

Subjective priors

f X∣A(x∣a)=
P(A=a|X=x) f X (x)

P(A=a)

X ~ Beta(1, 1)
“prior”

X | A ~ Beta(a + 1, N – a + 1)
“posterior”

How did we decide on
Beta(1, 1) for the prior?

Beta(1, 1): “we haven’t seen any rolls yet.”
Beta(4, 1): “we’ve seen 3 sixes and 0 non-sixes.”
Beta(2, 6): “we’ve seen 1 six and 5 non-sixes.”

Beta prior = “imaginary” previous trials



  

Beta calculator



  

Advanced: Dirichlet distribution
Beta is the distribution (“conjugate prior”) 
for the p in the Bernoulli and binomial.

Dirichlet is the distribution
for the p₁, p₂, … in the multinomial.

X1 , X2 ,…∼Dir (a1,a2,…)

f X1, X2,…
(x1, x2,…)=

C x1
a1−1 x2

b2−1
…

if 0<{x1 , x2 ,…}<1,
x1+x2+⋯=1
(0 otherwise)



  

Frequentists vs. Bayesians

image: Eric Kilby

Frequentist

A probability is the (real or 
theoretical) result of a 
number of experiments.

All probabilities are based 
on objective experiences.

Bayesian

A probability is a belief.

All probabilities are based 
on subjective priors.

(It’s not really a debate anymore—
real statisticians / data scientists / 
machine learning practitioners can 
and do think both ways!)

http://web.stanford.edu/class/cs109/demos/beta.html


  

Expectation of a product

If two random variables are independent,
then the expectation of their product 
equals the product of their expectations.

X⊥Y   ⇒

E [g(X )h(Y )]=E [g(X )]E [h(Y )]

E [X Y ]=E [X ]E [Y ]



  

Expectation of a product

E [g(X )h(Y )]=∫
−∞

∞

dy∫
−∞

∞

dx g(x)h( y) f X ,Y (x , y)

=E [g(X )]E [h(Y )]

=∫
−∞

∞

dy∫
−∞

∞

dx g(x)h( y) f X (x) f Y ( y)
(independence!)

=∫
−∞

∞

dy h( y) f Y ( y)∫
−∞

∞

dx g(x) f X (x)

=(∫
−∞

∞

dx g (x) f X (x))(∫
−∞

∞

dy h( y) f Y ( y))



  

Covariance

The covariance of two 
variables is a measure of how 
much they vary together.

=E [X Y ]−E [X ]E [Y ]

Cov (X ,Y )=E [(X−E [X ])(Y−E [Y ])]



  

A Tale of Two Distributions

E [X ]=3 E [X ]=3
E [Y ]=2 E [Y ]=2

Var(X )=2.25 Var(X )=2.25
Var(Y )=1 Var(Y )=1

https://www.flickr.com/photos/ekilby/26870919905


  

Two variables playing together

X

Y

+×+=+

–×–=+ +×–=–

–×+=–

E [X Y ]?
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Two variables playing together



  

Two variables playing together

X

Y

+×+=+

–×–=+ +×–=–

–×+=–

Cov (X ,Y )=E [(X−E [X ])(Y−E [Y ])]



  

The easy way to compute covariance

Cov (X ,Y )=E [(X−E [X ])(Y−E [Y ])]

=E [X Y−X E [Y ]−E [X ]Y +E [X ]E [Y ]]



  

The easy way to compute covariance

Cov (X ,Y )=E [(X−E [X ])(Y−E [Y ])]

=E [X Y−X E [Y ]−E [X ]Y +E [X ]E [Y ]]

=E [X Y ]−E [X E [Y ]]−E [E [X ]Y ]+E [E [X ]E [Y ]]
(linearity of expectation!)



  

The easy way to compute covariance

Cov (X ,Y )=E [(X−E [X ])(Y−E [Y ])]

=E [X Y ]−E [X ]E [Y ]

=E [X Y−X E [Y ]−E [X ]Y +E [X ]E [Y ]]

=E [X Y ]−E [X E [Y ]]−E [E [X ]Y ]+E [E [X ]E [Y ]]

=E [X Y ]−E [Y ]E [X ]−E [X ]E [Y ]+E [X ]E [Y ]

(linearity of expectation!)



  

Example: Weight and height data

E [W ]=62.75

Positive covariance:
Knowing high W makes high H more likely!

E [H ]=52.75
E [W⋅H ]=3355.83

Weight Height W · H

64 57 3648

71 59 4189

53 49 2597

67 62 4154

55 51 2805

58 50 2900

77 55 4235

57 48 2736

56 42 2352

51 42 2142

76 61 4636

68 57 3876

Cov (W ,H )=3355.83−(62.75)(52.75)=45.77



  

Example: Die rolling
Roll a (fair!) 6-sided die.

X = indicator variable for {1, 2, 3, 4}
Y = indicator variable for {3, 4, 5, 6}

Cov (X ,Y )=E [X Y ]−E [X ]E [Y ]

E [X ]=P({1,2,3, 4})=2 /3
E [Y ]=P({3, 4,5,6})=2 /3

=1 /3−4 /9=−1 /9
Negative covariance:
Knowing Y = 1 makes X = 1 less likely!

E [X Y ]=∑
x
∑

y

x y pX ,Y (x , y)

=0⋅0(0)+0⋅1(1/3)+1⋅0(1 /3)+1⋅1(1 /3)=1 /3



  

Break time!



  

Covariance

The covariance of two 
variables is a measure of how 
much they vary together.

=E [X Y ]−E [X ]E [Y ]

Cov (X ,Y )=E [(X−E [X ])(Y−E [Y ])]



  

Properties of covariance

Cov (X ,Y )=Cov (Y , X ) (symmetric)

Cov (X , X )=E [X X ]−E [X ]E [X ]=Var (X )

Cov (a X+b ,Y )=aCov (X ,Y )

Cov (∑
i

X i ,∑
j

Y j)=∑
i
∑

j

Cov (X i ,Y j)



  

Covariance = linear dependence

X

Y

Cov (X ,Y )=0

+

+ –

–



  

X

Y

+×+=+

–×–=+ +×–=–

–×+=–

Cov (X ,Y )=E [(X−E [X ])(Y−E [Y ])]

Inflating your covariance



  

Inflating your covariance

X

Y

+×+=+

–×–=+

–×+=–

+×–=–

Cov (X ,Y )=E [(X−E [X ])(Y−E [Y ])]



  

Correlation

The correlation of two variables is a 
measure of the linear dependence 
between them, scaled to always take on 
values between -1 and 1.

ρ(X ,Y )=
Cov (X ,Y )

√Var(X )Var(Y )



  

Perfect correlation
Suppose X and Y form a perfect line:

Cov (X ,Y )=Cov (X ,a X+b)

Y=a X+b

=aCov (X , X )

=aVar (X )

=±√a2 Var (X )⋅Var (X )

Then

=±√Var (Y )⋅Var (X )



  

Cutting covariance down to size

ρ(X ,Y )=
Cov (X ,Y )

√Var(X )Var(Y )

divide by the covariance’s 
maximum value



  

Important correlations

ρ(X ,Y )=0 ρ(X ,Y )=1ρ(X ,Y )=−1

ρ(X ,Y )=0



  

Unimportant correlations

Spurious Correlations
by Tyler Vigen

“Correlation 
does not imply 
causation”
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