

Logistc RegressionLogistc Regression

Will MonroeWill Monroe
August 14, 2017August 14, 2017

with materials bywith materials by
Mehran SahamiMehran Sahami
and Chris Piechand Chris Piech

image: image: Colin BehrensColin Behrens

https://pixabay.com/en/nerve-cell-neuron-brain-neurons-2213009/

Announcement: Problem Set #6

Due this Wednesday,
August 16 (before class).

6 problems
(#6 involves serious coding!)

Congressional votng

No late days!

Heart disease
diagnosis

Announcements: Final exam

This Saturday, August 19, 12:15-3:15pm
in NVIDIA Auditorium

Two pages (both sides) of notes

Comprehensive—material that was on the
midterm will also be tested

Review session:
Wednesday, August 16, 2:30-3:20pm
in Huang 18 (locaton change!)

Review: Classifcaton

The most basic machine learning task:
predict a label from a vector of features.

ŷ=arg max
y

P(Y= y∣X⃗= x⃗)

x(1)

x(2)

x(3)

y(1)
=DOG

y(3)
=DOG

y(3)
=CAT

Review: Naïve Bayes

A classifcaton algorithm using
the assumpton that features
are conditonally independent
given the label.

ŷ=arg max
y

P̂ (Y= y)∏
j

P̂(X j=x j∣Y= y)

images: (lef) Virginia State Parks; (right) Renee Comet

https://www.flickr.com/photos/vastateparksstaff/30837143230
https://commons.wikimedia.org/wiki/File:Ham_(4).jpg

Review: Three secret ingredients

1. Maximum likelihood or maximum a
posteriori for conditonal probabilites.

2. “Naïve Bayes assumpton”: features are
independent conditoned on the label.

3. (Take logs for numerical stability.)

P̂(X⃗= x⃗∣Y= y)=∏
j

P̂(X j=x j∣Y= y)

P̂(X j=x j∣Y= y)=
#(X j=x j ,Y= y)[+1]

#(Y= y)[+2]

Two envelopes

$X $2X

E [W∣stay]=Y

Y = amount in envelope chosen

E [W∣switch]=
Y
2
⋅0.5+2Y⋅0.5

=
5
4
Y ???

Two envelopes: A resoluton

$X $2X

“I’m trying to think: how likely
is it that you would have put

$40 in an envelope?

E [W∣Y= y , stay]= y

Y = y: amount in envelope chosen

E [W∣Y= y , switch]=
y
2
⋅P (X=

y
2
∣Y= y)+2 y⋅P(X= y∣Y= y)

not necessarily 0.5!

P(X= y∣Y= y)=
P (Y= y∣X= y)P(X= y)

P(Y= y∣X= y)P (X= y)+P (Y= y∣X≠ y)P(X≠ y)

=
0.5 P(X= y)

0.5 P (X= y)+0.5 P(X= y /2)

=
P(X= y)

P (X= y)+P (X= y /2)

prior

P(X= y /2∣Y= y)=1−P (X= y∣Y= y)

Two envelopes: A resoluton

$X $2X

“I’m trying to think: how likely
is it that you would have put

$40 in an envelope?

E [W∣Y= y , stay]= y

Y = y: amount in envelope chosen

E [W∣Y= y , switch]=
y
2
⋅P (X=

y
2
∣Y= y)+2 y⋅P(X= y∣Y= y)

What if y = $20.01?

Two envelopes: A resoluton

$X $2X

“I’m trying to think: how likely
is it that you would have put

$40 in an envelope?

E [W∣Y= y , stay]= y

Y = y: amount in envelope chosen

E [W∣Y= y , switch]=
y
2
⋅P (X=

y
2
∣Y= y)+2 y⋅P(X= y∣Y= y)

What if y = $20.01?

Unless...

(the dreaded half-cent)

Unless...

(ebay.com)

Odds

of=
P(E)

P(EC
)
=

P(E)

1−P(E)

The rato of the probability of
an event happening to the
probability of it not happening:

Probability

1/10
1/3
1/2
2/3

9/10

Odds

1/9
1/2
1/1
2
9

“9:1 (against)”
“2:1 (against)”
“even odds”

“2:1 on” / “1:2”
“9:1 on” / “1:9”

Odds and probability

of=
P(E)

1−P(E)
=

p
1−p

P(E)=p

of (1−p)=p
of−pof=p

of=p(o f+1)

p=
o f

of+1
=

1

1+
1
o f

Log odds

of=
p

1−p

p=P(E)

z=log2of
0

1
1
2

1
2

1
3

1
5
1
4

1
8

1
16

1
9

1
17

2 4 8 16

2
3

4
5

8
9

16
17

1 2 3 4−4 −3 −2 −1

base 2 for simplicity—
on this slide only!

all real numbers

all probabilites
(except 0 and 1)

The logistc functon

σ(z)=
1

1+e−z

z

z=logof

p=
o f

of+1
=

1

1+
1
o f

=
1

1+e−log (o f)

=
1

1+e−z

=σ(z)

Logistc regression

A classifcaton algorithm using the
assumpton that log odds are a
linear functon of the features.

