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https://pixabay.com/en/nerve-cell-neuron-brain-neurons-2213009/

Announcement: Problem Set #6

Due this Wednesday,
August 16 (before class).

6 problems
(#6 involves serious coding!)

maﬁ

Congressional voting Heart disease
diagnosis

No late days!



Announcements: Final exam

This Saturday, August 19, 12:15-3:15pm
in NVIDIA Auditorium

Two pages (both sides) of notes

Comprehensive—material that was on the
midterm will also be tested

Review session:
Wednesday, August 16, 2:30-3:20pm
in Huang 18 (location change!)



Review: Classification

The most basic machine learning task:
predict a label from a vector of features.

y=arg maXP(Yzy\XZEE)




Review: Naive Bayes

A classification algorithm using
the assumption that features
are conditionally independent
given the label.

y=arg maXP(Y y)H IS(Xj:xj|Y:y)
J

images: (left) Virginia State Parks; (right) Renee Comet


https://www.flickr.com/photos/vastateparksstaff/30837143230
https://commons.wikimedia.org/wiki/File:Ham_(4).jpg

Review: Three secret ingredients

1. Maximum likelihood or maximum a
posteriori for conditional probabilities.

oo #(X=x,Y=y)[+1]
R = e

2. "“Naive Bayes assumption”; features are
independent conditioned on the label.

IS(XZX\YZy)ZH IS(XJ-:XJ- Y=y)
J

3. (Take logs for numerical stability.)



Two envelopes

A A

$X $2X

Y = amount in envelope chosen

E|W
E|W

stay |=Y
switch]:§-0.5+2Y-O.5

:éy 277
4



Two envelopes: A resolution

PN PN
“I'm trying to think: how likely
s it that you would have put
$40 in an envelope?
. $X $2X
Y =vy: amount in envelope chosen
E [W|Y:y, Stay]:y not necessarily 0.5!

E[WlY:y,switch]:%[P(X:%W:yﬂ-fZ y[P(X:y|Y:y)J

P(y=y|lx=y[pP(x=y)]""”

P(X—)’|Y—J’>—P(Y:y|X:y)p(X:y)+P(Y:y|X7ﬁy)P(X¢y)
- 0.5P(X=y)
- 05P(X=y)+0.5P(X=y/2)
P(X=y)

P(X=y)+P(X=y/2)
P(X=y/2|Y=y)=1-P(X=y|Y=y)



Two envelopes: A resolution

y N y N
“I'm trying to think: how likely
s it that you would have put
$40 in an envelope?
$X $2X

Y =vy: amount in envelope chosen

E[W[Y=y,stay|=y
E[W|Y:y,switch]:%-P(X:%|Y:y)+2 y-P(X=y|Y=y)

What if y = $20.017



Two envelopes: A resolution

y N y N
“I'm trying to think: how likely
s it that you would have put
$40 in an envelope?
$X $2X

Y =vy: amount in envelope chosen

E[W[Y=y,stay|=y
E[W|Y:y,switch]:%-P(X:%|Y:y)+2 y-P(X=y|Y=y)

What if y = $20.017



Unless...

(the dreaded half-cent)




Unless...

1810 1/2¢ Classic Head Half Cent SEMI KEY DATE
rare variety old type coin money

$99.00 - .-I.:j'; Rated

Buy It Now

(ebay.com)



The ratio of the probability of
an event happening to the
probability of it not happening:

P(E) P(E)

O — —
C
" p(E) 1-P(E)
Probability  Odds

1/10 1/9 “9:1 (against)”
1/3 1/2 “2:1 (against)”
1/2 1/1 “even odds’
2/3 2 “2:10on"/ ‘1.2

9/10 9 ‘9:10on"/“1:9”



Odds and probability

P(E)=p

P(E) _ p

IT1-P(E) 1-p

Of(l_P):P
0f—pO;=p
ofzp(of+1)

_ 9 1

p_ —

1
Of+1 1+o_f




Log odds

all probabilities
(except O and 1)

_ 1 1 1 1 1 2 4 8 16
p—P(E) [17 9 5 3 2 3 5 9 17}
__ P 1 1 1 1
Of_l—p c 8§ 4 o L 2 4 8 16
- | | | | | : : : :
Z:10820f [—4 -3 -2 -1 0 1 2 3 4]

base 2 for simplicity—
on this slide only!

all real numbers



The logistic function

1
o(z)=—
z=logo, 1+e
_ Of — 1 0.:) —
p Of+1 1+i 0.8 //
0, 07 /
1 0.6
— 0.5 /
1+ log(of) 3:: //
1 02 /
T —z 0.1 /




Logistic regression

A classification algorithm using the
assumption that log odds are a
linear function of the features.

1

=T
—0" X

y =arg max
y 1+e




Logistic regression assumption

p=0o(z)
z=logo;,

P(Y=1|X=%)=0(0"%)=

or in other words:



Predicting O/1 with the logistic

1
1+e

1 W
0.9
0.8
0.7 /
0.6
0.5 /
| /
04
0.3
0.2

0.1
0 TTTT

o(z)=

—Z



https://www.ebay.com/sch/i.html?_nkw=half+cent

Logistic regression: Pseudocode

initialize: 6 = [0, O, .., O] (m elements)

repeat many times:
gradient = [0, 0, .., O] (m elements)

for each training example (x"/, v
for Jj = 0 to m:

gradient[]] += Lym—(ﬂéTQWHXW

for Jj = 0 to m:
©6[3J] += n * gradient[]]

return ©



Break time!




