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Announcement: Problem Set #5

Due this coming Monday,
August 7 (before class).

11 problems:

Robot package delivery Cell recepton
in the wilderness

Last chance to use late days (no late 
submissions accepted for PS6)



  

Announcements: Final exam

Two weeks from tomorrow:

Saturday, August 19, 12:15-3:15pm

Two pages (both sides) of notes

Comprehensive—material that was on the 
midterm will also be tested

Review session:
Wednesday, August 16, 2:30-3:20pm
in Gates B03



  

Review: Variance of a sum

The variance of a sum of random 
variables is equal to the sum of pairwise 
covariances (including variances and 
double-counted pairs).

Var(∑
i=1

n

X i)=Cov (∑
i=1

n

X i ,∑
j=1

n

X j)
=∑

i=1

n

Var ( X i )+2∑
i=1

n

∑
j=i+1

n

Cov ( X i , X j )

note: independent  Cov = 0⇒



  

Review: Parameter estmaton

Sometmes we don’t know things like 
the expectaton and variance of a 
distributon; we have to estmate 
them from incomplete informaton.

X̄=
1
n∑i=1

n

X i

θ̂=arg max
θ

LL(θ)

S2
=

1
n−1∑i=1

n

(X i− X̄ )
2

≈



  

Review: Sample mean

A sample mean is an average of random 
variables drawn (usually independently) 
from the same distributon.

X̄=
1
n∑i=1

n

X i



  

Review: Unbiased estmator

An unbiased estmator is a random 
variable that has expectaton equal to 
the quantty you are estmatng.

E [ X̄ ]=μ=E [X i]



  

Review: Variance of the sample mean

The sample mean is a random variable; it 
can difer among samples. That means it 
has a variance.

? ? ?

Var( X̄ )=σ
2

n



  

Review: Sample variance

Samples can be used to estmate the 
variance of the original distributon.

S2
=

1
n−1∑i=1

n

(X i− X̄ )
2



  

Review: p-values

A p-value gives the probability of an 
extreme result, assuming that any 
extremeness is due to chance.

p=P(|X̄−μ|>d∣H 0)



  

Review: Bootstrapping

Bootstrapping allows you to compute 
complicated statstcs from samples 
using simulaton.

def bootstrap(sample):
    pmf = sample
    means = []
    for i in range(10000):
        sample = np.random.choice(pmf, len(sample))
        mean = np.mean(sample)
        results.append(mean)
    return means



  

Fun with inequalites

≥ ‿ ≤

Don’t require much 
knowledge about the 
full distributon

Super useful in proofs

Also super useful for 
building cute emotcons

<(^_^<)
>.<



  

Bounding expectaton

P(a≤X≤∞)=1   ⇒   a≤E [X ]≤∞

P(X≥Y )=1   ⇒   E [X ]≥E [Y ]

E [X ]a

X

E [X ]
X

Y

E [Y ]

f X



  

Markov’s inequality

Knowing the expectaton of a 
non-negatve random variable 
lets you bound the probability 
of high values for that variable.

X≥0   ⇒   P(X≥a)≤
E [X ]

a



  

Markov’s inequality: Intuiton

P(X≥a)≤
E [X ]

a

E [X ]≥a⋅P(X>a)

⇔

E [X ] a



  

Markov’s inequality: Proof

X≥0   ⇒   I≤
X
a

I={1 if X≥a
0 otherwise

indicator variable

two cases: 

X≥a   ⇒   
X
a

≥1=I

X<a   ⇒   
X
a

≥0=I

E [ I ]≤E [ Xa ]
P(X≥a)≤

E [X ]

a



  

Markov & Midterm

P(X≥100)≤0.822

E [X ]=82.2
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Andrey Andreyevich Markov

Russian mathematcian (1856–1922)

Many CS+probability concepts (sharing 
a common theme) named afer him:

● Hidden Markov model
● Markov decision process
● Markov blanket
● Markov chain

Андре́й Андре́евич Ма́рков

part of the theoretcal 
basis for Google’s 
PageRank algorithm



  

Chebyshev’s inequality

Knowing the expectaton and variance 
of a random variable lets you bound 
the probability of extreme values for 
that variable.

P(|X−μ|≥k)≤σ
2

k2



  

Chebyshev’s inequality: Intuiton

P(|X−μ|≥k)≤σ
2

k2

⇔

k

σ
2
≥k2

⋅P(|X−μ|≥k)

μ



  

Chebyshev’s inequality: Proof

Y=(X−μ)
2
>0

μ=E [X ]

σ
2
=Var (X )

P(Y≥a)≤
E [Y ]

a

Markov’s inequality:

P((X−μ)
2
≥k2

)≤
E [(X−μ)

2
]

k2

=E [(X−μ)
2
]

P(|X−μ|≥k)≤σ
2

k2



  

Chebyshev takes the midterm

P(62.2≤X≤102.2)≥1−
342.5
202 ≈0.144

μ=E [X ]=82.2
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σ
2
=Var (X )=342.5

σ=SD(X )=18.5



  

One-sided Chebyshev’s inequality

P(X≥μ+a)≤ σ
2

σ
2
+a2

P(X≤μ−a)≤ σ
2

σ
2
+a2



  

Chebyshev takes the midterm

P(X≥100=μ+17.8)≤
342.5

342.5+17.82≈0.519

μ=E [X ]=82.2
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P(X≥100)=0.109

Markov’s inequality: P(X≥100)≤0.822



  

Pafnuty Lvovich Chebyshev

Russian mathematcian (1821–1894)

Chebyshev’s inequality is named afer 
him (but actually formulated by 
colleague Irénée-Jules Bienaymé)

Markov’s doctoral advisor (and 
sometmes credited with frst deriving 
Markov’s Inequality)

Пафну́тий Льво́вич Чебышёв



  

Break tme!