ŷ=arg max
y

1

1+e−θ⃗
T x⃗

Logistc regression assumpton

P(Y=1∣X⃗= x⃗)=σ(θ⃗
T x⃗)=

1

1+e−θ⃗
T x⃗

θ⃗
T x⃗=log of (Y=1∣X⃗= x⃗)

or in other words:

z=logof

p=σ(z)

θ⃗
T x⃗=θ⃗⋅⃗x=θ0⋅1+θ1 x1+θ2 x2+⋯+θm xm

=∑
i=0

m

θi xi

(x0=1)

Predictng 0/1 with the logistc

σ(z)=
1

1+e−z

z

https://www.ebay.com/sch/i.html?_nkw=half+cent

Logistc regression: Pseudocode

initialize: θ = [0, 0, …, 0] (m elements)

repeat many times:
 gradient = [0, 0, …, 0] (m elements)

 for each training example (x(i), y(i)):
 for j = 0 to m:

 gradient[j] +=

 for j = 0 to m:
 θ[j] += η * gradient[j]

return θ

[y(i)
−σ(θ⃗

T x⃗(i)
)] x⃗ j

(i)

Break tme!

Where’s the “learning”?

P(Y=1∣X⃗= x⃗)=σ(θ⃗
T x⃗)

all of the model’s “intelligence”
is in the choice of θ

Review: How to—MLE

1. Compute the likelihood.

2. Take its log.

3. Maximize this as a functon of the parameters.

L(θ)=P(X1 ,…, X n∣θ)

LL(θ)=log L(θ)

x 0

x 1

x 2

x 3
x 4

*

*

d
d θ

LL(θ)=0

MLE for logistc regression
1. Compute the likelihood.

L(θ⃗)=P(X(1) ,…, X(n) ,Y (1) ,…,Y (n)
∣θ)

=∏
i=1

n

P(X (i) ,Y (i)
∣θ)

=∏
i=1

n

P(Y (i)
∣X (i) ,θ)P(X(i)

∣θ)

=∏
i=1

n

σ(θ⃗
T x⃗(i)

)
y(i)

[1−σ(θ⃗
T x⃗(i)

)]
1− y(i)

P(X (i)
)

=∏
i=1

n

p y(i)

(1−p)1− y(i)

P(X(i)
)

MLE for logistc regression
3. Maximize this as a functon of the parameters.

∂
∂θ j

LL(θ⃗)=∑
i=1

n
∂

∂θ j
[y(i) logσ(θ⃗

T x⃗(i)
)+(1− y(i)

) log [1−σ(θ⃗
T x⃗(i)

)]+ log P (X (i)
)]

L(θ⃗)=∏
i=1

n

σ(θ⃗
T x⃗(i)

)
y(i)

[1−σ(θ⃗
T x⃗(i)

)]
1− y(i)

P (X(i)
)

LL(θ⃗)=∑
i=1

n

[y(i) logσ(θ⃗
T x⃗(i)

)+(1− y(i)
) log [1−σ(θ⃗

T x⃗(i)
)]+ log P (X(i)

)]

=∑
i=1

n

[y
(i) ∂

∂θ j
logσ(θ⃗

T x⃗(i)
)+(1− y(i)

) ∂
∂θ j

log [1−σ(θ⃗
T x⃗(i)

)]]
=∑

i=1

n

[y(i) 1

σ(θ⃗
T x⃗(i)

)

∂
∂θ j

σ(θ⃗
T x⃗(i)

)

+(1− y(i)
)

1

1−σ(θ⃗
T x⃗(i)

)

∂
∂θ j

[1−σ(θ⃗
T x⃗(i)

)]]

Subplot: Derivatve of logistc
∂
∂ z

σ(z)= ∂
∂ z

1
1+e−z

=
−1

(1+e−z
)

2
∂
∂ z

(1+e−z
)

=
−1

(1+e−z
)

2 (−e−z
)

=
1

1+e−z

e−z

1+e−z

=
1

1+e−z

(1+e−z
)−1

1+e−z

=
1

1+e−z (1−
1

1+e−z)=σ(z)[1−σ(z)]

MLE for logistc regression
3. Maximize this as a functon of the parameters.

