

Announcement: Problem Set #6

Due this Wednesday, August 16 (before class).

6 problems (#6 involves serious coding!)

Congressional voting

Heart disease diagnosis

No late days!

Announcements: Final exam

This Saturday, August 19, 12:15-3:15pm in NVIDIA Auditorium

Two pages (both sides) of notes

Comprehensive—material that was on the midterm will also be tested

Review session:

Wednesday, August 16, 2:30-3:20pm in **Huang 18 (location change!)**

Review: Classification

The most basic machine learning task: predict a **label** from a vector of **features**.

$$\hat{y} = \arg \max_{y} P(Y = y | \vec{X} = \vec{x})$$

Review: Naïve Bayes

A classification algorithm using the assumption that features are **conditionally independent** given the label.

$$\hat{y} = \arg \max_{y} \hat{P}(\mathbf{Y} = y) \prod_{j} \hat{P}(\mathbf{X}_{j} = x_{j} | \mathbf{Y} = y)$$

Review: Three secret ingredients

1. Maximum likelihood or maximum a posteriori for conditional probabilities.

$$\hat{P}(X_j = x_j | Y = y) = \frac{\#(X_j = x_j, Y = y)[+1]}{\#(Y = y)[+2]}$$

2. "Naïve Bayes assumption": features are independent conditioned on the label.

$$\hat{P}(\vec{X} = \vec{x}|Y = y) = \prod_{j} \hat{P}(X_{j} = x_{j}|Y = y)$$

3. (Take logs for numerical stability.)

Two envelopes

Y = amount in envelope chosen

$$E[W|\text{stay}] = Y$$

$$E[W|\text{switch}] = \frac{Y}{2} \cdot 0.5 + 2Y \cdot 0.5$$

$$= \frac{5}{4}Y ???$$

Two envelopes: A resolution

"I'm trying to think: how likely is it that you would have put \$40 in an envelope?

Y = y: amount in envelope chosen

$$E[W|Y=y, \text{stay}] = y \qquad \text{not necessarily 0.5!}$$

$$E[W|Y=y, \text{switch}] = \frac{y}{2} P(X=\frac{y}{2}|Y=y) + 2 y P(X=y|Y=y)$$

$$P(X=y|Y=y) = \frac{P(Y=y|X=y)P(X=y)+P(Y=y|X\neq y)P(X\neq y)}{P(Y=y|X=y)P(X=y)+P(Y=y|X\neq y)P(X\neq y)}$$

$$= \frac{0.5 P(X=y)}{0.5 P(X=y)}$$

$$= \frac{P(X=y)}{P(X=y)+P(X=y/2)}$$

$$P(X=y/2|Y=y) = 1 - P(X=y|Y=y)$$

Two envelopes: A resolution

"I'm trying to think: how likely is it that you would have put \$40 in an envelope?

Y = y: amount in envelope chosen

$$E[\mathbf{W}|\mathbf{Y}=y, \text{stay}] = y$$

$$E[\mathbf{W}|\mathbf{Y}=y, \text{switch}] = \frac{y}{2} \cdot P(\mathbf{X} = \frac{y}{2}|\mathbf{Y}=y) + 2y \cdot P(\mathbf{X}=y|\mathbf{Y}=y)$$

What if y = \$20.01?

Two envelopes: A resolution

"I'm trying to think: how likely is it that you would have put \$40 in an envelope?

Y = y: amount in envelope chosen

$$E[W|Y=y, \text{stay}] = y$$

$$E[W|Y=y, \text{switch}] = \frac{y}{2} \cdot P(X = \frac{y}{2}|Y=y) + 2y \cdot P(X=y|Y=y)$$

What if y = \$20.01?

Unless...

(the dreaded half-cent)

Unless...

1810 1/2c Classic Head Half Cent SEMI KEY DATE rare variety old type coin money

\$99.00

Buy It Now

Odds

The ratio of the probability of an event happening to the probability of it not happening:

$$o_f = \frac{P(E)}{P(E^C)} = \frac{P(E)}{1 - P(E)}$$

Probability	Odds	
1/10 1/3 1/2 2/3	1/9 1/2 1/1 2	"9:1 (against)" "2:1 (against)" "even odds" "2:1 on" / "1:2"
9/10	9	"9:1 on" / "1:9"