  

Jensen’s inequality

The expectaton of a convex functon 
of a random variable can’t be less than 
the value of the functon applied to 
the expectaton.

E [ f (X )]≥f (E [X ])

xx  2x  10  

Q

B

P

y

ba

A

if f ' ' (x)≥0



  

Some convex functons

f (x)=x2 f (x)=ex



  

Jensen’s inequality: Intuiton

E [ f (X )]

f (E [X ])



  

Johan Ludvig William Valdemar Jensen

Danish mathematcian (1859–1925)

Was an engineer in the Copenhagen 
Telephone Company—did his math in 
his spare tme.



  

Johan Ludvig William Valdemar Jensen

Danish mathematcian (1859–1925)

Was an engineer in the Copenhagen 
Telephone Company—did his math in 
his spare tme.

image (botom): Mike Mozart



  

Law of large numbers

A sample mean will converge 
to the true mean if you take 
a large enough sample.

lim
n→∞

P (|X̄−μ|≥ε )=0

P (limn→∞

( X̄ )=μ)=1



  

Weak law of large numbers

lim
n→∞

P (|X̄−μ|≥ε )=0

X̄=
1
n∑i=1

n

X i

for any ε > 0:



  

Weak law of large numbers: Proof

E [X i]=μ

Var(X i)=σ
2 ? ? ?

Var( X̄ )=σ
2

n
E [ X̄ ]=μ

Chebyshev’s inequality:

P(|X̄−μ|≥ε)≤
(σ

2

n )
ε

2

lim
n→∞

(σ
2

n )
ε

2 =0 lim
n→∞

P (|X̄−μ|≥ε )=0so

X̄=
1
n∑i=1

n

X i



  

Consistent estmator

An consistent estmator is a random 
variable that has a limit (as number 
of samples gets large) equal to the 
quantty you are estmatng.

lim
n→∞

P(|θ̂−θ|<ε)=1

1

2

3

4

5

6

0 100 200 300 400 500 600 700 800 900 1000

m
ea

n 
va

lu
e

trials

average dice value against number of rolls

average
y=3.5



  

Estmatng variance

Y=
1
n∑i=1

n

(X i− X̄ )
2

htps:ppbit.lyp1a2ki4G → htps:ppb.socratve.comploginpstudentp
Room: CS109SUMMER17

Var(X )=E [(X−μ)
2
]

is a(n):

A) Unbiased and consistent estmator
B) Biased but consistent estmator
C) Unbiased but not consistent estmator
D) Biased and not consistent estmator



  

Estmatng variance

Y=
1
n∑i=1

n

(X i− X̄ )
2

htps:ppbit.lyp1a2ki4G → htps:ppb.socratve.comploginpstudentp
Room: CS109SUMMER17

Var(X )=E [(X−μ)
2
]

is a(n):

B) Biased but consistent estmator

E [Y ]=(n−1
n )σ2   →   σ2

n→∞



  

Strong law of large numbers

P(lim
n→∞

(
X1+X 2+⋯+Xn

n )=μ)=1

P (limn→∞

( X̄ )=μ)=1

X̄=
1
n∑i=1

n

X i

i.e.:



  

Frequentst probability and LLN

P(lim
n→∞

(
X1+X 2+⋯+Xn

n )=E [X i])=1

X i={1 if E  occurs on trial i
0 otherwise

indicator variables

P(E)=lim
n→∞

# (E)

n

=#(E)



  

Frequentst probability and LLN

P(lim
n→∞

(
X1+X 2+⋯+Xn

n )=P(E))=1

X i={1 if E  occurs on trial i
0 otherwise

indicator variables

P(E)=lim
n→∞

# (E)

n

=#(E)



  

Frequentst probability and LLN

P(lim
n→∞

(
X1+X 2+⋯+Xn

n )=P(E))=1

X i={1 if E  occurs on trial i
0 otherwise

indicator variables

P(E)=lim
n→∞

# (E)

n

=#(E)

indicator variables



  

Law of large numbers: A history
1700

1800

1900

2000

1713: Jacob Bernoulli describes 
weak law of large numbers

1835: Siméon Denis Poisson coins name
(La Loi des Grands Nombres)

1909: Émile Borel develops strong law for 
Bernoulli random variables

1928: Andrei Nikolaevich Kolmogorov shows 
strong law only needs expectaton to exist



  

Gambler’s fallacy

“I’m due for a win!”
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