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Announcement: Problem Set #6

Due today!

That’s all, folks!

Congressional votng Heart disease
diagnosis



  

Announcements: Final exam

This Saturday, August 19, 12:15-3:15pm
in NVIDIA Auditorium
(pending maintenance)

Two pages (both sides) of notes

All material in the class through Monday

Review session:
Today afer lecture, 2:30-3:20 in Huang 18



  

Two envelopes: A resoluton

$X $2X

“I’m trying to think: how likely 
is it that you would have put 

$40 in an envelope?

E [W∣Y= y , stay ]= y

Y = y: amount in envelope chosen

E [W∣Y= y , switch ]=
y
2
⋅P (X=

y
2
∣Y= y)+2 y⋅P(X= y∣Y= y)

not necessarily 0.5!

P(X= y∣Y= y)=
P (X= y)

P(X= y)+P(X= y /2)



  

Two envelopes: A resoluton

$X $2X

“I’m trying to think: how likely 
is it that you would have put 

$40 in an envelope?

E [W∣Y= y , stay ]= y

Y = y: amount in envelope chosen

E [W∣Y= y , switch ]=
y
2
⋅P (X=

y
2
∣Y= y)+2 y⋅P(X= y∣Y= y)

not necessarily 0.5!

P(X= y∣Y= y)=
P (X= y)

P(X= y)+P(X= y /2)

prior: if all equally likely, then this will be 0.5

P(X= y)=C ?

∑
y

P (X= y)=∑
y

C=1

∞⋅C=1???



  

Logistc regression

A classifcaton algorithm using the 
assumpton that log odds are a 
linear functon of the features.

ŷ=
1

1+e−θ⃗
T x⃗



  

Review: The logistc functon

σ(z)=
1

1+e−z

z

z=logof

p=
o f

of+1
=

1

1+ 1
o f

=
1

1+e−log (o f )

=
1

1+e−z

=σ(z)



  

Review: Logistc regression 
assumpton

P(Y=1∣X⃗= x⃗)=σ(θ⃗T x⃗)=
1

1+e−θ⃗
T x⃗

θ⃗
T x⃗=log of (Y=1∣X⃗= x⃗)

or in other words:

z=logof

p=σ(z)

θ⃗
T x⃗=θ⃗⋅⃗x=θ0⋅1+θ1 x1+θ2 x2+⋯+θm xm

=∑
i=0

m

θi xi

(x0=1)



  

Review: Gradient ascent

An algorithm for computng an  
arg max by taking small steps 
uphill (i.e., in the directon of the 
gradient of the functon).

θ⃗← θ⃗+η⋅∇ θ⃗ f (θ⃗)

x 0

x 1

x 2

x 3
x 4

*

*



  

Review: Logistc regression algorithm

initialize: θ = [0, 0, …, 0]  (m elements)

repeat many times:
    gradient = [0, 0, …, 0]  (m elements)

    for each training example (x(i), y(i)):
        for j = 0 to m:
            
            gradient[j] += 

    for j = 0 to m:
        θ[j] += η * gradient[j]

return θ

[ y(i)−σ(θ⃗T x⃗(i))] x⃗ j
(i)



  

Your brain on logistc regression

dendrites:
take a weighted sum 
of incoming stmuli

with electric potental

axon:
carries outgoing 
pulse if potental 

exceeds a threshold

Cauton: Just a (greatly simplifed) 
model! All models are wrong—but 
some are useful...

p=σ(z)

z=θ⃗T x⃗(i)



  

input 
layer

hidden 
layer

output 
layer

A simple neural network

Feedforward neural network

An algorithm for classifcaton or 
regression that uses layers of 
logistc regressions to discover its 
own features.

ŷ=σ(θ( ŷ)σ(θ(h) x⃗))



  

A cartoon of logistc regression

x⃗ ŷ=σ(θ⃗T x⃗)



  

ŷ>0.5

ŷ<0.5

x₂

x₁

Logistc regression is linear



  

ŷ>0.5

ŷ<0.5

x₂

x₁

Logistc regression is linear



  

Logistc regression is linear

ŷ>0.5

ŷ<0.5

x₃

x₁

x₃ = ( x₁ – x₂ )²
linear combinaton

of features

non-linear functon



  

A cartoon of logistc regression

x⃗ ŷ=σ(θ⃗T x⃗)
linear

combinaton
of features

non-linear functon



  

Stacking logistc regression

x⃗ h⃗=σ(θ(h) x⃗) ŷ=σ(θ⃗( ŷ)T h⃗)



  

Unpacking the linear algebra

x⃗

h⃗=σ(θ(h) x⃗)

hi=σ(∑
j=0

m

θi , j
(h) x j)

h⃗

matrix vector

vector

vector



  

Stacking logistc regression

x⃗ h⃗=σ(θ(h) x⃗) ŷ=σ(θ⃗( ŷ)T h⃗)

0

1

0

1

0

0.1

0.9

0.4

0.2

0.1

output
class label

input 
features

hidden
representaton

“learning 
its own 
features”



  

