Will Monroe with materials by
August 4, 2017/ Mehran Sahamif
and Chris'Piechi#



https://pixabay.com/en/jump-dog-running-spacer-animal-668948/

Announcement: Problem Set #5

Due this coming Monday,
August 7 (before class).

11 problems:

Robot package delivery Cell reception
in the wilderness

Last chance to use late days (no late
submissions accepted for PS6)



Announcements: Final exam

Two weeks from tomorrow:
Saturday, August 19, 12:15-3:15pm
Two pages (both sides) of notes

Comprehensive—material that was on the
midterm will also be tested

Review session:
Wednesday, August 16, 2:30-3:20pm
in Gates BO3



Review: Variance of a sum

The variance of a sum of random
variables is equal to the sum of pairwise
covariances (including variances and
double-counted pairs).

Var Zn:Xi =Cov Zn:Xi,Zn:Xj
ZVar( J+ 224 L Cov|X,, X,

=1 j=i+1
note: independent = Cov =

O\v/



Review: Parameter esttimation

Sometimes we don't know things like
the expectation and variance of a
distribution; we have to estimate
them from incomplete information.

¥=13 X =13 (x—x)
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Review: Sample mean

A sample mean is an average of random
variables drawn (usually independently)
from the same distribution.
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Review: Unbiased estimator

An unbiased estimator is a random
variable that has expectation equal to
the quantity you are estimating.

E[X|]=u=E[X|]




Review: Variance of the sample mean

The sample mean is a random variable; it
can differ among samples. That means it
has a variance.
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Review: Sample variance

Samples can be used to estimate the
variance of the original distribution.

S'= ! EZOL_XY

n—1i3




Review: p-values

A p-value gives the probability of an
extreme result, assuming that any
extremeness is due to chance.

p=P(|X—u|>d|H,)




Review: Bootstrapping

Bootstrapping allows you to compute
complicated statistics from samples
using simulation.

def bootstrap (sample) :

pmf = sample

means = []

for 1 in range (10000) :
sample = np.random.choilce (pmf, len(sample))
mean = np.mean (sample)
results.append (mean)

return means



1\

> <

IN

<(A 1<)

-un with inequalities

Don't require much
knowledge about the
full distribution

Super useful in proofs

Also super useful for
building cute emoticons



Bounding expectation




Markov's inequality

Knowing the expectation of a
non-negative random variable
lets you bound the probability
of high values for that variable.




Markov's inequality: Intuition

E[X]g:a




Markov's inequality: Proof

indicator variable [ =/

1 if X>a

0 otherwise

tWO cases:

1=1
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Markov & Midterm
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E|X]|=82.2

actual value:

P(X>100)<0.822 P(X>100)=0.109



Andrey Andreyevich Markov

AHOPEN AHOPEEBMY MApKOB

Russian mathematician (1856-1922)

Many CS+probability concepts (sharing
a common theme) named after him:

e Hidden Markov model

e Markov decision process
e Markov blanket

e Markov chain

N

part of the theoretical
basis for Google’s
PageRank algorithm




Chebyshev’s inequality

Knowing the expectation and variance
of a random variable lets you bound
the probability of extreme values for

that variable.




Chebyshev’s inequality: Intuition




Chebyshev’s inequality: Proof

2 w=E|X|
Y:O’(._M) %O o°=Var(X)
lysaE]  THH
P((X—M)ZZI(Z)S E[(iz_M)Z]
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Chebyshev takes the midterm

!
= E[X|=82.2

l o°=Var(X)=342.5
| il iy o=sptx=185
P(62.2<X<102.2)>1 3;(2);%0.144

actual value: P(62.2<X<102.2)~0.764



One-sided ChebysheVv's inequality




Chebyshev takes the midterm

-
uz E[X|=82.2
l o°=Var(X)=342.5
| il iy o=sptx=185
P(X>100=u+17.8) <022 -~0.519
342.5+17.8

Markov's inequality: P (XZ 100) <0.822
actual value: P (XZ 100) =0.109



Pafnuty Lvovich Chebyshev

[TadHyTUM JIbBOBMY HeObILLEB

Russian mathematician (1821-189%4)

Chebyshev’s inequality is named after
him (but actually formulated by
colleague Irénée-Jules Bienaymé)

Markov’s doctoral advisor (and
sometimes credited with first deriving
Markov’'s Inequality)




Break time!




