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Announcement: Problem Set #5

Due Monday, August 7 before class.

11 problems:

Robot package delivery Cell recepton
in the wilderness



  

Review: Conditonal expectaton

One can compute the expectaton of a 
random variable while conditoning on 
the values of other random variables.

E [X|Y= y ]=∑
x

x pX∣Y (x|y)

E [X|Y= y ]=∫
−∞

∞

dx x f X∣Y (x|y)



  

Review: Quicksort
Let X = number of comparisons to the pivot.
What is E[X]?

E [X ]=E [∑
a=1

n−1

∑
b=a+1

n

I ab]=∑
a=1

n−1

∑
b=a+1

n

E [ I ab]

1 2 3 4 5 6 7 8

Y 1 Y 2 Y n...

Defne Y₁ … Yₙ = elements in sorted order.

Indicator variables I
ab

 = 1 if Y
a
 and Y

b
 are ever compared.

expected number of events = indicator variables!

=∑
a=1

n−1

∑
b=a+1

n

P(Y a  and Y b  ever compared)

unique pairs



  

Review: Quicksort
P( Y

a
 and Y

b
 ever compared) = ?

1 2 3 4 5 6 7 8

Y a Y b

  ∴ P(Y a  and Y b  ever compared)=
2

b−a+1

Case 1:

1 2 3 4 5 6 7 8

Y a Y b

Case 2:

1 2 3 4 5 6 7 8

Y a Y b

Case 3:

yes!

no!

recursive 
call



  

Review: Quicksort
E [X ]=∑

a=1

n−1

∑
b=a+1

n

P(Y a  and Y b  ever compared)

=∑
a=1

n−1

∑
b=a+1

n
2

b−a+1 ∑
b=a+1

n
2

b−a+1
≈ ∫

b=a+1

n

db
2

b−a+1

=[2 ln (b−a+1) ]b=a+1

n

=2 ln (n−a+1)−2 ln 2

≈2 ln(n−a+1) for large n

≈∑
a=1

n−1

2 ln(n−a+1)

≈∫
a=1

n−1

da2 ln(n−a+1)

=−2 ∫
y=n

2

dy ln y

=−2 [ y ln y− y ] y=n
2

=−2[(2 ln 2−2)−(n ln n−n)]

constants lower-order 
term

=O(n lnn)

u=ln y

du=
1
y
dy

v= y

dv=dy
∫u dv=u v−∫v du

∫ ln y dy= y ln y−∫ y
1
y
dy

= y ln y− y+C



  

Review: Variance of a linear functon

Adding a constant? Variance doesn't change. 
Multplying by a constant? Multply the 
variance by the square of the constant.

Var(aX+b)=E [(aX+b)2
]−(E [aX+b ])

2

=a2 Var(X )

=a2
[E [X 2

]−(E [X ])
2
]

=a2 E [X2
]+2ab E [X ]+b2

           −[a2
(E [X ])

2
+2abE [X ]+b2

]

=a2 E [X2
]−a2

(E [X ])
2

=E [a2 X2
+2abX+b2

]−(aE [X ]+b)2



  

Variance of a sum

The variance of a sum of random 
variables is equal to the sum of pairwise 
covariances (including variances and 
double-counted pairs).

Var(∑
i=1

n

X i)=Cov (∑
i=1

n

X i ,∑
j=1

n

X j)
=∑

i=1

n

Var ( X i )+2∑
i=1

n

∑
j=i+1

n

Cov ( X i , X j )



  

Proof: Variance of a sum

Var(∑
i=1

n

X i)=Cov (∑
i=1

n

X i ,∑
i=1

n

X i)

=∑
i=1

n

Var ( X i )+2∑
i=1

n

∑
j=i+1

n

Cov ( X i , X j )

=Cov (∑
i=1

n

X i ,∑
j=1

n

X j)

=∑
i=1

n

Var ( X i )+∑
i=1

n

∑
j=1
j≠i

n

Cov ( X i , X j )

Cov (X , X )=Var (X )

Cov (X i , X j)=Cov (X j , X i)



  

Variance of a sum

The variance of a sum of random 
variables is equal to the sum of pairwise 
covariances (including variances and 
double-counted pairs).