Maximum likelihood with neural nets

x⃗ h⃗=σ(θ(h) x⃗) ŷ=σ(θ⃗( ŷ)T h⃗)

0

1

0

1

0

0.1

0.9

0.4

0.2

0.1

L(θ)=P(X(1) ,…, X (n) ,Y (1) ,…,Y (n)
∣θ)

=∏
i=1

n

P(X (i) ,Y (i)
∣θ)

=∏
i=1

n

ŷ y(i)
(1− ŷ)1− y(i)P(X(i)

)



  

Maximum likelihood with neural nets

x⃗ h⃗=σ(θ(h) x⃗) ŷ=σ(θ⃗( ŷ)T h⃗)

0

1

0

1

0

0.1

0.9

0.4

0.2

0.1

L(θ)=∏
i=1

n

ŷ y(i)
(1− ŷ)1− y( i)P (X (i)

)

LL(θ)=∑
i=1

n

[ y(i) log ŷ(i)+(1− y(i)) log (1− ŷ(i))+log P(X (i)
)]



  

Maximum likelihood with neural nets

L(θ)=∏
i=1

n

ŷ y(i)
(1− ŷ)1− y( i)P (X (i)

)

LL(θ)=∑
i=1

n

[ y(i) log ŷ(i)+(1− y(i)) log (1− ŷ(i))+log P(X (i)
)]

∂

∂θ j
( ŷ)

LL(θ)=∑
i=1

n
∂

∂θ j
( ŷ) [ y

(i) log ŷ(i)+(1− y(i)) log (1− ŷ(i))]

=∑
i=1

n

[ y
(i)

ŷ(i)
−
(1− y(i))

(1− ŷ(i)) ]
∂ ŷ(i)

∂θ j
( ŷ)

=∑
i=1

n

[ y
(i)

ŷ(i)
−
(1− y(i))

(1− ŷ(i)) ] ∂

∂θ j
( ŷ)
σ(θ̂

( ŷ )T h⃗)

=∑
i=1

n

[ y
(i)

ŷ(i)
−
(1− y(i))

(1− ŷ(i)) ] ŷ(i)(1− ŷ(i))h j



  

Maximum likelihood with neural nets

L(θ)=∏
i=1

n

ŷ y(i)
(1− ŷ)1− y( i)P (X (i)

)

LL(θ)=∑
i=1

n

[ y(i) log ŷ(i)+(1− y(i)) log (1− ŷ(i))+log P(X (i)
)]

∂

∂ ŷ(i)
LL(i)(θ) ∂ ŷ(i)

∂ z(i)
∂ z(i)

∂θ j
( ŷ)

∂

∂θ j , k
(h)

LL(θ)=∑
i=1

n

[ y
(i)

ŷ(i)
−
(1− y(i))

(1− ŷ(i)) ] ŷ(i)(1− ŷ(i))θ j
( ŷ)h j(1−h j)xk

∂

∂ ŷ(i)
LL(i)(θ) ∂ ŷ(i)

∂ z(i)
∂ z(i)

d h j
(i)

d h j
(i)

∂θ j , k
(h)

∂

∂θ j
( ŷ)

LL(θ)=∑
i=1

n

[ y
(i)

ŷ(i)
−
(1− y(i))

(1− ŷ(i)) ] ŷ(i)(1− ŷ(i))h j



  

Automatc diferentaton



  

Breaking the symmetry

x⃗ h⃗=σ(θ(h) x⃗) ŷ=σ(θ⃗( ŷ)T h⃗)

0

1

0

1

0

0.1

0.9

0.4

0.2

0.1

output
class label

input 
features

hidden
representaton



  

Breaking the symmetry

x⃗ h⃗=σ(θ(h) x⃗) ŷ=σ(θ⃗( ŷ)T h⃗)

0

1

0

1

0

0.1

0.9

0.2

0.4

0.1

output
class label

input 
features

hidden
representaton



  

Expanding the toolbox

non-binary outputs



  

Applicatons: Image recogniton



  

Expanding the toolbox

non-binary outputs convolutonal layers



  

Applicatons: Image recogniton

right: Russakovsky et al. (2015)



  

ŷ₁ ŷ₂ ŷ₃

Expanding the toolbox

h₁ h₂ h₃

x₁ x₂ x₃

non-binary outputs

recurrent connectons

convolutonal layers



  

Applicatons: Speech recogniton

who is the current president of France?



  

ŷ₁ ŷ₂ ŷ₃

Expanding the toolbox

h₁ h₂ h₃

x₁ x₂ x₃

x

x
0

non-binary outputs

recurrent connectons

convolutonal layers

fancy maximizaton



  

Break tme!