∂
∂θ j

LL(θ⃗)=∑
i=1

n

[y(i) 1

σ(θ⃗
T x⃗(i)

)

∂
∂θ j

σ(θ⃗
T x⃗(i)

)

L(θ⃗)=∏
i=1

n

σ(θ⃗
T x⃗(i)

)
y(i)

[1−σ(θ⃗
T x⃗(i)

)]
1− y(i)

P (X(i)
)

LL(θ⃗)=∑
i=1

n

[y(i) logσ(θ⃗
T x⃗(i)

)+(1− y(i)
) log [1−σ(θ⃗

T x⃗(i)
)]+ log P (X(i)

)]

+(1− y(i)
)

1

1−σ(θ⃗
T x⃗(i)

)

∂
∂θ j

[1−σ(θ⃗
T x⃗(i)

)]]

MLE for logistc regression
3. Maximize this as a functon of the parameters.

∂
∂θ j

LL(θ⃗)=∑
i=1

n

[y(i) 1

σ(θ⃗
T x⃗(i)

)

∂
∂θ j

σ(θ⃗
T x⃗(i)

)

L(θ⃗)=∏
i=1

n

σ(θ⃗
T x⃗(i)

)
y(i)

[1−σ(θ⃗
T x⃗(i)

)]
1− y(i)

P (X(i)
)

LL(θ⃗)=∑
i=1

n

[y(i) logσ(θ⃗
T x⃗(i)

)+(1− y(i)
) log [1−σ(θ⃗

T x⃗(i)
)]+ log P (X(i)

)]

+(1− y(i)
)

1

1−σ(θ⃗
T x⃗(i)

)

∂
∂θ j

[1−σ(θ⃗
T x⃗(i)

)]]
=∑

i=1

n

[y(i) 1

σ(θ⃗
T x⃗(i)

)
σ(θ⃗

T x⃗(i)
)[1−σ(θ⃗

T x⃗(i)
)] ∂

∂θ j
(θ⃗

T x⃗(i)
)

+(1− y(i)
)

1

1−σ(θ⃗
T x⃗(i)

)
[−σ(θ⃗

T x⃗(i)
)][1−σ(θ⃗

T x⃗(i)
)] ∂

∂θ j
(θ⃗

T x⃗(i)
)]

=∑
i=1

n

[y
(i)
[1−σ(θ⃗

T x⃗(i)
)] ∂

∂θ j
(θ⃗

T x⃗(i)
)+(1− y(i)

)[−σ(θ⃗
T x⃗(i)

)] ∂
∂θ j

(θ⃗
T x⃗(i)

)]

Subplot 2: Derivatve of dot product

∂
∂θ j

(θ⃗
T x⃗(i)

)= ∂
∂θ j

(θ0⋅1+θ1 x1+θ2 x2+⋯+θm xm)

=x j

MLE for logistc regression
3. Maximize this as a functon of the parameters.

∂
∂θ j

LL(θ⃗)=

L(θ⃗)=∏
i=1

n

σ(θ⃗
T x⃗(i)

)
y(i)

[1−σ(θ⃗
T x⃗(i)

)]
1− y(i)

P (X(i)
)

LL(θ⃗)=∑
i=1

n

[y(i) logσ(θ⃗
T x⃗(i)

)+(1− y(i)
) log [1−σ(θ⃗

T x⃗(i)
)]+ log P (X(i)

)]

∑
i=1

n

[y
(i)
[1−σ(θ⃗

T x⃗(i)
)] ∂

∂θ j
(θ⃗

T x⃗(i)
)+(1− y(i)

)[−σ(θ⃗
T x⃗(i)

)] ∂
∂θ j

(θ⃗
T x⃗(i)

)]
=∑

i=1

n

[y(i)
[1−σ(θ⃗

T x⃗(i)
)] x⃗ j

(i)
+(1− y(i)

)[−σ(θ⃗
T x⃗(i)

)] x⃗ j
(i)]

=∑
i=1

n

[y(i)
− y(i)

σ(θ⃗
T x⃗(i)

)−σ(θ⃗
T x⃗(i)

)+ y(i)
σ(θ⃗

T x⃗(i)
)] x⃗ j

(i)

=∑
i=1

n

[y(i)
−σ(θ⃗

T x⃗(i)
)] x⃗ j

(i)
=0 ???

