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Announcement: Problem Set #6

Due this Wednesday,
August 16 (before class).

6 problems
(#6 involves serious coding!)

Congressional votng

No late days!

Heart disease
diagnosis



  

Announcements: Final exam

This Saturday, August 19, 12:15-3:15pm
in NVIDIA Auditorium

Two pages (both sides) of notes

Comprehensive—material that was on the 
midterm will also be tested

Review session:
Wednesday, August 16, 2:30-3:20pm
in Huang 18 (locaton change!)



  

Review: Classifcaton

The most basic machine learning task: 
predict a label from a vector of features.

ŷ=arg max
y

P(Y= y∣X⃗= x⃗)

x(1)

x(2)

x(3)

y(1)
=DOG

y(3)
=DOG

y(3)
=CAT



  

Review: Naïve Bayes

A classifcaton algorithm using 
the assumpton that features 
are conditonally independent 
given the label.

ŷ=arg max
y

P̂ (Y= y)∏
j

P̂(X j=x j∣Y= y)

images: (lef) Virginia State Parks; (right) Renee Comet

https://www.flickr.com/photos/vastateparksstaff/30837143230
https://commons.wikimedia.org/wiki/File:Ham_(4).jpg


  

Review: Three secret ingredients

1. Maximum likelihood or maximum a 
posteriori for conditonal probabilites.

2. “Naïve Bayes assumpton”: features are 
independent conditoned on the label.

3. (Take logs for numerical stability.)

P̂( X⃗= x⃗∣Y= y)=∏
j

P̂(X j=x j∣Y= y)

P̂(X j=x j∣Y= y)=
#(X j=x j ,Y= y)[+1]

#(Y= y)[+2]



  

Two envelopes

$X $2X

E [W∣stay ]=Y

Y = amount in envelope chosen

E [W∣switch ]=
Y
2
⋅0.5+2Y⋅0.5

=
5
4
Y ???



  

Two envelopes: A resoluton

$X $2X

“I’m trying to think: how likely 
is it that you would have put 

$40 in an envelope?

E [W∣Y= y , stay ]= y

Y = y: amount in envelope chosen

E [W∣Y= y , switch ]=
y
2
⋅P (X=

y
2
∣Y= y)+2 y⋅P(X= y∣Y= y)

not necessarily 0.5!

P(X= y∣Y= y)=
P (Y= y∣X= y)P(X= y)

P(Y= y∣X= y)P (X= y)+P (Y= y∣X≠ y)P(X≠ y)

=
0.5 P(X= y)

0.5 P (X= y)+0.5 P(X= y /2)

=
P(X= y)

P (X= y)+P (X= y /2)

prior

P(X= y /2∣Y= y)=1−P (X= y∣Y= y)



  

Two envelopes: A resoluton

$X $2X

“I’m trying to think: how likely 
is it that you would have put 

$40 in an envelope?

E [W∣Y= y , stay ]= y

Y = y: amount in envelope chosen

E [W∣Y= y , switch ]=
y
2
⋅P (X=

y
2
∣Y= y)+2 y⋅P(X= y∣Y= y)

What if y = $20.01?



  

Two envelopes: A resoluton

$X $2X

“I’m trying to think: how likely 
is it that you would have put 

$40 in an envelope?

E [W∣Y= y , stay ]= y

Y = y: amount in envelope chosen

E [W∣Y= y , switch ]=
y
2
⋅P (X=

y
2
∣Y= y)+2 y⋅P(X= y∣Y= y)

What if y = $20.01?



  

Unless...

(the dreaded half-cent)



  

Unless...

(ebay.com)



  

Odds

of=
P(E)

P(EC
)
=

P(E)

1−P(E)

The rato of the probability of 
an event happening to the 
probability of it not happening:

Probability

1/10
1/3
1/2
2/3

9/10

Odds

1/9
1/2
1/1
2
9

“9:1 (against)”
“2:1 (against)”
“even odds”

“2:1 on” / “1:2”
“9:1 on” / “1:9”



  

Odds and probability

of=
P(E)

1−P(E)
=

p
1−p

P(E)=p

of (1−p)=p
of−pof=p

of=p(o f+1)

p=
o f

of+1
=

1

1+
1
o f



  

Log odds

of=
p

1−p

p=P(E)

z=log2of
0

1
1
2

1
2

1
3

1
5
1
4

1
8

1
16

1
9

1
17

2 4 8 16

2
3

4
5

8
9

16
17

1 2 3 4−4 −3 −2 −1

base 2 for simplicity—
on this slide only!

all real numbers

all probabilites
(except 0 and 1)



  

The logistc functon

σ(z)=
1

1+e−z

z

z=logof

p=
o f

of+1
=

1

1+
1
o f

=
1

1+e−log (o f )

=
1

1+e−z

=σ(z)



  

Logistc regression

A classifcaton algorithm using the 
assumpton that log odds are a 
linear functon of the features.

