Will Monroe August 2, 2017

with materials by Mehran Sahami and Chris Piech

image: [Pexels](https://pixabay.com/en/artwork-autumn-colours-boot-2179055/)

Samples and bootstrapping

A

Announcement: Problem Set #5

Due Monday, August 7 before class.

11 problems:

Robot package delivery Cell reception

in the wilderness

Review: Conditional expectation

One can compute the **expectation** of a random variable while conditioning on the values of other random variables.

$$
E[X|Y=y] = \sum_{x} x p_{X|Y}(x|y)
$$

$$
E[X|Y=y] = \int_{-\infty}^{\infty} dx x f_{X|Y}(x|y)
$$

Review: Quicksort

Let X = $\left[\text{number of comparisons}\right]$ to the pivot. What is $E[X]$? expected number of events = indicator variables!

1	2	3	4	5	6	7	8
Y_1	Y_2	...	Y_n				

Define Y_1 ... Y_n = elements in sorted order.

Indicator variables $I_{ab} = 1$ if Y_{a} and Y_{b} are ever compared.

$$
E[X] = E\left[\sum_{a=1}^{n-1} \sum_{b=a+1}^{n} I_{ab}\right] = \sum_{a=1}^{n-1} \sum_{b=a+1}^{n} E[I_{ab}]
$$

=
$$
\sum_{a=1}^{n-1} \sum_{b=a+1}^{n} P(Y_a \text{ and } Y_b \text{ ever compared})
$$

Review: Quicksort

Review: Variance of a linear function

Adding a constant? Variance doesn't change. Multiplying by a constant? Multiply the variance by the square of the constant.

 $Var(aX + b) = E[(aX + b)^{2}] - (E[aX + b])^{2}$ $=$ a^2 Var (X) $= a^2 [E[X^2] - (E[X])^2]$ $= a^2 E[X^2] + 2 ab E[X] + b^2$ $-[a^2(E[X])^2 + 2abE[X] + b^2]$ $= a^2 E[X^2] - a^2 (E[X])^2$ $= E[a^2X^2 + 2abX + b^2] - (aE[X] + b)^2$

Variance of a sum

The **variance of a sum** of random variables is equal to the sum of pairwise covariances (*including* variances and double-counted pairs).

$$
\operatorname{Var}\left(\sum_{i=1}^{n} X_{i}\right) = \operatorname{Cov}\left(\sum_{i=1}^{n} X_{i}, \sum_{j=1}^{n} X_{j}\right)
$$

$$
= \sum_{i=1}^{n} \operatorname{Var}(X_{i}) + 2 \sum_{i=1}^{n} \sum_{j=i+1}^{n} \operatorname{Cov}(X_{i}, X_{j})
$$

Proof: Variance of a sum

$$
\operatorname{Var}\left(\sum_{i=1}^{n} X_{i}\right) = \operatorname{Cov}\left(\sum_{i=1}^{n} X_{i}, \sum_{i=1}^{n} X_{i}\right)
$$

\n
$$
= \operatorname{Cov}\left(\sum_{i=1}^{n} X_{i}, \sum_{j=1}^{n} X_{j}\right)
$$

\n
$$
\operatorname{Cov}(X, X) = \operatorname{Var}(X)
$$

\n
$$
= \sum_{i=1}^{n} \operatorname{Var}(X_{i}) + \sum_{i=1}^{n} \sum_{\substack{j=1 \ j \neq i}}^{n} \operatorname{Cov}(X_{i}, X_{j})
$$

\n
$$
= \sum_{i=1}^{n} \operatorname{Var}(X_{i}) + 2 \sum_{i=1}^{n} \sum_{\substack{j=1 \ j \neq i}}^{n} \operatorname{Cov}(X_{i}, X_{j}) = \operatorname{Cov}(X_{j}, X_{i})
$$

Variance of a sum

The **variance of a sum** of random variables is equal to the sum of pairwise covariances (*including* variances and double-counted pairs).

$$
\operatorname{Var}\left(\sum_{i=1}^{n} X_{i}\right) = \operatorname{Cov}\left(\sum_{i=1}^{n} X_{i}, \sum_{j=1}^{n} X_{j}\right)
$$

$$
= \sum_{i=1}^{n} \operatorname{Var}(X_{i}) + 2 \sum_{i=1}^{n} \sum_{j=i+1}^{n} \operatorname{Cov}(X_{i}, X_{j})
$$

note: independent \Rightarrow Cov = 0

Sampling from a large population

Sampling from a large population

 $E[X] \approx \frac{1}{n} \sum ($

Sample mean

A sample mean is an average of random variables drawn (usually independently) from the same distribution.

Samples = random variables

 $X_1 = 37$

Samples = random variables

Taking an average

Parameter estimation

Unbiased estimator

An **unbiased estimator** is a random variable that has expectation equal to the quantity you are estimating.

