

Covariance and correlation

Announcement: Problem Set #4

Due this Monday before class (12:30pm).

More algorithm analysis, and detecting an impostor coin flipper!

Discrete conditional distributions

The value of a random variable, conditioned on the value of some other random variable, has a probability distribution.

$$p_{X|Y}(x,y) = \frac{P(X=x,Y=y)}{P(Y=y)}$$

$$= \frac{p_{X,Y}(x,y)}{p_{Y}(y)}$$

PDF	Single	In a relationship	It's complicated / Other	TOTALS
Freshman	0.00	0.00	0.00	0.00
Sophomore	0.06	0.00	0.00	0.06
Junior	0.19	0.19	0.13	0.50
Senior	0.00	0.00	0.00	0.00
Grad student / Other	0.38	0.06	0.00	0.44
TOTALS	0.63	0.25	0.13	1.00

Continuous conditional distributions

The value of a random variable, conditioned on the value of some other random variable, has a probability distribution.

$$f_{X|Y}(x|y) = \frac{f_{X,Y}(x,y)}{f_{Y}(y)}$$

Beta random variable

An **beta** random variable models the **probability** of a trial's success, given previous trials. The PDF/CDF let you compute **probabilities** of **probabilities**!

$$X \sim \text{Beta}(a,b)$$

$$(C_{1},a^{-1}(1,a))^{b-1}$$

$$f_X(x) = \begin{cases} C x^{a-1} (1-x)^{b-1} & \text{if } 0 < x < 1 \\ 0 & \text{otherwise} \end{cases}$$

Beta: Fact sheet

number of successes + 1
$$X \sim \text{Beta}(a,b)$$

$$\uparrow$$
probability
of success
$$\uparrow$$
number of failures + 1

$$\text{PDF: } f_X(x) = \begin{cases} C x^{a-1} (1-x)^{b-1} & \text{if } 0 < x < 1 \\ 0 & \text{otherwise} \end{cases}$$

expectation:
$$E[X] = \frac{a}{a+b}$$
variance: $Var(X) = \frac{ab}{(a+b)^2(a+b+1)}$

Subjective priors

$$\begin{array}{c}
X \mid A \sim \text{Beta}(a + 1, N - a + 1) \\
\text{"posterior"} \\
f_{X\mid A}(x\mid a) = \frac{P(A = a \mid X = x) f_X(x)}{P(A = a)}
\end{array}$$

$$\begin{array}{c}
X \sim \text{Beta}(1, 1) \\
\text{"prior"} \\
P(A = a)
\end{array}$$

How did we decide on Beta(1, 1) for the prior?

Beta(1, 1): "we haven't seen any rolls yet."

Beta(4, 1): "we've seen 3 sixes and 0 non-sixes."

Beta(2, 6): "we've seen 1 six and 5 non-sixes."

Beta prior = "imaginary" previous trials

Beta calculator

Advanced: Dirichlet distribution

Beta is the distribution ("conjugate prior") for the *p* in the **Bernoulli** and **binomial**.

Dirichlet is the distribution for the p_1 , p_2 , ... in the **multinomial**.

$$X_1, X_2, \dots \sim \text{Dir}(a_1, a_2, \dots)$$

$$f_{X_1, X_2, \dots}(x_1, x_2, \dots) =$$

$$C x_1^{a_1 - 1} x_2^{b_2 - 1} \dots$$
if $0 < \{x_1, x_2, \dots\} < 1$,
$$x_1 + x_2 + \dots = 1$$
(0 otherwise)

Frequentists vs. Bayesians

Frequentist

A probability is the (real or theoretical) result of a number of experiments.

All probabilities are based on objective experiences.

Bayesian

A probability is a belief.

All probabilities are based on subjective priors.

(It's not really a debate anymore—real statisticians / data scientists / machine learning practitioners can and do think both ways!)

image: Eric Kilby

Expectation of a product

If two random variables are independent, then the expectation of their product equals the product of their expectations.

$$X \perp Y \Rightarrow$$

$$E[XY] = E[X]E[Y]$$

$$E[g(X)h(Y)] = E[g(X)]E[h(Y)]$$

Expectation of a product

$$E[g(\mathbf{X})h(\mathbf{Y})] = \int_{-\infty}^{\infty} dy \int_{-\infty}^{\infty} dx \, g(x)h(y) f_{\mathbf{X},\mathbf{Y}}(x,y)$$

$$= \int_{-\infty}^{\infty} dy \int_{-\infty}^{\infty} dx \, g(x)h(y) f_{\mathbf{X}}(x) f_{\mathbf{Y}}(y)$$

$$= \int_{-\infty}^{\infty} dy \, h(y) f_{\mathbf{Y}}(y) \int_{-\infty}^{\infty} dx \, g(x) f_{\mathbf{X}}(x)$$

$$= \left(\int_{-\infty}^{\infty} dx \, g(x) f_{\mathbf{X}}(x)\right) \left(\int_{-\infty}^{\infty} dy \, h(y) f_{\mathbf{Y}}(y)\right)$$

$$= E[g(\mathbf{X})] E[h(\mathbf{Y})]$$

Covariance

The **covariance** of two variables is a measure of how much they **vary together**.