  

General principle of countng

An experiment consistng of two or more 
separate parts has a number of outcomes 
equal to the product of the number of 
outcomes of each part.

|A1×A2×⋯×An|=∏
i

|A i|

colors: 3

shapes: 4

total:
4 · 3 = 12



  

Principle of Inclusion/Exclusion

The total number of elements in two sets is the 
sum of the number of elements of each set,
minus the number of elements in both sets.

|A∪B|=|A|+|B|−|A∩B|

3 4

3+4-1 = 6



  

Inclusion/exclusion with
more than two sets

|⋃
i=1

n

Ei|=∑
r=1

n

(−1)(r+1) ∑
i1<⋯< ir

|⋂
j=1

r

Ei j|

size of
the union

sum over
subset
sizes

add or
subtract

(based on size)

size of
intersectons

sum over
all subsets
of that size



  

General Pigeonhole Principle

If m objects are placed in n buckets, 
then at least one bucket must 
contain at least ⌈m/n  objects.⌉

n = 5 buckets

m = 7 objects

⌈m/n  = 2⌉



  

Permutatons

The number of ways of ordering
n distnguishable objects.

n !     =1⋅2⋅3⋅...⋅n=∏
i=1

n

i



  

Permutatons with
indistnct elements

( n
k1 , k2 ,…, km

)    =
n !

k1!k2 !…km!

k
2
 identcal

n

The number of ways of ordering n. objects, 
where some groups are indistnguishable.

k
1
 identcal



  

Combinatons

(nk )    =
n !

k !(n−k )!

choose k

n

The number of unique subsets of size k from a 
larger set of size n.
   (objects are distnguishable, unordered)



  

Bucketng

The number of ways of assigning n  
distnguishable objects to a fxed
set of k buckets or labels.

kn

k buckets

n objects



  

Divider method

The number of ways of assigning n  
indistnguishable objects to a fxed
set of k buckets or labels.

(n+(k−1)
n )

k buckets

n objects

(k - 1 dividers)



  

A grid of ways of countng

kn(nk)n !

n !
k1! k2!…km !

(n+(k−1)
n )1 1

Creatvity!
– Split into cases
– Use inclusion/exclusion
– Reframe the problem

Ordering Subsets Bucketng

All
distnct

Some
indistnct

All
indistnct



  

Axioms of probability

0≤P(E)≤1

P(S)=1

P(E∪F)=P(E)+P(F)
If E∩F=∅ ,    then

(1)

(2)

(3)

(Sum rule, but with probabilites!)



  

How do I get started?

For word problems involving probability,
start by defning events!

https://arxiv.org/abs/1409.0575


  

Getting rid of ORs

Finding the probability of an OR of events 
can be nasty. Try using De Morgan's laws 
to turn it into an AND!

P(A∪B∪⋯∪Z )=1−P(AcBc
⋯Zc

)

E F

S



  

Defniton of conditonal probability

The conditonal probability P(E | F) is the 
probability that E happens, given that F 
has happened. F is the new sample space.

P(E|F )=
P(EF)
P(F)

E F

S

EF



  

Chain rule of probability

The probability of both events happening
is the probability of one happening tmes 
the probability of the other happening 
given the frst one.

P(EF )=P (F)P(E|F )

E F

S

EF F

S

EF Fx=



  

General chain rule of probability

The probability of all events happening
is the probability of the frst happening
tmes the prob. of the second given the frst
tmes the prob. of the third given the frst two
...etc.

P(EFG…)=P(E)P(F|E)P(G|EF)…



  

Law of total probability

You can compute an overall probability 
by adding up the case when an event 
happens and when it doesn't happen.

P(F )=P(EF)+P(EC F)

P(F )=P(E)P(F|E)+P(EC
)P(F|EC

)

EF +F

S

=

S

EcF

S



  

General law of total probability

You can compute an overall probability 
by summing over mutually exclusive and 
exhaustve sub-cases.

P(F )=∑
i

P(EiF )

E
1

F
S

P(F )=∑
i

P(E i)P(F|E i)

E
2

E
3

E
4

E
2
F

E
3
FE

4
F

E
1
F



  

Bayes' theorem

You can “fip” a conditonal probability 
if you multply by the probability of 
the hypothesis and divide by the 
probability of the observaton.

P(E|F )=
P(F|E)P (E)

P(F )



  

Finding the denominator

If you don't know P(F) on the botom,
try using the law of total probability.

P(E|F )=
P(F|E)P(E)

P(F|E)P (E)+P(F|Ec
)P(Ec

)

P(E|F )=
P(F|E)P(E)

∑
i

P(F|Ei)P(Ei)



  

Independence

Two events are independent if you can 
multply their probabilites to get the 
probability of both happening.

P(EF )=P (E)P(F )
⇔

E⊥F

E

F

S

(“independent of”)

EF



  

Conditonal independence

Two events are conditonally independent if you can 
multply their conditonal probabilites to get the 
conditonal probability of both happening.

P(EF|G)=P(E|G)P(F|G)
⇔

(E⊥F )|G

E

F

G

EF



  

Random variables

A random variable takes on 
values probabilistcally.

P(X=2)=
1

36

P(X= x)

x



  

How do I get started?

For word problems involving probability,
start by defning events and random variables!



  

Probability mass functon

The probability mass functon 
(PMF) of a random variable is 
a functon from values of the 
variable to probabilites.