Where's the “learning”?

P(Y=1|X=%)=0(0"%)

!

all of the model’s “intelligence”
IS In the choice of 6



Review: How to—ML

1. Compute the likelihood.
L(0)=P(X,,...,X,|0)

2. Take its log.
LL(6)=log L(0)

3. Maximize this as a function of the parameters.

(o Q



MLE for logistic regression

1. Compute the likelihood.



MLE for logistic regression

3. Maximize this as a function of the parameters.

(i)

LO)=To(03") [1—o (63" P(x")

LL(6)=>"]y"logo (67%")+(1—y'")log[1—o (0" %")]+log P(X")]
=1

O 1r(0)= 2y log o (075" )+(1- ) log[1-o (07")]+ log x|

=1
=3 |/ logo (0" %")+(1- y<l‘>)8%jlog[1—o(éfx<f>)]




Subplot: Derivative of logistic

Colz)=2—

—O\Z|=
0z 0Z 1+e °
—1

_ O ~z
— Tee 7} 02 (1+e™ )




MLE for logistic regression

3. Maximize this as a function of the parameters.

n




MLE for logistic regression

3. Maximize this as a function of the parameters.

n

5%]'“(6):1-:1 y“)(j@;lr}(i)) 8%10(6“(1))
(1)) — (16%(1.)) 1= (073
: Y a0 (7R (75
(1)) o (X Lo B (075




Subplot 2: Derivative of dot product

g (_éT»(i)): a%. (05140, x,+0, x,+---+0, x, )

j ]\/

X




MLE for logistic regression

3. Maximize this as a function of the parameters.

n

LL(6)=>"]y"logo (67%")+(1—y'")log[1—o (0" %")]+log P(X")]

DI
H
>t

G
[y“”[l—o(éTi“))Ji(éTs«'%(l—y“>>[—o(éTx“>>]a%j<
|




Derivatives the easier way

-

L(0) Z@B[ Tog o (67%")+(1—y")1og[1—o (67!

p=o0(z) :;ae.[ log p+(1—y'")log(1-p),
— 5730 o
=0 =21 g tog pr(1=y )55 log(1-p)

_y|,m1op —1 0p
_Zy p86+(1 y >1 p@@]

- )1 i 1 0z
:;:y< E—(l—yU)H:O(Z)[l—G(Z)]a—(gj

l

Y=y p=p+y plX = [y = plx

i=1 i=1



Gradient ascent

An algorithm for computing an
arg max by taking small steps
uphill (i.e., in the direction of the
gradient of the function).

s

KOOSR
< “”“‘ Y/ 1.
A




Gradient (a review)




A derivative points uphill

0 X
-2 -1 U\/ 2 3 4 5
_1 -
y=Ff(x)



Image: Simiprof

A gradient points uphill

~"_q9



Logistic regression: Pseudocode

initialize: 6 = [0, O, .., O] (m elements)

repeat many times:

move 0O a small amount “uphill”

return ©

~

gives you a local maximum



Logistic regression: Pseudocode

initialize: 6 = [0, O, .., O] (m elements)

repeat many times:

compute gradient[]] = z%;LLGﬂ
j

for Jj = 0 to m:
©6[3J] += n * gradient[]]

N = “learning rate”
return ©

™~

gives you a local maximum
(if n is small enough!)



The curse of the large step size

0 X
_'2 _Il U\J é I3 ‘I‘ IS
_1 -
y=Ff(x)



The curse of the large step size

0 X,
_.2 _Il O\J é I3 ‘I‘ IS
_1 -
y=Ff(x)



The curse of the large step size

0 X,
_.2 _Il O\J é I3 ‘I‘ IS
_1 -
y=Ff(x)



The curse of the large step size

0 X,
_I1 U\_y é I3 ‘I‘ IS
_1 -
y=Ff(x)



Logistic regression: Pseudocode

initialize: 6 = [0, O, .., O] (m elements)

repeat many times:
gradient = [0, 0, .., O] (m elements)

for each training example (x"/, v

add [1%{6) to each gradient[j]

_0_
00,

for Jj = 0 to m:
©6[3J] += n * gradient[]]

return ©



Logistic regression: Pseudocode

initialize: 6 = [0, O, .., O] (m elements)

repeat many times:
gradient = [0, 0, .., O] (m elements)

for each training example (x"/, v
for Jj = 0 to m:

gradient[j] += [y(i)—o(_éT}(i))]x(i>

for Jj = 0 to m:
©6[3J] += n * gradient[]]

return ©



Your brain on logistic regression

p=0o(z)
z=0"x"
dendrites: axon:
take a weighted sum carries outgoing
of incoming stimuli pulse if potential

with electric potential  exceeds a threshold

Caution: Just a (greatly simplified)
model! All models are wrong—but
some are useful...
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