Odds and probability

$$P(E) = p$$

$$o_{f} = \frac{P(E)}{1 - P(E)} = \frac{p}{1 - p}$$

$$o_{f}(1 - p) = p$$

$$o_{f}(1 - p) = p$$

$$o_{f} - p o_{f} = p$$

$$o_{f} = p(o_{f} + 1)$$

$$p = \frac{o_{f}}{o_{f} + 1} = \frac{1}{1 + \frac{1}{o_{f}}}$$

Log odds

The logistic function

$$z = \log o_f$$

$$p = \frac{o_f}{o_f + 1} = \frac{1}{1 + \frac{1}{o_f}}$$

$$= \frac{1}{1 + e^{-\log(o_f)}}$$

$$= \frac{1}{1 + e^{-z}}$$

$$= \sigma(z)$$

$$\sigma(z) = \frac{1}{1 + e^{-z}}$$

Logistic regression

A classification algorithm using the assumption that **log odds** are a linear function of the features.

$$\hat{y} = \arg \max_{y} \frac{1}{1 + e^{-\vec{\theta}^T \vec{x}}}$$

Logistic regression assumption

$$P(\mathbf{Y}=\mathbf{1}|\mathbf{X}=\mathbf{x})=\sigma(\mathbf{\theta}^T\mathbf{x})=\frac{1}{1+e^{-\mathbf{\theta}^T\mathbf{x}}}$$

or in other words:

or in other words:
$$z = \log o_f \qquad \overrightarrow{\theta}^T \overrightarrow{x} = \log o_f (\mathbf{Y} = 1 | \overrightarrow{X} = \overrightarrow{x})$$

$$\overrightarrow{\theta}^T \overrightarrow{x} = \overrightarrow{\theta} \cdot \overrightarrow{x} = \theta_0 \cdot 1 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_m x_m$$

$$= \sum_{i=0}^m \theta_i x_i$$

$$(x_0 = 1)$$

Predicting 0/1 with the logistic

Logistic regression: Pseudocode

```
initialize: \theta = [0, 0, ..., 0] (m elements)
repeat many times:
     qradient = [0, 0, ..., 0] (m elements)
     for each training example (x^{(1)}, y^{(1)}):
           for j = 0 to m:
                gradient[j] += [y^{(i)} - \sigma(\vec{\theta}^T \vec{x}^{(i)})] \vec{x}_i^{(i)}
     for j = 0 to m:
           \theta[j] += \eta * gradient[j]
return 0
```

Break time!

Where's the "learning"?

$$P(Y=1|\vec{X}=\vec{x}) = \sigma(\vec{\theta}^T\vec{x})$$

all of the model's "intelligence" is in the choice of Θ

Review: How to-MLE

1. Compute the likelihood.

$$L(\theta) = P(X_1, \dots, X_n | \theta)$$

2. Take its log.

$$LL(\theta) = \log L(\theta)$$

3. Maximize this as a function of the parameters.

$$\frac{d}{d\theta}LL(\theta)=0$$

MLE for logistic regression

1. Compute the likelihood.

$$\begin{split} L(\vec{\theta}) &= P(X^{(1)}, \dots, X^{(n)}, Y^{(1)}, \dots, Y^{(n)} | \theta) \\ &= \prod_{i=1}^{n} P(X^{(i)}, Y^{(i)} | \theta) \\ &= \prod_{i=1}^{n} P(Y^{(i)} | X^{(i)}, \theta) P(X^{(i)} | \theta) \\ &= \prod_{i=1}^{n} p^{y^{(i)}} (1 - p)^{1 - y^{(i)}} P(X^{(i)}) \\ &= \prod_{i=1}^{n} \sigma(\vec{\theta}^{T} \vec{x}^{(i)})^{y^{(i)}} [1 - \sigma(\vec{\theta}^{T} \vec{x}^{(i)})]^{1 - y^{(i)}} P(X^{(i)}) \end{split}$$

