

Announcement: Problem Set #6

Due today!

That's all, folks!

Heart disease diagnosis

Announcements: Final exam

This Saturday, August 19, 12:15-3:15pm in NVIDIA Auditorium (pending maintenance)

Two pages (both sides) of notes

All material in the class through Monday

Review session:

Today after lecture, 2:30-3:20 in Huang 18

Two envelopes: A resolution

"I'm trying to think: how likely is it that you would have put \$40 in an envelope?

Y = y: amount in envelope chosen

$$E[W|Y=y, \text{stay}] = y \qquad \text{not necessarily 0.5!}$$

$$E[W|Y=y, \text{switch}] = \frac{y}{2} P(X=\frac{y}{2}|Y=y) + 2y P(X=y|Y=y)$$

$$P(X=y|Y=y) = \frac{P(X=y)}{P(X=y) + P(X=y/2)}$$

Two envelopes: A resolution

"I'm trying to think: how likely is it that you would have put \$40 in an envelope?

Y = y: amount in envelope chosen

$$E[W|Y=y, \text{stay}] = y \qquad \text{not necessarily 0.5!}$$

$$E[W|Y=y, \text{switch}] = \frac{y}{2} P(X=\frac{y}{2}|Y=y) + 2 y P(X=y|Y=y)$$

$$P(X=y|Y=y) = \frac{P(X=y) \text{ prior: if all equally likely, then this will be 0.5}}{P(X=y) + P(X=y/2)}$$

$$P(X=y)=C?$$

$$\sum_{y} P(X=y) = \sum_{y} C=1$$

$$\infty \cdot C=1???$$

Logistic regression

A classification algorithm using the assumption that **log odds** are a linear function of the features.

$$\hat{y} = \frac{1}{1 + e^{-\vec{\theta}^T \vec{x}}}$$

Review: The logistic function

$$z = \log o_f$$

$$p = \frac{o_f}{o_f + 1} = \frac{1}{1 + \frac{1}{o_f}}$$

$$= \frac{1}{1 + e^{-\log(o_f)}}$$

$$= \frac{1}{1 + e^{-z}}$$

$$= \sigma(z)$$

$$\sigma(z) = \frac{1}{1 + e^{-z}}$$

Review: Logistic regression assumption

$$P(Y=1|\vec{X}=\vec{x}) = \sigma(\vec{\theta}^T\vec{x}) = \frac{1}{1+e^{-\vec{\theta}^T\vec{x}}}$$
or in other words:

$$p = \sigma(z)$$

$$z = \log o_f \qquad \vec{\theta}^T \vec{x} = \log o_f (Y = 1 | \vec{X} = \vec{x})$$

$$\vec{\theta}^T \vec{x} = \vec{\theta} \cdot \vec{x} = \theta_0 \cdot 1 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_m x_m$$

$$= \sum_{i=0}^m \theta_i x_i$$

$$(x_0 = 1)$$

Review: Gradient ascent

An algorithm for computing an arg max by taking small steps uphill (i.e., in the direction of the gradient of the function).

Review: Logistic regression algorithm

```
initialize: \Theta = [0, 0, ..., 0] (m elements)
repeat many times:
     qradient = [0, 0, ..., 0] (m elements)
     for each training example (x^{(i)}, y^{(i)}):
           for j = 0 to m:
                gradient[j] += [y^{(i)} - \sigma(\vec{\theta}^T \vec{x}^{(i)})] \vec{x}_i^{(i)}
     for j = 0 to m:
           \theta[j] += \eta * gradient[j]
return \theta
```

Your brain on logistic regression

take a weighted sum of incoming stimuli with electric potential

axon:
carries outgoing
pulse if potential
exceeds a threshold

Caution: Just a (greatly simplified) model! All models are wrong—but some are useful...

Feedforward neural network

An algorithm for classification or regression that uses layers of logistic regressions to discover its own features.

$$\hat{\mathbf{y}} = \sigma(\boldsymbol{\theta}^{(\hat{\mathbf{y}})} \sigma(\boldsymbol{\theta}^{(h)} \vec{\mathbf{x}}))$$

A cartoon of logistic regression

Logistic regression is linear

Logistic regression is linear

Logistic regression is linear

A cartoon of logistic regression

Stacking logistic regression

$$\vec{X}$$

$$\vec{h} = \sigma(\theta^{(h)}\vec{x})$$

$$\vec{h} = \sigma(\theta^{(h)}\vec{x})$$
 $\hat{y} = \sigma(\vec{\theta}^{(\hat{y})T}\vec{h})$

Unpacking the linear algebra

Stacking logistic regression

$$L(\theta) = \prod_{i=1}^{n} \hat{y}^{y^{(i)}} (1 - \hat{y})^{1 - y^{(i)}} P(X^{(i)})$$

$$LL(\theta) = \sum_{i=1}^{n} \left[y^{(i)} \log \hat{y}^{(i)} + (1 - y^{(i)}) \log (1 - \hat{y}^{(i)}) + \log P(X^{(i)}) \right]$$