Var(∑
i=1

n

X i)=Cov (∑
i=1

n

X i ,∑
j=1

n

X j)
=∑

i=1

n

Var ( X i )+2∑
i=1

n

∑
j=i+1

n

Cov ( X i , X j )

note: independent  Cov = 0⇒



  

Sampling from a large populaton

E [X ]=?



  

Sampling from a large populaton

E [X ]≈
1
n
∑ (

)



  

Sample mean

A sample mean is an average of random 
variables drawn (usually independently) 
from the same distributon.

X̄=
1
n∑i=1

n

X i



  

Samples = random variables

X1=37

0 100

μ=E [X i ]

σ=√Var (X i)



  

Samples = random variables

X1=37

0 100

X2=53

X3=34

X 4=70
X5=59
X6=29
X7=48
X8=81

“independent and identcally distributed”
(I.I.D.)

μ=E [X i ]

σ=√Var (X i)



  

Taking an average

X1=37

0 100

X2=53

X3=34

X 4=70
X5=59
X6=29
X7=48
X8=81 X̄=

1
8∑i=1

8

X i≈51.4

X̄ μ=E [X i ]

σ=√Var (X i)



  

Parameter estmaton

Sometmes we don’t know things like 
the expectaton and variance of a 
distributon; we have to estmate 
them from incomplete informaton.

X̄=
1
n∑i=1

n

X i

θ̂=arg max
θ

LL(θ)

S2
=

1
n−1∑i=1

n

(X i− X̄ )
2

≈



  

Unbiased estmator

An unbiased estmator is a random 
variable that has expectaton equal to 
the quantty you are estmatng.

E [ X̄ ]=μ=E [X i]



  

Sample mean is unbiased

E [ X̄ ]=E [ 1
n∑i=1

n

X i]

0 100

μ=E [X i ]

X̄=
1
n∑i=1

n

X i

=
1
n∑i=1

n

E [ X i ]

=
1
n
⋅nμ

=μ

=
1
n∑i=1

n

μ



  

How volatle is our estmate?

0 100

μ=E [X i ]

X̄=
1
n∑i=1

n

X i E [ X̄ ]=μ

σ=√Var (X i)



  

How volatle is our estmate?

0 100

μ=E [X i ]

X̄=
1
n∑i=1

n

X i E [ X̄ ]=μ

σ=√Var (X i)



  

How volatle is our estmate?

0 100

μ=E [X i ]

X̄=
1
n∑i=1

n

X i E [ X̄ ]=μ

Var( X̄ )=?

σ=√Var (X i)



  

Variance of the sample mean

The sample mean is a random variable; it 
can difer among samples. That means it 
has a variance.

? ? ?

Var( X̄ )=σ
2

n



  

How volatle is our estmate?

0 100

μ=E [X i ]

X̄=
1
n∑i=1

n

X i E [ X̄ ]=μ

Var( X̄ )=Var (∑
i=1

n X i

n )
=( 1

n )
2

Var(∑
i=1

n

X i)
=

1

n2 ∑
i=1

n

Var(X i)

=
1
n2 n⋅σ2

=σ
2

n

σ=√Var (X i)



  

Variance of the sample mean

The sample mean is a random variable; it 
can difer among samples. That means it 
has a variance.

? ? ?

Var( X̄ )=σ
2

n



  

Teaser

Next week: Central limit theorem

(arguably “the greatest result in probability theory”)—
lets you prove many statements about sample means

Later today: Bootstrapping

For when things are hard to derive analytcally—
make the computer do the work for you!



  

Break tme!



  

Sample variance

Samples can be used to estmate the 
variance of the original distributon.

S2
=

1
n−1∑i=1

n

(X i− X̄ )
2



  

Estmatng variance from samples

Var(X i)=E [(X i−μ)
2
]

(algebra skipped—see lecture notes)

≈E [(X i− X̄ )
2
]

≈
1
n∑i=1

n

(X i− X̄ )
2
=S2

E [S2
]=( n−1

n )σ2

Unbiased? Nope!