P(Y=k )

k

pY (k )=P(Y=k)



  

Cumulatve distributon functon

The cumulatve distributon functon 
(CDF) of a random variable is a functon 
giving the probability that the random 
variable is less than or equal to a value.

P(Y≤k )

k

FY (k)=P(Y≤k)

2 3 4 5 6 7 8 9 10 11 12
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1



  

Expectaton

The expectaton of a random variable is 
the “average” value of the variable 
(weighted by probability).

E [X ]= ∑
x : p(x)>0

p(x)⋅x

P(X=x)

x

E[X] = 7



  

Linearity of expectaton

Adding random variables or 
constants? Add the expectatons. 
Multplying by a constant? Multply 
the expectaton by the constant.

E [aX+bY +c ]=aE [X ]+bE [Y ]+c

X

2X

2X + 4



  

Indicator variable

An indicator variable is a “Boolean” 
variable, which takes values 0 or 1 
corresponding to whether an event 
takes place.

I=�[A ]={1 if event A  occurs
0 otherwise



  

Variance

Variance is the average square of 
the distance of a variable from the 
expectaton. Variance measures 
the “spread” of the variable.

Var(X )=E [(X−E [X ])2]

P(X=x)

x

E[X]

=E [X2
]−(E [X ])2

Var(X) ≈ (2.42)2



  

Standard deviaton

Standard deviaton is the (“root-
mean-square”) average of the 
distance of a variable from the 
expectaton.

SD(X )=√Var(X )=√E [(X−E [X ])2]

P(X=x)

x

E[X]

SD(X) ≈ 2.42



  

Variance of a linear functon

Adding a constant? Variance doesn't change. 
Multplying by a constant? Multply the 
variance by the square of the constant.

Var(aX+b)=E [(aX+b)2]−(E [aX+b ])2

=a2 Var(X )

=a2
[E [X 2

]−(E [X ])2]

=a2E [X2
]+2ab E [X ]+b2

           −[a2
(E [X ])2+2abE [X ]+b2

]

=a2E [X2
]−a2

(E [X ])2

=E [a2 X2
+2abX+b2

]−(aE [X ]+b)2



  

Basic distributons

X∼Bin (n , p)

Many types of random variables 
come up repeatedly. Known 
frequently-occurring distributons 
lets you do computatons without 
deriving formulas from scratch.

family parametersvariable

We have ________ independent _________,
                  INTEGER                          PLURAL NOUN

each of which ________ with probability
                     VERB ENDING IN -S

________. How many of the ________ 
REAL NUMBER                                              REPEAT PLURAL NOUN

________?
REPEAT VERB -S



  

Bernoulli random variable

An indicator variable (a possibly 
biased coin fip) obeys a Bernoulli 
distributon. Bernoulli random 
variables can be 0 or 1.

X∼Ber ( p)

pX (1)=p
pX (0)=1−p        (0 elsewhere)



  

Bernoulli: Fact sheet

probability of “success” (heads, ad click, ...)

X∼Ber ( p)
?

image (right): Gabriela Serrano

PMF:

expectaton: E [X ]=p

variance: Var(X )=p(1−p)

pX (1)=p
pX (0)=1−p        (0 elsewhere)



  

Binomial random variable

The number of heads on n 
(possibly biased) coin fips obeys a 
binomial distributon.

pX (k)={(
n
k) p

k
(1−p)n−k if k∈ℕ ,0≤k≤n

0 otherwise

X∼Bin (n , p)



  

Binomial: Fact sheet

probability of “success” (heads, crash, ...)

X∼Bin (n , p)

PMF:

expectaton: E [X ]=np

variance: Var(X )=np(1−p)

number of trials (fips, program runs, ...)

Ber(p)=Bin (1 , p)note:

pX (k )={(
n
k) p

k
(1−p)n−k if k∈ℕ ,0≤k≤n

0 otherwise



  

Poisson random variable

The number of occurrences of an 
event that occurs with constant 
rate λ (per unit tme), in 1 unit of 
tme, obeys a Poisson distributon.

pX(k)={e
−λ λ

k

k !
if x∈ℤ , x≥0

0 otherwise

X∼Poi (λ)



  

Poisson: Fact sheet

rate of events (requests, earthquakes,
                        chocolate chips, …)
per unit tme (hour, year, cookie, ...)

X∼Poi (λ)

PMF:

expectaton: E [X ]=λ

variance: Var(X )=λ

pX (k )={e
−λ λ

k

k !
if k∈ℤ , k≥0

0 otherwise



  

Poisson approximaton of binomial

P(X=k )

k

λ=np



  

Geometric random variable

The number of trials it takes to get 
one success, if successes occur 
independently with probability p, 
obeys a geometric distributon.

X∼Geo( p)

pX (k )={(1−p)k−1
⋅p if k∈ℤ ,k≥1

0 otherwise



  

Geometric: Fact sheet

PMF:

expectaton: E [X ]=
1
p

variance: Var(X )=
1−p
p2

pX (k )={(1−p)k−1
⋅p if k∈ℤ ,k≥1

0 otherwise

X∼Geo( p)

probability of “success” (catch, heads, crash, ...)