MLE for logistic regression

3. Maximize this as a function of the parameters.

$$\begin{split} L(\vec{\theta}) &= \prod_{i=1}^{n} \sigma(\vec{\theta}^{T} \vec{x}^{(i)})^{y^{(i)}} [1 - \sigma(\vec{\theta}^{T} \vec{x}^{(i)})]^{1 - y^{(i)}} P(\vec{X}^{(i)}) \\ LL(\vec{\theta}) &= \sum_{i=1}^{n} \left[y^{(i)} \log \sigma(\vec{\theta}^{T} \vec{x}^{(i)}) + (1 - y^{(i)}) \log [1 - \sigma(\vec{\theta}^{T} \vec{x}^{(i)})] + \log P(\vec{X}^{(i)}) \right] \\ \frac{\partial}{\partial \theta_{j}} LL(\vec{\theta}) &= \sum_{i=1}^{n} \frac{\partial}{\partial \theta_{j}} \left[y^{(i)} \log \sigma(\vec{\theta}^{T} \vec{x}^{(i)}) + (1 - y^{(i)}) \log [1 - \sigma(\vec{\theta}^{T} \vec{x}^{(i)})] + \log P(\vec{X}^{(i)}) \right] \\ &= \sum_{i=1}^{n} \left[y^{(i)} \frac{\partial}{\partial \theta_{j}} \log \sigma(\vec{\theta}^{T} \vec{x}^{(i)}) + (1 - y^{(i)}) \frac{\partial}{\partial \theta_{j}} \log [1 - \sigma(\vec{\theta}^{T} \vec{x}^{(i)})] \right] \\ &= \sum_{i=1}^{n} \left[y^{(i)} \frac{1}{\sigma(\vec{\theta}^{T} \vec{x}^{(i)})} \frac{\partial}{\partial \theta_{j}} \sigma(\vec{\theta}^{T} \vec{x}^{(i)}) + (1 - y^{(i)}) \frac{\partial}{\partial \theta_{j}} \log [1 - \sigma(\vec{\theta}^{T} \vec{x}^{(i)})] \right] \\ &+ (1 - y^{(i)}) \frac{1}{1 - \sigma(\vec{\theta}^{T} \vec{x}^{(i)})} \frac{\partial}{\partial \theta_{j}} [1 - \sigma(\vec{\theta}^{T} \vec{x}^{(i)})] \right] \end{split}$$

Subplot: Derivative of logistic

$$\frac{\partial}{\partial z}\sigma(z) = \frac{\partial}{\partial z} \frac{1}{1+e^{-z}}$$

$$= \frac{-1}{(1+e^{-z})^2} \frac{\partial}{\partial z} (1+e^{-z})$$

$$= \frac{-1}{(1+e^{-z})^2} (-e^{-z})$$

$$= \frac{1}{1+e^{-z}} \frac{e^{-z}}{1+e^{-z}}$$

$$= \frac{1}{1+e^{-z}} \frac{(1+e^{-z})-1}{1+e^{-z}}$$

$$= \frac{1}{1+e^{-z}} (1-\frac{1}{1+e^{-z}}) = \sigma(z)[1-\sigma(z)]$$

MLE for logistic regression

3. Maximize this as a function of the parameters.

$$L(\vec{\theta}) = \prod_{i=1}^{n} \sigma(\vec{\theta}^{T} \vec{x}^{(i)})^{y^{(i)}} [1 - \sigma(\vec{\theta}^{T} \vec{x}^{(i)})]^{1 - y^{(i)}} P(\vec{X}^{(i)})$$

$$LL(\vec{\theta}) = \sum_{i=1}^{n} [y^{(i)} \log \sigma(\vec{\theta}^{T} \vec{x}^{(i)}) + (1 - y^{(i)}) \log[1 - \sigma(\vec{\theta}^{T} \vec{x}^{(i)})] + \log P(\vec{X}^{(i)})]$$

$$\frac{\partial}{\partial \theta_{j}} LL(\vec{\theta}) = \sum_{i=1}^{n} [y^{(i)} \frac{1}{\sigma(\vec{\theta}^{T} \vec{x}^{(i)})} \frac{\partial}{\partial \theta_{j}} \sigma(\vec{\theta}^{T} \vec{x}^{(i)})$$

$$+ (1 - y^{(i)}) \frac{1}{1 - \sigma(\vec{\theta}^{T} \vec{x}^{(i)})} \frac{\partial}{\partial \theta_{j}} [1 - \sigma(\vec{\theta}^{T} \vec{x}^{(i)})]$$