ŷ=arg max
y

1

1+e−θ⃗
T x⃗



  

Logistc regression assumpton

P(Y=1∣X⃗= x⃗)=σ(θ⃗
T x⃗)=

1

1+e−θ⃗
T x⃗

θ⃗
T x⃗=log of (Y=1∣X⃗= x⃗)

or in other words:

z=logof

p=σ(z)

θ⃗
T x⃗=θ⃗⋅⃗x=θ0⋅1+θ1 x1+θ2 x2+⋯+θm xm

=∑
i=0

m

θi xi

(x0=1)



  

Predictng 0/1 with the logistc

σ(z)=
1

1+e−z

z

https://www.ebay.com/sch/i.html?_nkw=half+cent


  

Logistc regression: Pseudocode

initialize: θ = [0, 0, …, 0]  (m elements)

repeat many times:
    gradient = [0, 0, …, 0]  (m elements)

    for each training example (x(i), y(i)):
        for j = 0 to m:
            
            gradient[j] += 

    for j = 0 to m:
        θ[j] += η * gradient[j]

return θ

[ y(i)
−σ(θ⃗

T x⃗(i)
)] x⃗ j

(i)



  

Break tme!



  

Where’s the “learning”?

P(Y=1∣X⃗= x⃗)=σ(θ⃗
T x⃗)

all of the model’s “intelligence” 
is in the choice of θ



  

Review: How to—MLE

1. Compute the likelihood.

2. Take its log.

3. Maximize this as a functon of the parameters.

L(θ)=P(X1 ,…, X n∣θ)

LL(θ)=log L(θ)

x 0

x 1

x 2

x 3
x 4

*

*

d
d θ

LL(θ)=0



  

MLE for logistc regression
1. Compute the likelihood.

L(θ⃗)=P(X(1) ,…, X(n) ,Y (1) ,…,Y (n)
∣θ)

=∏
i=1

n

P(X (i) ,Y (i)
∣θ)

=∏
i=1

n

P(Y (i)
∣X (i) ,θ)P(X(i)

∣θ)

=∏
i=1

n

σ(θ⃗
T x⃗(i)

)
y(i)

[1−σ(θ⃗
T x⃗(i)

)]
1− y(i)

P(X (i)
)

=∏
i=1

n

p y(i)

(1−p)1− y(i)

P(X(i)
)



  

MLE for logistc regression
3. Maximize this as a functon of the parameters.

∂
∂θ j

LL(θ⃗)=∑
i=1

n
∂

∂θ j
[ y(i) logσ(θ⃗

T x⃗(i)
)+(1− y(i)

) log [1−σ(θ⃗
T x⃗(i)

)]+ log P (X (i)
)]

L(θ⃗)=∏
i=1

n

σ(θ⃗
T x⃗(i)

)
y(i)

[1−σ(θ⃗
T x⃗(i)

)]
1− y(i)

P (X(i)
)

LL(θ⃗)=∑
i=1

n

[ y(i) logσ(θ⃗
T x⃗(i)

)+(1− y(i)
) log [1−σ(θ⃗

T x⃗(i)
)]+ log P (X(i)

)]

=∑
i=1

n

[ y
(i) ∂

∂θ j
logσ(θ⃗

T x⃗(i)
)+(1− y(i)

) ∂
∂θ j

log [1−σ(θ⃗
T x⃗(i)

)]]
=∑

i=1

n

[ y(i) 1

σ(θ⃗
T x⃗(i)

)

∂
∂θ j

σ(θ⃗
T x⃗(i)

)

+(1− y(i)
)

1

1−σ(θ⃗
T x⃗(i)

)

∂
∂θ j

[1−σ(θ⃗
T x⃗(i)

)]]



  

Subplot: Derivatve of logistc
∂
∂ z

σ(z)= ∂
∂ z

1
1+e−z

=
−1

(1+e−z
)

2
∂
∂ z

(1+e−z
)

=
−1

(1+e−z
)

2 (−e−z
)

=
1

1+e−z

e−z

1+e−z

=
1

1+e−z

(1+e−z
)−1

1+e−z

=
1

1+e−z (1−
1

1+e−z )=σ(z)[1−σ(z)]



  

MLE for logistc regression
3. Maximize this as a functon of the parameters.