CDF: F X (k )={1−(1−p)k if k∈ℤ , k≥1
0 otherwise



  

Negatve binomial random variable

The number of trials it takes to get r 
successes, if successes occur 
independently with probability p, 
obeys a negatve binomial distributon.

pX (n)={(
n−1
r−1) p

r
(1−p)n−r if n∈ℤ , n≥r

0 otherwise

X∼NegBin (r , p)



  

Negatve binomial: Fact sheet

PMF:

expectaton: E [X ]=
r
p

variance: Var(X )=
r (1−p)

p2

pX (n)={(
n−1
r−1) p

r
(1−p)n−r if n∈ℤ , n≥r

0 otherwise

probability of “success”

X∼NegBin (r , p)

number of sucesses (heads, crash, ...)

number of trials (fips, 
program runs, ...)

Geo(p)=NegBin (1 , p)
note:



  

Contnuous random variables

A contnuous random variable has a 
value that’s a real number (not 
necessarily an integer).

Replace sums with integrals!

P(a<X≤b)=F X (b)−F X (a)

F X (a)= ∫
x=−∞

a

dx  f X (x)



  

Probability density functon

The probability density functon (PDF) 
of a contnuous random variable 
represents the relatve likelihood of 
various values.

Units of probability divided by units of X. 
Integrate it to get probabilites!

P(a<X≤b)=∫
x=a

b

dx  f X (x)



  

f(x) is not a probability

Rather, it has “units” of probability
divided by units of X.

2:00pm 2:20pm 2:30pm

2 min  ×

f(x) ≈
0.05 prob/min

= 0.1 prob



  

Uniform random variable

A uniform random variable is 
equally likely to be any value in 
a single real number interval.

f X (x)={
1

β−α
if x∈[α ,β]

0 otherwise

X∼Uni(α ,β)



  

Uniform: Fact sheet

PDF:

expectaton: E [X ]=
α+β

2

variance: Var(X )=
(β−α)

2

12

maximum value

minimum value

X∼Uni(α ,β)

f X (x)={
1

β−α
if x∈[α ,β]

0 otherwise

CDF: F X (x)={
x−α
β−α

if x∈[α ,β]

1 if x>β
0 otherwise

image: Haha169



  

Exponental random variable

An exponental random variable 
is the amount of tme untl the 
frst event when events occur 
as in the Poisson distributon.

f X (x)={λ e
−λ x if x≥0
0 otherwise

X∼Exp(λ)

image: Adrian Sampson



  

Exponental: Fact sheet

PDF:

expectaton: E [X ]=
1
λ

variance: Var(X )=
1
λ

2

tme untl frst event

rate of events per unit tme

X∼Exp(λ)

CDF:

image: Adrian Sampson

f X (x)={λ e
−λ x if x≥0
0 otherwise

F X (x)={1−e−λ x if x≥0
0 otherwise

https://www.flickr.com/photos/gabrielaserrano/6336519698


  

A grid of random variables

X∼Geo( p)

number of successes tme to get successes

One
trial

Several
trials

Interval
of tme X∼Exp(λ)

One
success

Several
successes

One success 
afer interval 

of tme

X∼NegBin (r , p)

X∼Ber(p)

X∼Bin(n , p)

X∼Poi(λ)

n = 1

One
success

One
success

r = 1



  

Normal random variable

An normal (= Gaussian) random variable is 
a good approximaton to many other 
distributons. It ofen results from sums or 
averages of independent random variables.

X∼N (μ ,σ2
)

f X (x)=
1

σ √2π
e
−

1
2 (

x−μ
  σ )

2



  

Normal: Fact sheet

PDF:

expectaton: E [X ]=μ

variance: Var(X )=σ2

mean

X∼N (μ ,σ2
)

CDF:

f X (x)=
1

σ √2π
e
−

1
2 (

x−μ
  σ )

2

F X (x)=Φ (
x−μ
σ )=∫

−∞

x

dx f X (x)

variance (σ = standard deviaton)

(no closed form)



  

The Standard Normal

Z∼N (0,1)

μ σ²

X∼N (μ ,σ2
) X=σ Z+μ

Z=
X−μ
σ

Φ(z)=FZ(z)=P(Z≤z)



  

Normal approximaton to binomial

P(X=k )

k

large n, medium p

Bin (n , p)≈N (μ ,σ2
)



  

Contnuity correcton

When approximatng a discrete distributon with 
a contnuous distributon, adjust the bounds by 
0.5 to account for the missing half-bar.

P(X≥55)≈P(Y >54.5)

X∼Bin (n , p)
Y∼N (np ,np(1−p))



  

Joint distributons

A joint distributon combines 
multple random variables. Its PDF 
or PMF gives the probability or 
relatve likelihood of both random 
variables taking on specifc values.

pX ,Y (a ,b)=P(X=a ,Y=b)



  

Joint probability mass functon

A joint probability mass functon 
gives the probability of more than 
one discrete random variable each 
taking on a specifc value (an AND 
of the 2+ values).

pX ,Y (a ,b)=P(X=a ,Y=b)

0
1

2

0.05
0.10
0.05

0.20
0.10
0.10

0.10
0.10
0.20

0 1 2
Y

X



  

Joint probability density functon

A joint probability density functon 
gives the relatve likelihood of 
more than one contnuous 
random variable each taking on a 
specifc value.