$$\begin{split} L(\theta) &= \prod_{i=1}^{n} \, \hat{y}^{y^{(i)}} (1 - \hat{y})^{1 - y^{(i)}} P\left(\boldsymbol{X}^{(i)}\right) \\ LL(\theta) &= \sum_{i=1}^{n} \left[y^{(i)} \log \hat{y}^{(i)} + (1 - y^{(i)}) \log (1 - \hat{y}^{(i)}) + \log P\left(\boldsymbol{X}^{(i)}\right) \right] \\ &= \frac{\partial}{\partial \, \theta_{j}^{(\hat{y})}} LL(\theta) = \sum_{i=1}^{n} \frac{\partial}{\partial \, \theta_{j}^{(\hat{y})}} \left[y^{(i)} \log \hat{\boldsymbol{y}}^{(i)} + (1 - y^{(i)}) \log (1 - \hat{\boldsymbol{y}}^{(i)}) \right] \\ &= \sum_{i=1}^{n} \left[\frac{y^{(i)}}{\hat{y}^{(i)}} - \frac{(1 - y^{(i)})}{(1 - \hat{y}^{(i)})} \right] \frac{\partial}{\partial \, \theta_{j}^{(\hat{y})}} \sigma\left(\hat{\boldsymbol{\theta}}^{(\hat{y})T} \vec{\boldsymbol{h}}\right) \\ &= \sum_{i=1}^{n} \left[\frac{y^{(i)}}{\hat{y}^{(i)}} - \frac{(1 - y^{(i)})}{(1 - \hat{y}^{(i)})} \right] \frac{\partial}{\partial \, \theta_{j}^{(\hat{y})}} \sigma\left(\hat{\boldsymbol{\theta}}^{(\hat{y})T} \vec{\boldsymbol{h}}\right) \\ &= \sum_{i=1}^{n} \left[\frac{y^{(i)}}{\hat{y}^{(i)}} - \frac{(1 - y^{(i)})}{(1 - \hat{y}^{(i)})} \right] \hat{y}^{(i)} (1 - \hat{y}^{(i)}) h_{j} \end{split}$$

$$L(\theta) = \prod_{i=1}^{n} \hat{y}^{y^{(i)}} (1 - \hat{y})^{1 - y^{(i)}} P(X^{(i)})$$

$$LL(\theta) = \sum_{i=1}^{n} \left[y^{(i)} \log \hat{y}^{(i)} + (1 - y^{(i)}) \log (1 - \hat{y}^{(i)}) + \log P(X^{(i)}) \right]$$

$$\frac{\partial}{\partial \theta_{j}^{(\hat{y})}} LL(\theta) = \sum_{i=1}^{n} \left[\underbrace{\frac{y^{(i)}}{\hat{y}^{(i)}} - \frac{(1 - y^{(i)})}{(1 - \hat{y}^{(i)})}}_{\hat{y}^{(i)}} \underbrace{\hat{y}^{(i)} (1 - \hat{y}^{(i)}) h_{j}}_{\partial z^{(i)}} \right]$$

$$\frac{\partial}{\partial \theta_{j,k}^{(h)}} LL(\theta) = \sum_{i=1}^{n} \left[\underbrace{\frac{y^{(i)}}{\hat{y}^{(i)}} - \frac{(1 - y^{(i)})}{(1 - \hat{y}^{(i)})}}_{\hat{y}^{(i)}} \underbrace{\hat{y}^{(i)} (1 - \hat{y}^{(i)}) \theta_{j}^{(\hat{y})} h_{j} (1 - h_{j}) x_{k}}_{\partial \theta_{j,k}^{(h)}} \right]$$

$$\frac{\partial}{\partial \hat{y}^{(i)}} LL^{(i)}(\theta) \qquad \underbrace{\frac{\partial \hat{y}^{(i)}}{\partial z^{(i)}}}_{\partial z^{(i)}} \underbrace{\frac{\partial z^{(i)}}{\partial h_{j}^{(i)}}}_{\partial \theta_{j,k}^{(h)}}$$

Automatic differentiation

Breaking the symmetry

Breaking the symmetry

Expanding the toolbox

Applications: Image recognition

Expanding the toolbox

Applications: Image recognition

Image classification

Easiest classes

muzzle (71) hatchet (68) water bottle (68) velvet (68) loupe (66)

hook (66) spotlight (66)

ladle (65)

restaurant (64) letter opener (59)

Expanding the toolbox

Applications: Speech recognition

who is the current president of France?

Expanding the toolbox

Break time!

General principle of counting

An experiment consisting of two or more separate parts has a number of outcomes equal to the **product** of the number of outcomes of each part.

$$|A_1 \times A_2 \times \cdots \times A_n| = \prod_i |A_i|$$

shapes: 4

colors: 3

Principle of Inclusion/Exclusion

The total number of elements in two sets is the sum of the number of elements of each set, minus the number of elements in both sets.

$$|A \cup B| = |A| + |B| - |A \cap B|$$

Inclusion/exclusion with more than two sets

General Pigeonhole Principle

If m objects are placed in n buckets, then at least one bucket must contain at least $\lceil m/n \rceil$ objects.

Permutations

The number of ways of ordering n distinguishable objects.

$$n! = 1 \cdot 2 \cdot 3 \cdot \dots \cdot n = \prod_{i=1}^{n} i$$

Permutations with indistinct elements

The number of ways of ordering n. objects, where some groups are indistinguishable.

Combinations

The number of unique **subsets** of size *k* from a larger set of size *n*.

(objects are distinguishable, unordered)

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$

Bucketing

The number of ways of assigning *n* **distinguishable objects** to a fixed set of *k* **buckets** or **labels**.

 k^n

n objects

Divider method

The number of ways of assigning *n* **indistinguishable objects** to a fixed set of *k* **buckets** or **labels**.

$$\binom{n+(k-1)}{n}$$

n objects

(k - 1 dividers)

A grid of ways of counting

	Ordering	Subsets	Bucketing
All distinct	n!	$\begin{pmatrix} n \\ k \end{pmatrix}$	k^n
Some indistinct	$\frac{n!}{k_1! k_2! \dots k_m!}$	Creativity! - Split into cases - Use inclusion/exclusion - Reframe the problem	
All indistinct	1	1	$\binom{n+(k-1)}{n}$

Axioms of probability

$$(1) \quad 0 \le P(E) \le 1$$

$$P(S) = 1$$

If
$$E \cap F = \emptyset$$
, then
$$P(E \cup F) = P(E) + P(F)$$

(Sum rule, but with probabilities!)