MLE for logistic regression

3. Maximize this as a function of the parameters.

$$\begin{split} L(\vec{\theta}) &= \prod_{i=1}^{n} \sigma(\vec{\theta}^T \vec{x}^{(i)})^{y^{(i)}} [1 - \sigma(\vec{\theta}^T \vec{x}^{(i)})]^{1 - y^{(i)}} P(X^{(i)}) \\ LL(\vec{\theta}) &= \sum_{i=1}^{n} \left[y^{(i)} \log \sigma(\vec{\theta}^T \vec{x}^{(i)}) + (1 - y^{(i)}) \log[1 - \sigma(\vec{\theta}^T \vec{x}^{(i)})] + \log P(X^{(i)}) \right] \\ \frac{\partial}{\partial \theta_j} LL(\vec{\theta}) &= \sum_{i=1}^{n} \left[y^{(i)} \frac{1}{\sigma(\vec{\theta}^T \vec{x}^{(i)})} \frac{\partial}{\partial \theta_j} \sigma(\vec{\theta}^T \vec{x}^{(i)}) \\ + (1 - y^{(i)}) \frac{1}{1 - \sigma(\vec{\theta}^T \vec{x}^{(i)})} \frac{\partial}{\partial \theta_j} [1 - \sigma(\vec{\theta}^T \vec{x}^{(i)})] \right] \\ &= \sum_{i=1}^{n} \left[y^{(i)} \frac{1}{\sigma(\vec{\theta}^T \vec{x}^{(i)})} \sigma(\vec{\theta}^T \vec{x}^{(i)}) [1 - \sigma(\vec{\theta}^T \vec{x}^{(i)})] \frac{\partial}{\partial \theta_j} (\vec{\theta}^T \vec{x}^{(i)}) \\ + (1 - y^{(i)}) \frac{1}{1 - \sigma(\vec{\theta}^T \vec{x}^{(i)})} [- \sigma(\vec{\theta}^T \vec{x}^{(i)})] [1 - \sigma(\vec{\theta}^T \vec{x}^{(i)})] \frac{\partial}{\partial \theta_j} (\vec{\theta}^T \vec{x}^{(i)}) \right] \\ &= \sum_{i=1}^{n} \left[y^{(i)} [1 - \sigma(\vec{\theta}^T \vec{x}^{(i)})] \frac{\partial}{\partial \theta_j} (\vec{\theta}^T \vec{x}^{(i)}) + (1 - y^{(i)}) [- \sigma(\vec{\theta}^T \vec{x}^{(i)})] \frac{\partial}{\partial \theta_j} (\vec{\theta}^T \vec{x}^{(i)}) \right] \\ \end{split}$$

Subplot 2: Derivative of dot product

$$\frac{\partial}{\partial \theta_{j}} (\vec{\theta}^{T} \vec{x}^{(i)}) = \frac{\partial}{\partial \theta_{j}} (\theta_{0} \cdot 1 + \theta_{1} x_{1} + \theta_{2} x_{2} + \dots + \theta_{m} x_{m})$$

$$= x_{j}$$

MLE for logistic regression

3. Maximize this as a function of the parameters.

$$\begin{split} L(\vec{\theta}) &= \prod_{i=1}^{n} \sigma(\vec{\theta}^{T} \vec{x}^{(i)})^{y^{(i)}} [1 - \sigma(\vec{\theta}^{T} \vec{x}^{(i)})]^{1 - y^{(i)}} P(X^{(i)}) \\ LL(\vec{\theta}) &= \sum_{i=1}^{n} \left[y^{(i)} \log \sigma(\vec{\theta}^{T} \vec{x}^{(i)}) + (1 - y^{(i)}) \log [1 - \sigma(\vec{\theta}^{T} \vec{x}^{(i)})] + \log P(X^{(i)}) \right] \\ \frac{\partial}{\partial \theta_{j}} LL(\vec{\theta}) &= \\ \sum_{i=1}^{n} \left[y^{(i)} [1 - \sigma(\vec{\theta}^{T} \vec{x}^{(i)})] \frac{\partial}{\partial \theta_{j}} (\vec{\theta}^{T} \vec{x}^{(i)}) + (1 - y^{(i)}) [-\sigma(\vec{\theta}^{T} \vec{x}^{(i)})] \frac{\partial}{\partial \theta_{j}} (\vec{\theta}^{T} \vec{x}^{(i)}) \right] \\ &= \sum_{i=1}^{n} \left[y^{(i)} [1 - \sigma(\vec{\theta}^{T} \vec{x}^{(i)})] \vec{x}_{j}^{(i)} + (1 - y^{(i)}) [-\sigma(\vec{\theta}^{T} \vec{x}^{(i)})] \vec{x}_{j}^{(i)} \right] \\ &= \sum_{i=1}^{n} \left[y^{(i)} - y^{(i)} \sigma(\vec{\theta}^{T} \vec{x}^{(i)}) - \sigma(\vec{\theta}^{T} \vec{x}^{(i)}) + y^{(i)} \sigma(\vec{\theta}^{T} \vec{x}^{(i)}) \right] \vec{x}_{j}^{(i)} \\ &= \sum_{i=1}^{n} \left[y^{(i)} - \sigma(\vec{\theta}^{T} \vec{x}^{(i)}) \right] \vec{x}_{j}^{(i)} = 0 \qquad ??? \end{split}$$