P(a1<X≤a2,b1<Y≤b2)=

∫
a1

a2

dx∫
b1

b2

dy f X ,Y (x , y)



  

Marginalizaton

Marginal probabilites give the 
distributon of a subset of the variables 
(ofen, just one) of a joint distributon.

Sum/integrate over the variables you 
don’t care about.

pX (a)=∑
y

pX ,Y (a , y)

f X (a)=∫
−∞

∞

dy f X ,Y (a , y)



  

Joint cumulatve distributon functon

F X ,Y (x , y)=P(X≤x ,Y≤ y)

x

y

to 0 as
x → -∞,
y → -∞,

to 1 as
x → +∞,
y → +∞,

plot by Academo



  

Multnomial random variable

An multnomial random variable 
records the number of tmes each 
outcome occurs, when an 
experiment with multple outcomes 
(e.g. die roll) is run multple tmes.

X1 ,…, Xm∼MN (n , p1, p2,…, pm)

P(X1=c1 , X2=c2 ,…, Xm=cm)

=( n
c1 , c2 ,…, cm) p1

c1 p2
c2… pm

cmvector!



  

Independence of
discrete random variables

Two random variables are 
independent if knowing the value 
of one tells you nothing about the 
value of the other (for all values!).

X⊥Y  iff ∀ x , y :

P(X=x ,Y= y)=P(X=x)P(Y= y)
- or -

pX ,Y (x , y)=pX (x) pY ( y)



  

Independence of
contnuous random variables

Two random variables are 
independent if knowing the value 
of one tells you nothing about the 
value of the other (for all values!).

X⊥Y  iff ∀ x , y :

f X ,Y (x , y)=f X (x) f Y ( y)
- or -

F X ,Y (x , y)=FX (x)FY ( y)
- or -

f X ,Y (x , y)=g(x)h( y)

https://commons.wikimedia.org/wiki/File:Stanford_shuttle_caltrain.jpg


  

Convoluton

A convoluton is the 
distributon of the sum of two 
independent random variables.

f X+Y (a)=∫
−∞

∞

dy f X (a− y) f Y ( y)

https://www.flickr.com/photos/adrian_s/23939804


  

Sum of independent binomials

X∼Bin (n , p) Y∼Bin (m, p)

n fips m fips
X: number of heads
in frst n fips

Y: number of heads
in next m fips

X+Y∼Bin (n+m, p)

More generally:

X i∼Bin (ni , p)   ⇒   ∑
i=1

N

X i∼Bin (∑
i=1

N

ni , p)
all X i   independent

https://www.flickr.com/photos/adrian_s/23939804


  

Sum of independent Poissons

X∼Poi (λ1) Y∼Poi (λ2)

λ₁ chips/cookie
X: number of chips
in frst cookie

Y: number of chips
in second cookie

X+Y∼Poi (λ1+λ2)

More generally:

X i∼Poi(λi)   ⇒   ∑
i=1

N

X i∼Poi(∑
i=1

N

λ i)

λ₂ chips/cookie

all X i   independent



  

Sum of independent normals

More generally:

X∼N (μ1 ,σ1
2
) Y∼N (μ2 ,σ2

2
)

X+Y∼N (μ1+μ2 ,σ1
2
+σ2

2
)

X i∼N (μi ,σi
2
)   ⇒   ∑

i=1

N

X i∼N (∑
i=1

N

μi ,∑
i=1

N

σ i
2)

all X i   independent



  

=∫
0

1

dy f X (a− y) f Y ( y)

Sum of independent uniforms

f X+Y (a)=∫
−∞

∞

dy f X (a− y) f Y ( y)

X∼Uni(0 ,1) Y∼Uni(0,1)

0 1
0

1

0 1
0

1

1

Case 1: if 0 ≤ a ≤ 1, then we need 0 ≤ y ≤ a  (for a – y to be in [0, 1])
Case 2: if 1 ≤ a ≤ 2, then we need a – 1 ≤ y ≤ 1                                 

={
 ∫0

a
dy⋅1=a 0≤a≤1

 ∫a−1

1
dy⋅1=2−a 1≤a≤2

 0 otherwise 0 1 2
0

1



  

Discrete conditonal distributons

The value of a random variable, 
conditoned on the value of some 
other random variable, has a 
probability distributon.

pX∣Y (x , y)=
P(X=x ,Y= y)

P(Y= y)

=
pX ,Y (x , y )

pY ( y)



  

Contnuous conditonal distributons

The value of a random variable, 
conditoned on the value of some 
other random variable, has a 
probability distributon.

f X∣Y (x∣y)=
f X ,Y (x , y)

f Y ( y)



  

Ratos of contnuous probabilites

The probability of an exact value for 
a contnuous random variable is 0.