How do I get started?

For word problems involving probability, start by defining **events**!

Getting rid of ORs

Finding the probability of an OR of events can be nasty. Try **using De Morgan's laws** to turn it into an AND!

$$P(A \cup B \cup \cdots \cup Z) = 1 - P(A^c B^c \cdots Z^c)$$

Definition of conditional probability

The conditional probability P(E | F) is the probability that E happens, **given** that F has happened. F is the new sample space.

$$P(E|F) = \frac{P(EF)}{P(F)}$$

Chain rule of probability

The probability of **both** events happening is the probability of **one happening** times the probability of **the other happening given the first one**.

$$P(EF)=P(F)P(E|F)$$

General chain rule of probability

The probability of **all** events happening is the probability of **the first** happening times the prob. of **the second given the first** times the prob. of **the third given the first two** ...etc.

$$P(EFG...)=P(E)P(F|E)P(G|EF)...$$

Law of total probability

You can compute an overall probability by adding up the case when an event happens and when it doesn't happen.

$$P(F) = P(EF) + P(E^{C}F)$$

$$= P(E)P(F|E) + P(E^{C})P(F|E^{C})$$

General law of total probability

You can compute an overall probability by summing over **mutually exclusive** and **exhaustive** sub-cases.

Bayes' theorem

You can "flip" a conditional probability if you <u>multiply</u> by the probability of the **hypothesis** and <u>divide</u> by the probability of the **observation**.

$$P(E|F) = \frac{P(F|E)P(E)}{P(F)}$$

Finding the denominator

If you don't know P(F) on the bottom, try using the **law of total probability**.

$$P(E|F) = \frac{P(F|E)P(E)}{P(F|E)P(E) + P(F|E^c)P(E^c)}$$

$$P(E|F) = \frac{P(F|E)P(E)}{\sum_{i} P(F|E_i)P(E_i)}$$

Independence

Two events are **independent** if you can **multiply** their probabilities to get the probability of **both** happening.

$$P(EF) = P(E)P(F)$$
 \Leftrightarrow
 $E \perp F$
("independent of")

Conditional independence

Two events are **conditionally independent** if you can **multiply** their conditional probabilities to get the conditional probability of **both** happening.

$$P(EF|G) = P(E|G)P(F|G)$$

$$\Leftrightarrow$$

$$(E \perp F)|G$$

Random variables

A random variable takes on values probabilistically.

$$P(X)=2)=\frac{1}{36}$$

How do I get started?

For word problems involving probability, start by defining **events** and **random variables**!

Probability mass function

The probability mass function (PMF) of a random variable is a function from values of the variable to probabilities.

$$p_{\mathbf{Y}}(\mathbf{k}) = P(\mathbf{Y} = \mathbf{k})$$

Cumulative distribution function

The cumulative distribution function (CDF) of a random variable is a function giving the probability that the random variable is less than or equal to a value.

$$F_{\mathbf{Y}}(\mathbf{k}) = P(\mathbf{Y} \leq \mathbf{k})$$

Expectation

The **expectation** of a random variable is the "**average**" value of the variable (weighted by probability).

$$E[X] = \sum_{x: p(x) > 0} p(x) \cdot x$$

Linearity of expectation

Adding random variables or constants? **Add** the expectations. Multiplying by a <u>constant</u>? **Multiply** the expectation by the constant.

$$E[aX+bY+c]=aE[X]+bE[Y]+c$$

Indicator variable

An **indicator variable** is a "Boolean" variable, which takes values 0 or 1 corresponding to whether an event takes place.

$$I = \mathbb{1}[A] = \begin{cases} 1 & \text{if event } A \text{ occurs} \\ 0 & \text{otherwise} \end{cases}$$

Variance

Variance is the average **square** of the **distance** of a variable from the expectation. Variance measures the "**spread**" of the variable.

$$Var(X) = E[(X - E[X])^{2}]$$

$$= E[X^{2}] - (E[X])^{2}$$

Standard deviation

Standard deviation is the ("root-mean-square") average of the **distance** of a variable from the expectation.

$$SD(X) = \sqrt{Var(X)} = \sqrt{E[(X - E[X])^2]}$$

Variance of a linear function

Adding a <u>constant</u>? Variance **doesn't change**. Multiplying by a <u>constant</u>? **Multiply** the variance by the **square** of the constant.

$$Var(aX+b) = E[(aX+b)^{2}] - (E[aX+b])^{2}$$

$$= E[a^{2}X^{2} + 2abX + b^{2}] - (aE[X]+b)^{2}$$

$$= a^{2}E[X^{2}] + 2abE[X] + b^{2}$$

$$-[a^{2}(E[X])^{2} + 2abE[X] + b^{2}]$$

$$= a^{2}E[X^{2}] - a^{2}(E[X])^{2}$$

$$= a^{2}[E[X^{2}] - (E[X])^{2}]$$

$$= a^{2}Var(X)$$

Basic distributions

Many types of random variables come up repeatedly. Known frequently-occurring distributions lets you do computations without deriving formulas from scratch.

We have	_ independent,	
each of which with probability VERB ENDING IN -S		
How many of the REPEAT PLURAL NOUN		
? REPEAT VERB -S		

Bernoulli random variable

An indicator variable (a possibly biased coin flip) obeys a **Bernoulli distribution**. Bernoulli random variables can be 0 or 1.

$$X \sim \operatorname{Ber}(p)$$

$$p_X(1) = p$$

 $p_X(0) = 1 - p$

(0 elsewhere)

Bernoulli: Fact sheet

$$X \sim \operatorname{Ber}(p)$$

probability of "success" (heads, ad click, ...)

$$p_X(1) = p$$

$$p_X(0) = 1 - p \qquad (0 \text{ elsewhere})$$

expectation:

$$E[X]=p$$

variance:
$$Var(X) = p(1-p)$$

Binomial random variable

The **number of heads** on *n* (possibly biased) coin flips obeys a **binomial distribution**.

$$X \sim \operatorname{Bin}(n, p)$$

$$p_{X}(k) = \begin{cases} \binom{n}{k} p^{k} (1-p)^{n-k} & \text{if } k \in \mathbb{N}, 0 \le k \le n \\ 0 & \text{otherwise} \end{cases}$$

Binomial: Fact sheet

number of trials (flips, program runs, ...)

$$X \sim \operatorname{Bin}(n, p)$$

probability of "success" (heads, crash, ...)