Derivatves the easier way
∂

∂θ j
LL(θ⃗)=∑

i=1

n
∂

∂θ j
[y(i) logσ(θ⃗

T x⃗(i)
)+(1− y(i)

) log [1−σ(θ⃗
T x⃗(i)

)]]

=∑
i=1

n
∂

∂θ j
[y(i) log p+(1− y(i)

) log(1−p)]p=σ(z)

z=θ⃗
T x⃗(i)

=∑
i=1

n

[y
(i) ∂

∂θ j
log p+(1− y(i)

) ∂
∂θ j

log (1−p)]
=∑

i=1

n

[y(i) 1
p

∂ p
∂θ j

+(1− y(i)
)

−1
1−p

∂ p
∂θ j]

=∑
i=1

n

[y(i) 1
p
−(1− y(i)

)
1

1−p]σ(z)[1−σ(z)]
∂ z
∂θ j

=∑
i=1

n

[y(i) 1
p
−(1− y(i)

)
1

1−p] p(1−p)x j
(i)

=∑
i=1

n

[y(i)
(1−p)−(1− y(i)

) p] x j
(i)

=∑
i=1

n

[y(i)
− y(i) p−p+ y(i) p] x j

(i)
=∑

i=1

n

[y(i)
−p] x j

(i)

Gradient ascent

An algorithm for computng an
arg max by taking small steps
uphill (i.e., in the directon of the
gradient of the functon).

θ⃗← θ⃗+η⋅∇ θ⃗ f (θ⃗)

x 0

x 1

x 2

x 3
x 4

*

*

Gradient (a review)

∇ θ⃗ f (θ⃗)=[
∂ f
∂θ1

∂ f
∂θ2

⋮
∂ f
∂θm

]

A derivatve points uphill

A gradient points uphill

image: Simiprof

Logistc regression: Pseudocode

initialize: θ = [0, 0, …, 0] (m elements)

repeat many times:
 gradient = [0, 0, …, 0] (m elements)

 for each training example (x(i), y(i)):
 for j = 0 to m:

 gradient[j] +=

 for j = 0 to m:
 θ[j] += η * gradient[j]

return θ

[y(i)
−σ(θ⃗

T x⃗(i)
)] x⃗ j

(i)
move θ a small amount “uphill”

gives you a local maximum

Logistc regression: Pseudocode

initialize: θ = [0, 0, …, 0] (m elements)

repeat many times:
 gradient = [0, 0, …, 0] (m elements)

 for each training example (x(i), y(i)):
 for j = 0 to m:

 gradient[j] +=

 for j = 0 to m:
 θ[j] += η * gradient[j]

return θ

[y(i)
−σ(θ⃗

T x⃗(i)
)] x⃗ j

(i)

compute gradient[j] = ∂
∂θ j

LL(θ⃗)

gives you a local maximum
(if η is small enough!)

η = “learning rate”

The curse of the large step size

The curse of the large step size

The curse of the large step size

The curse of the large step size

Logistc regression: Pseudocode

initialize: θ = [0, 0, …, 0] (m elements)

repeat many times:
 gradient = [0, 0, …, 0] (m elements)

 for each training example (x(i), y(i)):
 for j = 0 to m:

 gradient[j] +=

 for j = 0 to m:
 θ[j] += η * gradient[j]

return θ

[y(i)
−σ(θ⃗

T x⃗(i)
)] x⃗ j

(i)
add to each gradient[j]∂

∂θ j
LL

x(i)(θ⃗)

Logistc regression: Pseudocode

initialize: θ = [0, 0, …, 0] (m elements)

repeat many times:
 gradient = [0, 0, …, 0] (m elements)

 for each training example (x(i), y(i)):
 for j = 0 to m:

 gradient[j] +=

 for j = 0 to m:
 θ[j] += η * gradient[j]

return θ

[y(i)
−σ(θ⃗

T x⃗(i)
)] x j

(i)

Your brain on logistc regression

dendrites:
take a weighted sum
of incoming stmuli

with electric potental

axon:
carries outgoing
pulse if potental

exceeds a threshold

Cauton: Just a (greatly simplifed)
model! All models are wrong—but
some are useful...

p=σ(z)

z=θ⃗
T x⃗(i)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 21
	Slide 25
	Slide 27
	Slide 31
	Slide 32
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 42
	Slide 43
	Slide 48
	Slide 52
	Slide 58
	Slide 59
	Slide 61
	Slide 62
	Slide 67
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 89