$$Cov(X,Y) = E[(X-E[X])(Y-E[Y])]$$
$$= E[XY] - E[X]E[Y]$$

A Tale of Two Distributions

Two variables playing together

Two variables playing together

Two variables playing together

$$Cov(X,Y)=E[(X-E[X])(Y-E[Y])]$$

The easy way to compute covariance

$$Cov(X,Y) = E[(X-E[X])(Y-E[Y])]$$

$$= E[XY-XE[Y]-E[X]Y+E[X]E[Y]]$$

The easy way to compute covariance

The easy way to compute covariance

$$Cov(X,Y) = E[(X-E[X])(Y-E[Y])]$$

$$= E[XY-XE[Y]-E[X]Y+E[X]E[Y]]$$

$$= E[XY]-E[XE[Y]]-E[E[X]Y]+E[E[X]E[Y]]$$
(linearity of expectation!)
$$= E[XY]-E[Y]E[X]-E[X]E[Y]+E[X]E[Y]$$

=E[XY]-E[X]E[Y]

Example: Weight and height data

$E[oldsymbol{W}]$	=62.75
E[H]	=52.75
$E[W \cdot H] = 0$	3355.83

Height	W·H
57	3648
59	4189
49	2597
62	4154
51	2805
50	2900
55	4235
48	2736
42	2352
42	2142
61	4636
57	3876
	57 59 49 62 51 50 55 48 42 42 42

$$Cov(W, H) = 3355.83 - (62.75)(52.75) = 45.77$$

Positive covariance: Knowing high **W** makes high **H** more likely!

Example: Die rolling

Roll a (fair!) 6-sided die.

$$E[X] = P(\{1,2,3,4\}) = 2/3$$

$$E[Y] = P(\{3,4,5,6\}) = 2/3$$

$$E[XY] = \sum_{x} \sum_{y} x y p_{X,Y}(x,y)$$

$$= 0 \cdot 0(0) + 0 \cdot 1(1/3) + 1 \cdot 0(1/3) + 1 \cdot 1(1/3) = 1/3$$

$$Cov(X,Y) = E[XY] - E[X]E[Y]$$

$$= 1/3 - 4/9 = -1/9$$

Negative covariance: Knowing Y = 1 makes X = 1 less likely! Break time!

Covariance

The **covariance** of two variables is a measure of how much they **vary together**.

$$Cov(X,Y) = E[(X-E[X])(Y-E[Y])]$$
$$= E[XY] - E[X]E[Y]$$

Properties of covariance

$$Cov(X,Y) = Cov(Y,X)$$
 (symmetric)

$$Cov(X, X) = E[XX] - E[X]E[X] = Var(X)$$

$$Cov(aX+b,Y)=aCov(X,Y)$$

$$\operatorname{Cov}\left(\sum_{i} X_{i}, \sum_{j} Y_{j}\right) = \sum_{i} \sum_{j} \operatorname{Cov}\left(X_{i}, Y_{j}\right)$$

Covariance = linear dependence

Inflating your covariance

$$\operatorname{Cov}(X,Y) = E[(X-E[X])(Y-E[Y])]$$

Inflating your covariance

$$\operatorname{Cov}(X,Y) = E[(X-E[X])(Y-E[Y])]$$

Correlation

The **correlation** of two variables is a measure of the **linear dependence** between them, scaled to always take on values between -1 and 1.

$$\rho(X,Y) = \frac{\text{Cov}(X,Y)}{\sqrt{\text{Var}(X)\text{Var}(Y)}}$$

Perfect correlation

Suppose X and Y form a perfect line:

$$Y = aX + b$$

Then

$$Cov(X,Y) = Cov(X,aX+b)$$

$$= a Cov(X,X)$$

$$= a Var(X)$$

$$= \pm \sqrt{a^2 Var(X) \cdot Var(X)}$$

$$= \pm \sqrt{Var(Y) \cdot Var(X)}$$

Cutting covariance down to size

$$\rho(X,Y) = \frac{\text{Cov}(X,Y)}{\sqrt{\text{Var}(X)\text{Var}(Y)}}$$

divide by the covariance's maximum value

Important correlations

Unimportant correlations

"Correlation does not imply causation"

Spurious Correlations by Tyler Vigen