Jensen’s inequality

The expectation of a convex function
of a random variable can't be less than
the value of the function applied to
the expectation.

E[f(X)]=f(E[X])
if f''(x)=0




Some convex functions
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Jensen’s inequality: Intuition
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Johan Ludvig William Valdemar Jensen

Danish mathematician (1859-1925)

Was an engineer in the Copenhagen
Telephone Company—did his math in
his spare time.




Johan Ludvig William Valdemar Jensen

Danish mathematician (1859-1925)

Was an engineer in the Copenhagen
Telephone Company—did his math in
his spare time.

image (bottom): Mike Mozart



Law of large numbers

A sample mean will converge
to the true mean if you take
a large enough sample.

lim P(| X —u|>¢e|=0
P(lim ()_()Zu)

n=» oo

1



Weak law of large numbers

=1 k
il
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Weak law of large numbers: Proof

E[X]:M E[X]=u  Var(X)=2-
Var(X,)=0o" o I
X:lZ v/ v e
n;_
Cﬁ
Chebyshev's inequality: 7
& P(|X—u|=e)< :
: n . _
lim > =0 SO lim P(‘X—M‘ZE):

n>owo § n=» oo



Consistent estimator

An consistent estimator is a random
variable that has a limit (as number
of samples gets large) equal to the
quantity you are estimating.

lim P(|0—6|<e)=1

n=» oo

trials



-stimating variance
Var(X)=E[(X—u)]

n

Y:%Z (Xl.—)_()z is a(n):
=1

A) Unbiased and consistent estimator

B) Biased but consistent estimator

C) Unbiased but not consistent estimator
D) Biased and not consistent estimator

https:/bit.ly/1a2ki4G — https:/b.socrative.com/login/student/
Room: CS109SUMMER1/



-stimating variance
Var(X)=E[(X—u)]

n;—

B) Biased but consistent estimator

E[Y]: l’l;l

https:/bit.ly/1a2ki4G — https:/b.socrative.com/login/student/
Room: CS109SUMMER17/
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Strong law of large numbers




-requentist probability and LLN

e P(E)zlim#(E)
n=>oo n

1 if E occurs on trial i
0 otherwise

iIndicator variables Xl-:<

=#(E)
lim [X”Xi X px ]




-requentist probability and LLN

e P(E)zlim#(E)
n=>oo n

1 if E occurs on trial i
0 otherwise

iIndicator variables Xl-:<

=#(E)
llm [X1+X2:l- T n] —P(E)




-requentist probability and LLN

e P(E)zlim#(E)
n=>oo n

1 if E occurs on trial i
0 otherwise

iIndicator variables Xl-:<

=#(E)
p lim[ d 2: i ”]_P(E) =1
n=> oo
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Law of large numbers: A history

%~ el 1/13: Jacob Bernoulli describes
gy ¥ weak law of large numbers

f W 1835: Siméon Denis Poisson coins name
A4 @ (La Loi des Grands Nombres)

1909: Emile Borel develops strong law for
- Bernoulli random variables

| 1928: Andrei Nikolaevich Kolmogorov shows
& /4 strong law only needs expectation to exist

-



Gambler’s fallacy

I))

“I'm due for a win



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 14
	Slide 16
	Slide 17
	Slide 20
	Slide 25
	Slide 28
	Slide 30
	Slide 31
	Slide 34
	Slide 39
	Slide 42
	Slide 43
	Slide 45
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 67
	Slide 68
	Slide 69
	Slide 73
	Slide 74