Derivatives the easier way

$$\frac{\partial}{\partial \theta_{j}} LL(\vec{\theta}) = \sum_{i=1}^{n} \frac{\partial}{\partial \theta_{j}} \left[y^{(i)} \log \sigma(\vec{\theta}^{T} \vec{x}^{(i)}) + (1 - y^{(i)}) \log \left[1 - \sigma(\vec{\theta}^{T} \vec{x}^{(i)}) \right] \right]$$

$$= \sum_{i=1}^{n} \frac{\partial}{\partial \theta_{j}} \left[y^{(i)} \log p + (1 - y^{(i)}) \log (1 - p) \right]$$

$$= \sum_{i=1}^{n} \left[y^{(i)} \frac{\partial}{\partial \theta_{j}} \log p + (1 - y^{(i)}) \frac{\partial}{\partial \theta_{j}} \log (1 - p) \right]$$

$$= \sum_{i=1}^{n} \left[y^{(i)} \frac{1}{p} \frac{\partial p}{\partial \theta_{j}} + (1 - y^{(i)}) \frac{1}{1 - p} \frac{\partial p}{\partial \theta_{j}} \right]$$

$$= \sum_{i=1}^{n} \left[y^{(i)} \frac{1}{p} - (1 - y^{(i)}) \frac{1}{1 - p} \right] \sigma(z) \left[1 - \sigma(z) \right] \frac{\partial z}{\partial \theta_{j}}$$

$$= \sum_{i=1}^{n} \left[y^{(i)} \frac{1}{p} - (1 - y^{(i)}) \frac{1}{1 - p} \right] p(1 - p) x_{j}^{(i)}$$

$$= \sum_{i=1}^{n} \left[y^{(i)} (1 - p) - (1 - y^{(i)}) p \right] x_{j}^{(i)}$$

$$= \sum_{i=1}^{n} \left[y^{(i)} - y^{(i)} p - p + y^{(i)} p \right] x_{j}^{(i)} = \sum_{i=1}^{n} \left[y^{(i)} - p \right] x_{j}^{(i)}$$

Gradient ascent

An algorithm for computing an arg max by taking small steps uphill (i.e., in the direction of the gradient of the function).

Gradient (a review)

$$\nabla_{\vec{\theta}} f(\vec{\theta}) = \begin{bmatrix} \frac{\partial f}{\partial \theta_1} \\ \frac{\partial f}{\partial \theta_2} \\ \vdots \\ \frac{\partial f}{\partial \theta_m} \end{bmatrix}$$

A derivative points uphill

A gradient points uphill

image: Simiprof

Logistic regression: Pseudocode

```
initialize: θ = [0, 0, ..., 0] (m elements)
repeat many times:
```

move θ a small amount "uphill"

gives you a local maximum

Logistic regression: Pseudocode

```
initialize: \theta = [0, 0, ..., 0] (m elements)
```

repeat many times:

compute gradient[j] =
$$\frac{\partial}{\partial \theta_{i}} LL(\vec{\theta})$$

gives you a local maximum (if η is small enough!)

Logistic regression: Pseudocode

```
initialize: \theta = [0, 0, ..., 0] (m elements)
repeat many times:
     qradient = [0, 0, ..., 0] (m elements)
     for each training example (x^{(1)}, y^{(1)}):
           add \frac{\partial}{\partial \theta_i} LL_{x^{(i)}}(\vec{\theta}) to each gradient[j]
     for j = 0 to m:
           \theta[j] += \eta * gradient[j]
return 0
```

Logistic regression: Pseudocode

```
initialize: \theta = [0, 0, ..., 0] (m elements)
repeat many times:
     qradient = [0, 0, ..., 0] (m elements)
     for each training example (x^{(1)}, y^{(1)}):
          for j = 0 to m:
                gradient[j] += [y^{(i)} - \sigma(\vec{\theta}^T \vec{x}^{(i)})] x_i^{(i)}
     for j = 0 to m:
          \theta[j] += \eta * gradient[j]
return 0
```

Your brain on logistic regression

dendrites:
take a weighted sum
of incoming stimuli
with electric potential

axon:
carries outgoing
pulse if potential
exceeds a threshold

Caution: Just a (greatly simplified) model! All models are wrong—but some are useful...