 $E[\overline{X}] = \mu = E[X_i]$

Sample mean is unbiased

Variance of the sample mean

The sample mean is a random variable; it can differ among samples. That means it has a variance.

Variance of the sample mean

The sample mean is a random variable; it can differ among samples. That means it has a variance.

Teaser

Next week: Central limit theorem

(arguably "the greatest result in probability theory") lets you prove many statements about sample means

Later today: **Bootstrapping**

For when things are hard to derive analytically make the computer do the work for you!

Break time!

Sample variance

Samples can be used to estimate the variance of the original distribution.

$$
S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \bar{X})^{2}
$$

Estimating variance from samples

Unbiased? Nope!

(algebra skipped-see lecture notes)

Estimating variance from samples

Var(
$$
X_i
$$
) = E[(X_i − μ)²]
≈ E[(X_i − \bar{X})²]
≈ $\frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})^2 = S^2$

Unbiased? Yes!

$$
E[S^2]{=}\sigma^2
$$

(algebra skipped—see lecture notes)

Variance of the sample mean ? ? ? – Is a single number – Shrinks with number of samples (= σ^2

vs.

Sample variance

- Is a random variable
- Constant with number of samples $\approx \sigma^2$

– Measures the stability of an estmate

n)

)

– Is an estmate (of a variance) itself

p-values

A *p*-value gives the probability of an extreme result, assuming that any extremeness is due to chance.

 $p = P(|\bar{X} - \mu| > d |H_0)$

Comparing two samples

$$
\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i \approx 87.1 \qquad \bar{Y} =
$$

1 $\frac{1}{n}\sum_{i=1}$ *n Y ⁱ*≈87.6

Is it a fuke?

Sample means have random fluctuations. What's the probability that we see the diference we found if any diferences are due to chance alone?

(Yes!)

Is it a fuke?

Sample means have random fluctuations. What's the probability that we see the diference we found if any diferences are due to chance alone?

null hypothesis (H_o) : the assumption that any extreme result happens by chance alone

Suspicious dice

Roll a 6 on two out of three rolls of one die. How likely is this by chance?

 H_0 = die is fair, all extreme values are by chance

 $X =$ number of 6's on three rolls

```
=\frac{5}{2}3
                                   2\sqrt{\frac{1}{6}}1
                                          \overline{6}2
                                                 \overline{\sqrt{6}}5
                                                    \frac{6}{6} + \frac{1}{6}1
                                                               \overline{6}3
                             \approx 0.074p = P(X \ge 2|H_0) = P(X = 2|H_0) + P(X = 3|H_0)
```
Interpretng *p*-values

Suppose I got this result. How likely is it to be a fluke?

Suppose this result is a fuke. How unlikely is the result? $\sqrt{}$

Bootstrapping

Bootstrapping allows you to compute complicated statistics from samples using simulation.

Bootstrapping motivation

Computers can simulate taking samples from many distributions.

What if we try to reverse-engineer the distribution from the sample we have, then simulate new samples?

The "original" bootstrap

```
def bootstrap(sample):
 pmf = fancy_estimate_distribution(sample)
 results = []
 for i in range(10000):
    sample = pmf.sample(size=len(sample))
    stat = compute stat(sample)
     results.append(stat)
 return results
```
The "original" bootstrap

```
def bootstrap(sample):
 pmf = fancy_estimate_distribution(sample)
means = [] for i in range(10000):
      sample = pmf.sample(size=len(sample))
      mean = np.mean(sample)
      means.append(mean)
 return means
                          Also next week: parameter estimation
                          = how to write this function
```
Now you have a bunch of means.

Can answer questions like: what is P(mean is between 40 and 60)?

Empirical distribution

 $X \sim \mathscr{E}$:

$P(X=x)$ fraction of values in
the sample equal to x

Easy bootstrap

Now you have a bunch of means.

Can answer questions like: what is P(mean is between 40 and 60)?

Bootstrap for p-values

```
def pvalue_bootstrap(sample1, sample2):
n = len(sample1)m = len(sample2) observed_diff = abs(np.mean(sample2) –
                     np.mean(sample1))
universal pm f = sample1 + sample2count extreme = 0 for i in range(10000):
    resample1 = np.randomchoice(universal pmf, n)resample2 = np.randomchoice(universal pmf, m)new diff = abs(np_mean(resample2) –
                    np.mean(resample1))
    if new diff >= observed diff:
        count extreme += 1 return count_extreme / 10000.
```
You're in the right place

Bradley Efron (1938–)

Published paper proposing bootstrapping in 1979

At Stanford, still teaching as recently as 2015 (STATS 306A)!

"Efron's dice"—

4 dice (*A, B, C, D*) such that:

 $P(A > B) = P(B > C) = P(C > D) = P(D > A) = 2/3$