∂
∂θ j

LL(θ⃗)=∑
i=1

n

[ y(i) 1

σ(θ⃗
T x⃗( i)

)

∂
∂θ j

σ(θ⃗
T x⃗(i)

)

L(θ⃗)=∏
i=1

n

σ(θ⃗
T x⃗(i)

)
y(i)

[1−σ(θ⃗
T x⃗(i)

)]
1− y(i)

P (X(i)
)

LL(θ⃗)=∑
i=1

n

[ y(i) logσ(θ⃗
T x⃗(i)

)+(1− y(i)
) log [1−σ(θ⃗

T x⃗(i)
)]+ log P (X(i)

)]

+(1− y(i)
)

1

1−σ(θ⃗
T x⃗(i)

)

∂
∂θ j

[1−σ(θ⃗
T x⃗(i)

)]]



  

MLE for logistc regression
3. Maximize this as a functon of the parameters.

∂
∂θ j

LL(θ⃗)=∑
i=1

n

[ y(i) 1

σ(θ⃗
T x⃗( i)

)

∂
∂θ j

σ(θ⃗
T x⃗(i)

)

L(θ⃗)=∏
i=1

n

σ(θ⃗
T x⃗(i)

)
y(i)

[1−σ(θ⃗
T x⃗(i)

)]
1− y(i)

P (X(i)
)

LL(θ⃗)=∑
i=1

n

[ y(i) logσ(θ⃗
T x⃗(i)

)+(1− y(i)
) log [1−σ(θ⃗

T x⃗(i)
)]+ log P (X(i)

)]

+(1− y(i)
)

1

1−σ(θ⃗
T x⃗(i)

)

∂
∂θ j

[1−σ(θ⃗
T x⃗(i)

)]]
=∑

i=1

n

[ y(i) 1

σ(θ⃗
T x⃗(i)

)
σ(θ⃗

T x⃗(i)
)[1−σ(θ⃗

T x⃗(i)
)] ∂

∂θ j
(θ⃗

T x⃗(i)
)

+(1− y(i)
)

1

1−σ(θ⃗
T x⃗(i)

)
[−σ(θ⃗

T x⃗(i)
)][1−σ(θ⃗

T x⃗(i)
)] ∂

∂θ j
(θ⃗

T x⃗( i)
)]

=∑
i=1

n

[ y
(i)
[1−σ(θ⃗

T x⃗(i)
)] ∂

∂θ j
(θ⃗

T x⃗(i)
)+(1− y(i)

)[−σ(θ⃗
T x⃗(i)

)] ∂
∂θ j

(θ⃗
T x⃗(i)

)]



  

Subplot 2: Derivatve of dot product

∂
∂θ j

(θ⃗
T x⃗(i)

)= ∂
∂θ j

(θ0⋅1+θ1 x1+θ2 x2+⋯+θm xm)

=x j



  

MLE for logistc regression
3. Maximize this as a functon of the parameters.

∂
∂θ j

LL(θ⃗)=

L(θ⃗)=∏
i=1

n

σ(θ⃗
T x⃗(i)

)
y(i)

[1−σ(θ⃗
T x⃗(i)

)]
1− y(i)

P (X(i)
)

LL(θ⃗)=∑
i=1

n

[ y(i) logσ(θ⃗
T x⃗(i)

)+(1− y(i)
) log [1−σ(θ⃗

T x⃗(i)
)]+ log P (X(i)

)]

∑
i=1

n

[ y
(i)
[1−σ(θ⃗

T x⃗(i)
)] ∂

∂θ j
(θ⃗

T x⃗(i)
)+(1− y(i)

)[−σ(θ⃗
T x⃗(i)

)] ∂
∂θ j

(θ⃗
T x⃗(i)

)]
=∑

i=1

n

[ y(i)
[1−σ(θ⃗

T x⃗(i)
)] x⃗ j

(i)
+(1− y(i)

)[−σ(θ⃗
T x⃗(i)

)] x⃗ j
(i)]

=∑
i=1

n

[ y(i)
− y(i)

σ(θ⃗
T x⃗(i)

)−σ(θ⃗
T x⃗(i)

)+ y(i)
σ(θ⃗

T x⃗(i)
)] x⃗ j

(i)

=∑
i=1

n

[ y(i)
−σ(θ⃗

T x⃗(i)
)] x⃗ j

(i)
=0 ???