But ratos of these probabilites are 
stll well-defned!

P (X=a)
P (X=b)

=
f X (a)

f X (b)



  

Beta random variable

An beta random variable models the 
probability of a trial’s success, given 
previous trials. The PDF/CDF let you 
compute probabilites of probabilites!

X∼Beta (a ,b)

f X (x)={C xa−1
(1−x)b−1 if 0<x<1
0 otherwise



  

Beta: Fact sheet

PDF:

expectaton: E [X ]=
a

a+b
variance: Var(X )=

ab
(a+b)2(a+b+1)

number of 
successes + 1

X∼Beta (a ,b)

number of
failures + 1

probability
of success

f X (x)={C xa−1
(1−x)b−1 if 0<x<1
0 otherwise



  

Subjectve priors

f X∣A(x∣a)=
P(A=a|X=x) f X (x)

P(A=a)

X ~ Beta(1, 1)
“prior”

X | A ~ Beta(a + 1, N – a + 1)
“posterior”

How did we decide on
Beta(1, 1) for the prior?

Beta(1, 1): “we haven’t seen any rolls yet.”
Beta(4, 1): “we’ve seen 3 sixes and 0 non-sixes.”
Beta(2, 6): “we’ve seen 1 six and 5 non-sixes.”

Beta prior = “imaginary” previous trials



  

Covariance

The covariance of two 
variables is a measure of how 
much they vary together.

=E [X Y ]−E [X ]E [Y ]

Cov (X ,Y )=E [(X−E [X ])(Y−E [Y ])]



  

Expectaton of a product

If two random variables are independent,
then the expectaton of their product 
equals the product of their expectatons.

X⊥Y   ⇒

E [g(X )h(Y )]=E [g(X )]E [h(Y )]
E [X Y ]=E [X ]E [Y ]

https://academo.org/demos/3d-surface-plotter/?expression=1%2F(1%2Bexp(-x))*1%2F(1%2Bexp(-y))&xRange=-10%2C10&yRange=-10%2C10&resolution=25


  

Correlaton

The correlaton of two variables is a 
measure of the linear dependence 
between them, scaled to always take on 
values between -1 and 1.

ρ(X ,Y )=
Cov (X ,Y )

√Var(X )Var(Y )



  

Conditonal expectaton

One can compute the expectaton of a 
random variable while conditoning on 
the values of other random variables.

E [X|Y= y ]=∑
x

x pX∣Y (x|y)

E [X|Y= y ]=∫
−∞

∞

dx x f X∣Y (x|y)



  

Quicksort

You’ve been told Quicksort is 
O(n log n), “average case”.

Now you get to fnd out why!



  

Quicksort’s ordinary life
Let X = number of comparisons to the pivot.
What is E[X]?

E [X ]=E [∑
a=1

n−1

∑
b=a+1

n

I ab]=∑
a=1

n−1

∑
b=a+1

n

E [ I ab]

1 2 3 4 5 6 7 8

Y 1 Y 2 Y n...

Defne Y₁ … Yₙ = elements in sorted order.

Indicator variables I
ab

 = 1 if Y
a
 and Y

b
 are ever compared.

expected number of events = indicator variables!

=∑
a=1

n−1

∑
b=a+1

n

P(Y a  and Y b  ever compared)
unique pairs



  

Shall I compare thee to...
P( Y

a
 and Y

b
 ever compared) = ?

1 2 3 4 5 6 7 8

Y a Y b

  ∴ P(Y a  and Y b  ever compared)=
2

b−a+1

Case 1:

1 2 3 4 5 6 7 8

Y a Y b

Case 2:

1 2 3 4 5 6 7 8

Y a Y b

Case 3:

yes!

no!

recursive 
call



  

The home stretch
E [X ]=∑

a=1

n−1

∑
b=a+1

n

P(Y a  and Y b  ever compared)

=∑
a=1

n−1

∑
b=a+1

n
2

b−a+1 ∑
b=a+1

n
2

b−a+1
≈ ∫

b=a+1

n

db
2

b−a+1

=[2 ln(b−a+1) ]b=a+1

n

=2 ln (n−a+1)−2 ln 2

≈2 ln(n−a+1) for large n

≈∑
a=1

n−1

2 ln (n−a+1)

≈∫
a=1

n−1

da2 ln (n−a+1)

=−2 ∫
y=n

2

dy ln y

=−2 [ y ln y− y ] y=n
2

=−2[(2 ln 2−2)−(n ln n−n)]
constants lower-order 

term

=O(n lnn)

u=ln y

du=
1
y
dy

v= y

dv=dy
∫u dv=u v−∫v du

∫ ln y dy= y ln y−∫ y
1
y
dy

= y ln y− y+C



  

Variance of a sum

The variance of a sum of random 
variables is equal to the sum of pairwise 
covariances (including variances and 
double-counted pairs).

Var(∑
i=1

n

X i)=Cov (∑
i=1

n

X i ,∑
j=1

n

X j)
=∑

i=1

n

Var (X i )+2∑
i=1

n

∑
j=i+1

n

Cov (X i , X j )

note: independent  Cov = 0⇒



  

Sample mean

A sample mean is an average of random 
variables drawn (usually independently) 
from the same distributon.