PMF:
$$p_X(k) = \begin{cases} \binom{n}{k} p^k (1-p)^{n-k} & \text{if } k \in \mathbb{N}, 0 \le k \le n \\ 0 & \text{otherwise} \end{cases}$$

expectation:
$$E[X]=np$$

variance:
$$Var(X) = np(1-p)$$

note:
$$Ber(p)=Bin(1,p)$$

Poisson random variable

The number of occurrences of an event that occurs with constant rate λ (per unit time), in 1 unit of time, obeys a Poisson distribution.

$$X \sim \operatorname{Poi}(\lambda)$$

$$p_{X}(k) = \begin{cases} e^{-\lambda} \frac{\lambda^{k}}{k!} & \text{if } x \in \mathbb{Z}, x \geq 0 \\ 0 & \text{otherwise} \end{cases}$$

Poisson: Fact sheet

$$X \sim \operatorname{Poi}(\lambda)$$

rate of events (requests, earthquakes, chocolate chips, ...)
per unit time (hour, year, cookie, ...)

PMF:
$$p_X(k) = \begin{cases} e^{-\lambda} \frac{\lambda^k}{k!} & \text{if } k \in \mathbb{Z}, k \ge 0 \\ 0 & \text{otherwise} \end{cases}$$

expectation: $E[X] = \lambda$

variance: $Var(X) = \lambda$

Poisson approximation of binomial

Geometric random variable

The **number of trials** it takes to get **one success**, if successes occur independently with probability *p*, obeys a **geometric distribution**.

$$X \sim \text{Geo}(p)$$

$$p_X(k) = \begin{cases} (1-p)^{k-1} \cdot p & \text{if } k \in \mathbb{Z}, k \ge 1 \\ 0 & \text{otherwise} \end{cases}$$

Geometric: Fact sheet

$$X \sim \text{Geo}(p)$$

probability of "success" (catch, heads, crash, ...)

PMF:
$$p_X(k) = \begin{cases} (1-p)^{k-1} \cdot p & \text{if } k \in \mathbb{Z}, k \ge 1 \\ 0 & \text{otherwise} \end{cases}$$

CDF:
$$F_X(k) = \begin{cases} 1 - (1-p)^k & \text{if } k \in \mathbb{Z}, k \ge 1 \\ 0 & \text{otherwise} \end{cases}$$

expectation:
$$E[X] = \frac{1}{p}$$

expectation:
$$E[X] = \frac{1}{p}$$
variance: $Var(X) = \frac{1-p}{p^2}$

Negative binomial random variable

The **number of trials** it takes to get *r* successes, if successes occur independently with probability *p*, obeys a **negative binomial distribution**.

$$X \sim \text{NegBin}(r, p)$$

$$p_{X}(n) = \begin{cases} \binom{n-1}{r-1} p^{r} (1-p)^{n-r} & \text{if } n \in \mathbb{Z}, n \geq r \\ 0 & \text{otherwise} \end{cases}$$

Negative binomial: Fact sheet

number of **sucesses** (heads, crash, ...)

$$X\!\sim\! \mathrm{NegBin}(r,p)$$
 number of trials (flips, probability of "success"

program runs, ...)

PMF:
$$p_X(n) = \begin{cases} \binom{n-1}{r-1} p^r (1-p)^{n-r} & \text{if } n \in \mathbb{Z}, n \geq r \\ 0 & \text{otherwise} \end{cases}$$

expectation:
$$E[X] = \frac{r}{r}$$

expectation:
$$E[X] = \frac{r}{p}$$
variance: $Var(X) = \frac{r(1-p)}{p^2}$ note: $Geo(p) = NegBin(1, p)$

Continuous random variables

A **continuous** random variable has a value that's a **real number** (not necessarily an integer).

Replace sums with integrals!

$$P(a < X \le b) = F_X(b) - F_X(a)$$

$$F_X(a) = \int_{x=-\infty}^a dx \ f_X(x)$$

Probability density function

The probability density function (PDF) of a continuous random variable represents the relative likelihood of various values.

Units of probability divided by units of X. **Integrate it** to get probabilities!

$$P(a < X \le b) = \int_{x=a}^{b} dx \left[f_{X}(x) \right]$$

f(x) is not a probability

Rather, it has "units" of probability divided by units of X.