  

Estmatng variance from samples

Var(X i)=E [(X i−μ)
2
]

(algebra skipped—see lecture notes)

≈E [(X i− X̄ )
2
]

≈
1

n−1∑i=1

n

(X i− X̄ )
2
=S2

E [S2
]=σ

2

Unbiased? Yes!



  

Variance of the sample mean

vs.

Sample variance

? ? ?
– Is a single number

– Shrinks with number of samples

– Measures the stability of an estmate

– Is a random variable

– Constant with number of samples

– Is an estmate (of a variance) itself

(=σ
2

n )

(≈σ
2 )



  

p-values

A p-value gives the probability of an 
extreme result, assuming that any 
extremeness is due to chance.

p=P(|X̄−μ|>d∣H 0)



  

Comparing two samples

X̄=
1
n∑i=1

n

X i≈87.1 Ȳ=
1
n∑i=1

n

Y i≈87.6



  

Is it a fuke?

(Yes!)

Sample means have 
random fuctuatons. 
What’s the probability that 
we see the diference we 
found if any diferences 
are due to chance alone?



  

Is it a fuke?

null hypothesis (H₀):
the assumpton that any extreme 
result happens by chance alone

Sample means have 
random fuctuatons. 
What’s the probability that 
we see the diference we 
found if any diferences 
are due to chance alone?



  

Suspicious dice

Roll a 6 on two out of three rolls of one die.

How likely is this by chance?

H₀ = die is fair, all extreme values are by chance

X = number of 6’s on three rolls

=(32)(
1
6 )

2

(5
6 )+( 1

6 )
3

≈0.074

p=P(X≥2∣H 0)=P(X=2∣H 0)+P(X=3∣H 0)



  

Interpretng p-values

Suppose I got this result. How likely is it to be a fuke?

Suppose this result is a fuke. How unlikely is the result?



  

Bootstrapping

Bootstrapping allows you to compute 
complicated statstcs from samples 
using simulaton.



  

Bootstrapping motvaton

Computers can simulate taking samples 
from many distributons.

What if we try to reverse-engineer the 
distributon from the sample we have, 
then simulate new samples?



  

The “original” bootstrap

def bootstrap(sample):
    pmf = fancy_estimate_distribution(sample)
    results = []
    for i in range(10000):
        sample = pmf.sample(size=len(sample))
        stat = compute_stat(sample)
        results.append(stat)
    return results



  

The “original” bootstrap

def bootstrap(sample):
    pmf = fancy_estimate_distribution(sample)
    means = []
    for i in range(10000):
        sample = pmf.sample(size=len(sample))
        mean = np.mean(sample)
        means.append(mean)
    return means

Now you have a bunch of means.

Can answer questons like: what is 
P(mean is between 40 and 60)?

Also next week: parameter estmaton
= how to write this functon



  

Empirical distributon

X∼ℰ :

fracton of values in 
the sample equal to xP(X=x)=



  

Easy bootstrap

def bootstrap(sample):
    pmf = sample
    means = []
    for i in range(10000):
        sample = np.random.choice(pmf, len(sample))
        mean = np.mean(sample)
        means.append(mean)
    return means

Now you have a bunch of means.

Can answer questons like: what is 
P(mean is between 40 and 60)?

Draw a bunch of points from data 
we already have (with replacement)



  

Bootstrap for p-values

def pvalue_bootstrap(sample1, sample2):
    n = len(sample1)
    m = len(sample2)
    observed_diff = abs(np.mean(sample2) –
                        np.mean(sample1))
    universal_pmf = sample1 + sample2
    count_extreme = 0
    for i in range(10000):
        resample1 = np.random.choice(universal_pmf, n)
        resample2 = np.random.choice(universal_pmf, m)
        new_diff = abs(np.mean(resample2) –
                       np.mean(resample1))
        if new_diff >= observed_diff:
            count_extreme += 1
    return count_extreme / 10000.



  

You’re in the right place

Bradley Efron (1938–)

Published paper proposing 
bootstrapping in 1979

At Stanford, stll teaching as 
recently as 2015 (STATS 306A)!

“Efron’s dice”—

4 dice (A, B, C, D) such that:

P(A > B) = P(B > C) = P(C > D) = P(D > A) = 2/3

4 3 6

(nope)
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