  

Derivatves the easier way
∂

∂θ j
LL(θ⃗)=∑

i=1

n
∂

∂θ j
[ y(i) logσ(θ⃗

T x⃗(i)
)+(1− y(i)

) log [1−σ(θ⃗
T x⃗(i)

)] ]

=∑
i=1

n
∂

∂θ j
[ y(i) log p+(1− y(i)

) log(1−p) ]p=σ(z)

z=θ⃗
T x⃗(i)

=∑
i=1

n

[ y
(i) ∂

∂θ j
log p+(1− y(i)

) ∂
∂θ j

log (1−p)]
=∑

i=1

n

[ y(i) 1
p

∂ p
∂θ j

+(1− y(i)
)

−1
1−p

∂ p
∂θ j ]

=∑
i=1

n

[ y(i) 1
p
−(1− y(i)

)
1

1−p ]σ(z)[1−σ(z)]
∂ z
∂θ j

=∑
i=1

n

[ y(i) 1
p
−(1− y(i)

)
1

1−p ] p(1−p)x j
(i)

=∑
i=1

n

[ y(i)
(1−p)−(1− y(i)

) p ] x j
(i)

=∑
i=1

n

[ y(i)
− y(i) p−p+ y(i) p ] x j

(i)
=∑

i=1

n

[ y(i)
−p ] x j

(i)



  

Gradient ascent

An algorithm for computng an  
arg max by taking small steps 
uphill (i.e., in the directon of the 
gradient of the functon).

θ⃗← θ⃗+η⋅∇ θ⃗ f (θ⃗)

x 0

x 1

x 2

x 3
x 4

*

*



  

Gradient (a review)

∇ θ⃗ f (θ⃗)=[
∂ f
∂θ1

∂ f
∂θ2

⋮
∂ f
∂θm

]



  

A derivatve points uphill



  

A gradient points uphill

image: Simiprof



  

Logistc regression: Pseudocode

initialize: θ = [0, 0, …, 0]  (m elements)

repeat many times:
    gradient = [0, 0, …, 0]  (m elements)

    for each training example (x(i), y(i)):
        for j = 0 to m:
            
            gradient[j] += 

    for j = 0 to m:
        θ[j] += η * gradient[j]

return θ

[ y(i)
−σ(θ⃗

T x⃗(i)
)] x⃗ j

(i)
move θ a small amount “uphill”

gives you a local maximum



  

Logistc regression: Pseudocode

initialize: θ = [0, 0, …, 0]  (m elements)

repeat many times:
    gradient = [0, 0, …, 0]  (m elements)

    for each training example (x(i), y(i)):
        for j = 0 to m:
            
            gradient[j] += 

    for j = 0 to m:
        θ[j] += η * gradient[j]

return θ

[ y(i)
−σ(θ⃗

T x⃗(i)
)] x⃗ j

(i)

compute gradient[j] = ∂
∂θ j

LL(θ⃗)

gives you a local maximum
(if η is small enough!)

η = “learning rate”



  

The curse of the large step size



  

The curse of the large step size



  

The curse of the large step size



  

The curse of the large step size



  

Logistc regression: Pseudocode

initialize: θ = [0, 0, …, 0]  (m elements)

repeat many times:
    gradient = [0, 0, …, 0]  (m elements)

    for each training example (x(i), y(i)):
        for j = 0 to m:
            
            gradient[j] += 

    for j = 0 to m:
        θ[j] += η * gradient[j]

return θ

[ y(i)
−σ(θ⃗

T x⃗(i)
)] x⃗ j

(i)
add           to each gradient[j]∂

∂θ j
LL

x( i)(θ⃗)



  

Logistc regression: Pseudocode

initialize: θ = [0, 0, …, 0]  (m elements)

repeat many times:
    gradient = [0, 0, …, 0]  (m elements)

    for each training example (x(i), y(i)):
        for j = 0 to m:
            
            gradient[j] += 

    for j = 0 to m:
        θ[j] += η * gradient[j]

return θ

[ y(i)
−σ(θ⃗

T x⃗(i)
)] x j

( i)



  

Your brain on logistc regression

dendrites:
take a weighted sum 
of incoming stmuli

with electric potental

axon:
carries outgoing 
pulse if potental 

exceeds a threshold

Cauton: Just a (greatly simplifed) 
model! All models are wrong—but 
some are useful...

p=σ(z)

z=θ⃗
T x⃗(i)
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