Uniform random variable

A uniform random variable is equally likely to be any value in a single real number interval.

$$X \sim \text{Uni}(\alpha, \beta)$$

$$f_X(x) = \begin{cases} \frac{1}{\beta - \alpha} & \text{if } x \in [\alpha, \beta] \\ 0 & \text{otherwise} \end{cases}$$

Uniform: Fact sheet

minimum value
$$X \sim \text{Uni}(\alpha, \beta)$$
maximum value

PDF:
$$f_X(x) = \begin{cases} \frac{1}{\beta - \alpha} & \text{if } x \in [\alpha, \beta] \\ 0 & \text{otherwise} \end{cases}$$

CDF:
$$F_X(x) = \begin{cases} \frac{x - \alpha}{\beta - \alpha} & \text{if } x \in [\alpha, \beta] \\ 1 & \text{if } x > \beta \\ 0 & \text{otherwise} \end{cases}$$
 expectation: $E[X] = \frac{\alpha + \beta}{2}$

variance:
$$Var(X) = \frac{(\beta - \alpha)^2}{12}$$

image: Haha169

Exponential random variable

An **exponential** random variable is the **amount of time until the first event** when events occur as in the Poisson distribution.

$$X \sim \operatorname{Exp}(\lambda)$$

$$f_{X}(x) = \begin{cases} \lambda e^{-\lambda x} & \text{if } x \geq 0\\ 0 & \text{otherwise} \end{cases}$$

image: Adrian Sampson

Exponential: Fact sheet

rate of events per unit time

$$X \sim \operatorname{Exp}(\lambda)$$

time until first event

PDF:
$$f_X(x) = \begin{cases} \lambda e^{-\lambda x} & \text{if } x \ge 0 \\ 0 & \text{otherwise} \end{cases}$$

CDF:
$$F_X(x) = \begin{cases} 1 - e^{-\lambda x} & \text{if } x \ge 0 \\ 0 & \text{otherwise} \end{cases}$$

expectation:
$$E[X] = \frac{1}{\lambda}$$

variance:
$$Var(X) = \frac{1}{\lambda^2}$$

image: Adrian Sampson

A grid of random variables

Normal random variable

An **normal** (= **Gaussian**) random variable is a good approximation to many other distributions. It often results from **sums or averages** of independent random variables.

$$X \sim N(\mu, \sigma^2)$$

$$f_X(x) = \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{1}{2} \left(\frac{x-\mu}{\sigma}\right)^2}$$

Normal: Fact sheet

$$X \sim N(\mu, \sigma^2)$$

variance (σ = standard deviation)

PDF:
$$f_X(x) = \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{1}{2} \left(\frac{x-\mu}{\sigma}\right)^2}$$

CDF:
$$F_X(x) = \Phi\left(\frac{x-\mu}{\sigma}\right) = \int_{-\infty}^{x} dx f_X(x)$$

(no closed form)

expectation:
$$E[X] = \mu$$

variance:
$$Var(X) = \sigma^2$$

The Standard Normal

$$Z \sim N(0,1)$$

$$X \sim N(\mu, \sigma^2) \rightarrow X = \sigma Z + \mu$$

$$Z = \frac{X - \mu}{\sigma}$$

$$\Phi(z) = F_{\mathbf{Z}}(z) = P(\mathbf{Z} \leq z)$$

Normal approximation to binomial

large n, **medium** p

Continuity correction

When approximating a **discrete** distribution with a **continuous** distribution, adjust the bounds by 0.5 to account for the missing half-bar.

Joint distributions

A joint distribution combines multiple random variables. Its PDF or PMF gives the probability or relative likelihood of **both** random variables taking on specific values.

$$p_{X,Y}(a,b) = P(X=a,Y=b)$$

Joint probability mass function

A joint probability mass function gives the probability of more than one discrete random variable each taking on a specific value (an AND of the 2+ values).

$$p_{X,Y}(a,b) = P(X=a,Y=b)$$

		Y			
		0	1	2	
	0	0.05	0.20	0.10	
X	1	0.10	0.10	0.10	
	2	0.05	0.10	0.20	

Joint probability density function

A joint probability density function gives the relative likelihood of more than one continuous random variable each taking on a specific value.

$$P(a_{1} < X \le a_{2}, b_{1} < Y \le b_{2}) = \int_{a_{1}}^{a_{2}} dx \int_{b_{1}}^{b_{2}} dy f_{X,Y}(x,y)$$

Marginalization

Marginal probabilities give the distribution of a subset of the variables (often, just one) of a joint distribution.

Sum/integrate over the variables you don't care about.

$$p_X(a) = \sum_{y} p_{X,Y}(a,y)$$
$$f_X(a) = \int_{-\infty}^{\infty} dy f_{X,Y}(a,y)$$

Joint cumulative distribution function

Multinomial random variable

An multinomial random variable records the number of times each outcome occurs, when an experiment with multiple outcomes (e.g. die roll) is run multiple times.

Independence of discrete random variables

Two random variables are independent if knowing the value of one tells you nothing about the value of the other (for all values!).

$$X \perp Y$$
 iff $\forall x, y$:

$$P(X=x,Y=y)=P(X=x)P(Y=y)$$

- or -

$$p_{X,Y}(x,y)=p_X(x)p_Y(y)$$

Independence of continuous random variables

Two random variables are independent if knowing the value of one tells you nothing about the value of the other (for all values!).

$$X \perp Y$$
 iff $\forall x, y$:
 $f_{X,Y}(x,y) = f_X(x) f_Y(y)$
-or-
 $f_{X,Y}(x,y) = g(x)h(y)$
-or-
 $F_{X,Y}(x,y) = F_X(x) F_Y(y)$

Convolution

A **convolution** is the distribution of the **sum** of two independent random variables.

$$f_{X+Y}(a) = \int_{-\infty}^{\infty} dy f_X(a-y) f_Y(y)$$

Sum of independent binomials

X: number of heads Y: number of heads in first *n* flips

$$X \sim \text{Bin}(n, p)$$

in next *m* flips

$$\mathbf{Y} \sim \text{Bin}(m, p)$$

$$X+Y\sim Bin(n+m,p)$$

More generally:

$$X_i \sim \text{Bin}(n_i, p) \Rightarrow \sum_{i=1}^N X_i \sim \text{Bin}\left(\sum_{i=1}^N n_i, p\right)$$
 all X_i independent

Sum of independent Poissons

X: number of chips Y: number of chips in first cookie

$$X \sim Poi(\lambda_1)$$

 λ_1 chips/cookie λ_2 chips/cookie

in second cookie

$$\mathbf{Y} \sim \operatorname{Poi}(\lambda_2)$$

$$X + Y \sim Poi(\lambda_1 + \lambda_2)$$

More generally:

$$X_i \sim \text{Poi}(\lambda_i) \Rightarrow \sum_{i=1}^N X_i \sim \text{Poi}\left(\sum_{i=1}^N \lambda_i\right)$$
 all X_i independent

Sum of independent normals

$$X + Y \sim N(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2)$$

More generally:

$$X_i \sim N(\mu_i, \sigma_i^2) \Rightarrow \sum_{i=1}^N X_i \sim N\left(\sum_{i=1}^N \mu_i, \sum_{i=1}^N \sigma_i^2\right)$$
 all X_i independent

Sum of independent uniforms

$$f_{X+Y}(a) = \int_{-\infty}^{\infty} dy f_X(a-y) f_Y(y)$$

$$= \int_{0}^{1} dy f_X(a-y) f_Y(y)$$

Case 1: if $0 \le a \le 1$, then we need $0 \le y \le a$ (for a - y to be in [0, 1]) Case 2: if $1 \le a \le 2$, then we need $a - 1 \le y \le 1$

$$= \begin{cases} \int_0^a dy \cdot 1 = a & 0 \le a \le 1 \\ \int_{a-1}^1 dy \cdot 1 = 2 - a & 1 \le a \le 2 \\ 0 & \text{otherwise} \end{cases}$$

Discrete conditional distributions

The value of a random variable, conditioned on the value of some other random variable, has a probability distribution.

$$p_{X|Y}(x,y) = \frac{P(X=x,Y=y)}{P(Y=y)}$$

$$= \frac{p_{X,Y}(x,y)}{p_{Y}(y)}$$

PDF	Single	In a relationship	It's complicated / Other	TOTALS
Freshman	0.00	0.00	0.00	0.00
Sophomore	0.06	0.00	0.00	0.06
Junior	0.19	0.19	0.13	0.50
Senior	0.00	0.00	0.00	0.00
Grad student / Other	0.38	0.06	0.00	0.44
TOTALS	0.63	0.25	0.13	1.00

Continuous conditional distributions

The value of a random variable, conditioned on the value of some other random variable, has a probability distribution.

$$f_{X|Y}(x|y) = \frac{f_{X,Y}(x,y)}{f_Y(y)}$$

Ratios of continuous probabilities

The probability of an exact value for a continuous random variable is 0.

But ratios of these probabilities are still well-defined!

$$\frac{P(X=a)}{P(X=b)} = \frac{f_X(a)}{f_X(b)}$$

Beta random variable

An **beta** random variable models the **probability** of a trial's success, given previous trials. The PDF/CDF let you compute **probabilities** of **probabilities**!

$$X \sim \text{Beta}(a,b)$$

$$f_X(x) = \begin{cases} Cx^{a-1}(1-x)^{b-1} & \text{if } 0 < x < 1\\ 0 & \text{otherwise} \end{cases}$$

Beta: Fact sheet

number of successes + 1
$$X \sim \text{Beta}(a,b)$$

$$\uparrow$$
probability
of success
$$\uparrow$$
number of failures + 1

$$\operatorname{PDF:} f_X(x) = \begin{cases} C x^{a-1} (1-x)^{b-1} & \text{if } 0 < x < 1 \\ 0 & \text{otherwise} \end{cases}$$

expectation:
$$E[X] = \frac{a}{a+b}$$
variance: $Var(X) = \frac{ab}{(a+b)^2(a+b+1)}$

Subjective priors

$$\begin{array}{c}
X \mid A \sim \text{Beta(a + 1, N - a + 1)} \\
\text{"posterior"} \\
f_{X\mid A}(x\mid a) = \frac{P(A=a|X=x)f_X(x)}{P(A=a)}
\end{array}$$

$$\begin{array}{c}
X \sim \text{Beta(1, 1)} \\
\text{"prior"} \\
P(A=a)
\end{array}$$

How did we decide on Beta(1, 1) for the prior?

Beta(1, 1): "we haven't seen any rolls yet."

Beta(4, 1): "we've seen 3 sixes and 0 non-sixes."

Beta(2, 6): "we've seen 1 six and 5 non-sixes."

Beta prior = "imaginary" previous trials

Covariance

The **covariance** of two variables is a measure of how much they **vary together**.

$$Cov(X,Y) = E[(X-E[X])(Y-E[Y])]$$
$$= E[XY] - E[X]E[Y]$$

Expectation of a product

If two random variables are independent, then the expectation of their product equals the product of their expectations.

$$X \perp Y \Rightarrow$$

$$E[XY] = E[X]E[Y]$$

$$E[g(X)h(Y)] = E[g(X)]E[h(Y)]$$

Correlation

The **correlation** of two variables is a measure of the **linear dependence** between them, scaled to always take on values between -1 and 1.

$$\rho(X,Y) = \frac{\text{Cov}(X,Y)}{\sqrt{\text{Var}(X)\text{Var}(Y)}}$$

Conditional expectation

One can compute the **expectation** of a random variable while **conditioning** on the values of other random variables.

$$E[X|Y=y] = \sum x p_{X|Y}(x|y)$$

$$E[X|Y=y] = \int_{-\infty}^{\infty} dx \, x \, f_{X|Y}(x|y)$$

Quicksort

You've been told Quicksort is O(n log n), "average case".

Now you get to find out why!

Quicksort's ordinary life

Let X = [number of comparisons] to the pivot.
What is E[X]? expected number of events = indicator variables!

$$\begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ Y_1 & Y_2 & & \dots & & Y_n \end{bmatrix}$$

Define $Y_1 \dots Y_n$ = elements in sorted order.

Indicator variables $I_{ab} = 1$ if Y_a and Y_b are ever compared.

$$E[X] = E\left[\sum_{a=1}^{n-1} \sum_{b=a+1}^{n} I_{ab}\right] = \sum_{a=1}^{n-1} \sum_{b=a+1}^{n} E[I_{ab}]$$

$$= \sum_{a=1}^{n-1} \sum_{b=a+1}^{n} P(Y_a \text{ and } Y_b \text{ ever compared})$$

Shall I compare thee to...

 $P(Y_a \text{ and } Y_b \text{ ever compared}) = ?$

The home stretch

$$\begin{split} E[X] = & \sum_{a=1}^{n-1} \sum_{b=a+1}^{n} P(Y_a \text{ and } Y_b \text{ ever compared}) \\ = & \sum_{a=1}^{n-1} \sum_{b=a+1}^{n} \frac{2}{b-a+1} \\ \approx & \sum_{a=1}^{n-1} 2\ln(n-a+1) \\ \approx & \sum_{a=1}^{n-1} 2\ln(n-a+1) \\ \approx & \int_{a=1}^{n-1} da 2\ln(n-a+1) \\ = & = 2\ln(n-a+1) \Big|_{b=a+1}^{n} \\ = & = 2\ln(n-a+1) - 2\ln 2 \\ \approx & 2\ln(n-a+1) \\ = & = 2\ln(n-a+1) \\ = & =$$

 $=O(n\ln n)$

Variance of a sum

The variance of a sum of random variables is equal to the sum of pairwise covariances (including variances and double-counted pairs).

$$\operatorname{Var}\left(\sum_{i=1}^{n} \boldsymbol{X}_{i}\right) = \operatorname{Cov}\left(\sum_{i=1}^{n} \boldsymbol{X}_{i}, \sum_{j=1}^{n} \boldsymbol{X}_{j}\right)$$

$$= \sum_{i=1}^{n} \operatorname{Var}\left(\boldsymbol{X}_{i}\right) + 2 \sum_{i=1}^{n} \sum_{j=i+1}^{n} \operatorname{Cov}\left(\boldsymbol{X}_{i}, \boldsymbol{X}_{j}\right)$$

note: independent ⇒ Cov = 0

Sample mean

A sample mean is an average of random variables drawn (usually independently) from the same distribution.

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_{i}$$

Parameter estimation

Sometimes we **don't know** things like the expectation and variance of a distribution; we have to **estimate** them from incomplete information.

Unbiased estimator

An **unbiased estimator** is a random variable that has **expectation** equal to the quantity you are estimating.

$$E[\bar{X}] = \mu = E[X_i]$$

Variance of the sample mean

The **sample mean** is a random variable; it can differ among samples. That means it has a **variance**.

$$\operatorname{Var}(\overline{X}) = \frac{\sigma^2}{n}$$

Sample variance

Samples can be used to **estimate the** variance of the <u>original</u> distribution.

$$S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})^2$$

Variance of the sample mean

- Is a single number
- Shrinks with number of samples $\left(=\frac{\sigma^2}{n}\right)$
- Measures the stability of an estimate

VS.

Sample variance

- Is a random variable
- Constant with number of samples $(\approx \sigma^2)$
- Is an estimate (of a variance) itself

p-values

A **p-value** gives the probability of an extreme result, assuming that any extremeness is due to chance.

$$p = P(|\bar{X} - \mu| > d|H_0)$$

Bootstrapping

Bootstrapping allows you to compute complicated statistics from samples using simulation.

Bootstrap for p-values

```
def pvalue bootstrap(sample1, sample2):
    n = len(sample1)
   m = len(sample2)
    observed diff = abs(np.mean(sample2) -
                        np.mean(sample1))
    universal pmf = sample1 + sample2
    count extreme = 0
    for i in range(10000):
        resample1 = np.random.choice(universal pmf, n)
        resample2 = np.random.choice(universal pmf, m)
        new diff = abs(np.mean(resample2) -
                       np.mean(resample1))
        if new diff >= observed diff:
            count extreme += 1
    return count extreme / 10000.
```

Markov's inequality

Knowing the **expectation** of a **non-negative** random variable lets you bound the probability of **high** values for that variable.

$$X \ge 0 \Rightarrow P(X \ge a) \le \frac{E[X]}{a}$$

Chebyshev's inequality

Knowing the expectation and variance of a random variable lets you bound the probability of **extreme** values for that variable.

$$P(|X-\mu| \ge k) \le \frac{\sigma^2}{k^2}$$

One-sided Chebyshev's inequality

$$P(X \ge \mu + a) \le \frac{\sigma^2}{\sigma^2 + a^2}$$

$$P(X \le \mu - a) \le \frac{\sigma^2}{\sigma^2 + a^2}$$

Jensen's inequality

The expectation of a **convex function** of a random variable can't be less than the value of the function applied to the expectation.

Law of large numbers

A sample mean will converge to the true mean if you take a large enough sample.

$$\lim_{n \to \infty} P(|\bar{X} - \mu| \ge \varepsilon) = 0$$

$$P(\lim_{n \to \infty} (\bar{X}) = \mu) = 1$$

Consistent estimator

An **consistent estimator** is a random variable that has a **limit** (as number of samples gets large) equal to the quantity you are estimating.

$$\lim_{n\to\infty} P(|\hat{\theta} - \theta| < \varepsilon) = 1$$

Review: Central limit theorem

Sums and **averages** of IID random variables are **normally distributed**.

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_{i} \sim N(\mu, \frac{\sigma^{2}}{n})$$

$$Y = n \bar{X} = \sum_{i=1}^{n} X_{i} \sim N(n\mu, n\sigma^{2})$$

Easily-confused principles

Constant multiple of a normal

Sum of identical normals

CLT

$$X \sim N(\mu, \sigma^2)$$

$$X_i \sim N(\mu, \sigma^2)$$

 $X_i \sim ???$

(independent & identical)

(independent & identical)

$$n \times N (n \mu, n^2 \sigma^2)$$

$$\sum_{i=1}^{n} X_{i} \sim N(n\mu, n\sigma^{2})$$

$$\sum_{i=1}^{n} X_{i} \sim N(n\mu, n\sigma^{2})$$

(exactly)

(approximately, for large *n*)

Parameters

θ

$$X \sim \begin{cases} \text{Ber}(p) & \theta = p \\ \text{Poi}(\lambda) & \theta = \lambda \end{cases}$$

$$\text{Uni}(a, b) & \theta = [a, b]$$

$$\text{N}(\mu, \sigma^2) & \theta = [\mu, \sigma^2]$$

Maximum likelihood estimation

Choose parameters that **maximize** the likelihood (**joint probability given parameters**) of the example data.

$$\hat{\boldsymbol{\theta}} = \arg \max_{\boldsymbol{\theta}} LL(\boldsymbol{\theta})$$

How to: MLE

1. Compute the likelihood.

$$L(\theta) = P(X_1, \dots, X_m | \theta)$$

2. Take its log.

$$LL(\theta) = \log L(\theta)$$

3. Maximize this as a function of the parameters.

$$\frac{d}{d\theta}LL(\theta)=0$$

Maximum likelihood for Bernoulli

The maximum likelihood *p* for **Bernoulli** random variables is the **sample mean**.

$$\hat{p} = \frac{1}{m} \sum_{i=1}^{m} X_i$$

Maximum likelihood for normal

The maximum likelihood μ for **normal** random variables is the **sample mean**, and the maximum likelihood σ^2 is the "uncorrected" **mean square deviation**.

$$\hat{\mu} = \frac{1}{m} \sum_{i=1}^{m} X_i$$
 $\hat{\sigma}^2 = \frac{1}{m} \sum_{i=1}^{m} (X_i - \hat{\mu})^2$

Maximum likelihood for uniform

The maximum likelihood a and b for uniform random variables are the minimum and maximum of the data.

$$\hat{a} = \min_{i} X_{i}$$
 $\hat{b} = \max_{i} X_{i}$

$$\hat{b} = \max_{i} X_{i}$$

Maximum a posteriori estimation

Choose the **most likely** parameters **given the example data**. You'll need a **prior probability** over the parameters.

$$\hat{\theta} = \arg \max_{\theta} P(\theta | X_1, ..., X_n)$$

$$= \arg \max_{\theta} \left[LL(\theta) + \log P(\theta) \right]$$

Laplace smoothing

Also known as **add-one** smoothing: assume you've seen one "imaginary" occurrence of each possible outcome.

$$p_i = \frac{\#(X=i)+1}{n+m}$$

or: "add-k" smoothing (if you believe equally likely is more plausible)

$$p_i = \frac{\#(X=i)+k}{n+mk}$$

Parameter priors

```
X \sim \begin{cases} Ber(p) \\ Bin(n, p) \\ MN(p) \\ Poi(\lambda) \\ Exp(\lambda) \\ N(\mu, \sigma^2) \end{cases}
                                                                p \sim \text{Beta}(a, b)
                                                               p ~ Beta(a, b)
                                                                p \sim Dir(a)
                                                                \lambda \sim \text{Gamma}(k, \theta)
                                                                \lambda \sim \text{Gamma}(k, \theta)
                                                                \mu \sim N(\mu', \sigma'^2)

\sigma^2 \sim InvGamma(\alpha, \beta)
```

Classification

The most basic machine learning task: predict a **label** from a vector of **features**.

$$\hat{y} = \arg \max_{y} P(Y = y | \vec{X} = \vec{x})$$

Naïve Bayes

A classification algorithm using the assumption that features are **conditionally independent** given the label.

$$\hat{y} = \arg \max_{y} \hat{P}(\mathbf{Y} = y) \prod_{j} \hat{P}(\mathbf{X}_{j} = x_{j} | \mathbf{Y} = y)$$

Three secret ingredients

1. Maximum likelihood or maximum a posteriori for conditional probabilities.

$$\hat{P}(X_j = x_j | Y = y) = \frac{\#(X_j = x_j, Y = y)[+1]}{\#(Y = y)[+2]}$$

2. "Naïve Bayes assumption": features are independent conditioned on the label.

$$\hat{P}(\vec{X} = \vec{x}|Y = y) = \prod_{j} \hat{P}(X_{j} = x_{j}|Y = y)$$

3. (Take logs for numerical stability.)

Logistic regression

A classification algorithm using the assumption that **log odds** are a linear function of the features.

$$\hat{y} = \arg \max_{y} \frac{1}{1 + e^{-\vec{\theta}^T \vec{x}}}$$

Predicting 0/1 with the logistic

Logistic regression: Pseudocode

```
initialize: \theta = [0, 0, ..., 0] (m elements)
repeat many times:
     qradient = [0, 0, ..., 0] (m elements)
     for each training example (x^{(i)}, y^{(i)}):
          for j = 0 to m:
                gradient[j] += [y^{(i)} - \sigma(\vec{\theta}^T \vec{x}^{(i)})] x_i^{(i)}
     for j = 0 to m:
          \theta[j] += \eta * gradient[j]
return A
```

Gradient ascent

An algorithm for computing an arg max by taking small steps uphill (i.e., in the direction of the gradient of the function).

Feedforward neural network

An algorithm for classification or regression that uses layers of logistic regressions to discover its own features.

$$\hat{\mathbf{y}} = \sigma(\boldsymbol{\theta}^{(\hat{\mathbf{y}})} \sigma(\boldsymbol{\theta}^{(h)} \vec{\mathbf{x}}))$$