X̄=
1
n∑i=1

n

X i



  

Parameter estmaton

Sometmes we don’t know things like 
the expectaton and variance of a 
distributon; we have to estmate 
them from incomplete informaton.

X̄=
1
n∑i=1

n

X i

θ̂=arg max
θ

LL(θ)

S2
=

1
n−1∑i=1

n

(X i− X̄ )2

≈



  

Unbiased estmator

An unbiased estmator is a random 
variable that has expectaton equal to 
the quantty you are estmatng.

E [ X̄ ]=μ=E [X i]



  

Variance of the sample mean

The sample mean is a random variable; it 
can difer among samples. That means it 
has a variance.

? ? ?

Var( X̄ )=σ
2

n



  

Sample variance

Samples can be used to estmate the 
variance of the original distributon.

S2
=

1
n−1∑i=1

n

(X i− X̄ )2



  

Variance of the sample mean

vs.

Sample variance

? ? ?
– Is a single number

– Shrinks with number of samples

– Measures the stability of an estmate

– Is a random variable

– Constant with number of samples

– Is an estmate (of a variance) itself

(=σ
2

n )

(≈σ2 )



  

p-values

A p-value gives the probability of an 
extreme result, assuming that any 
extremeness is due to chance.

p=P(|X̄−μ|>d∣H 0)



  

Bootstrapping

Bootstrapping allows you to compute 
complicated statstcs from samples 
using simulaton.



  

Bootstrap for p-values

def pvalue_bootstrap(sample1, sample2):
    n = len(sample1)
    m = len(sample2)
    observed_diff = abs(np.mean(sample2) –
                        np.mean(sample1))
    universal_pmf = sample1 + sample2
    count_extreme = 0
    for i in range(10000):
        resample1 = np.random.choice(universal_pmf, n)
        resample2 = np.random.choice(universal_pmf, m)
        new_diff = abs(np.mean(resample2) –
                       np.mean(resample1))
        if new_diff >= observed_diff:
            count_extreme += 1
    return count_extreme / 10000.



  

Markov’s inequality

Knowing the expectaton of a 
non-negatve random variable 
lets you bound the probability 
of high values for that variable.

X≥0   ⇒   P(X≥a)≤
E [X ]
a



  

Chebyshev’s inequality

Knowing the expectaton and variance 
of a random variable lets you bound 
the probability of extreme values for 
that variable.

P(|X−μ|≥k)≤σ
2

k2



  

One-sided Chebyshev’s inequality

P(X≥μ+a)≤ σ
2

σ
2
+a2

P(X≤μ−a)≤ σ
2

σ
2
+a2



  

Jensen’s inequality

The expectaton of a convex functon 
of a random variable can’t be less than 
the value of the functon applied to 
the expectaton.

E [ f (X )]≥f (E [X ])

xx  2x  10  

Q

B

P

y

ba

A

if f ' ' (x)≥0



  

Law of large numbers

A sample mean will converge 
to the true mean if you take 
a large enough sample.

lim
n→∞

P (|X̄−μ|≥ε )=0

P (limn→∞
( X̄ )=μ)=1



  

Consistent estmator

An consistent estmator is a random 
variable that has a limit (as number 
of samples gets large) equal to the 
quantty you are estmatng.

lim
n→∞

P (|θ̂−θ|<ε)=1

1

2

3

4

5

6

0 100 200 300 400 500 600 700 800 900 1000

m
ea

n 
va

lu
e

trials

average dice value against number of rolls

average
y=3.5



  

Review: Central limit theorem

Sums and averages of IID random 
variables are normally distributed.

X̄=
1
n∑i=1

n

X i∼N (μ , σ
2

n
)

Y=n X̄=∑
i=1

n

X i∼N (nμ , nσ2
)



  

Easily-confused principles
Sum of identcal 
normals

X i∼N (μ ,σ2
)

Constant multple 
of a normal

CLT

X∼N (μ ,σ2
) X i∼???

(independent
& identcal)

(independent
& identcal)

∑
i=1

n

X i∼N (nμ ,nσ2
)n X∼N (nμ , n2

σ
2
) ∑

i=1

n

X i∼N (nμ ,nσ2
)

(exactly) (approximately,
for large n)



  

Parameters

Ber(p)

Poi(λ)

Uni(a, b)

N(μ, σ²)

X∼

θ = p

θ = λ

θ = [a, b]

θ = [μ, σ²]

θ



  

Maximum likelihood estmaton

Choose parameters that maximize the 
likelihood (joint probability given 
parameters) of the example data.

θ̂=arg max
θ

LL(θ)

x 0

x 1

x 2

x 3
x 4

*

*



  

How to: MLE

1. Compute the likelihood.

2. Take its log.

3. Maximize this as a functon of the parameters.

L(θ)=P(X1 ,…, Xm∣θ)

LL(θ)=log L(θ)

x 0

x 1

x 2

x 3
x 4

*

*

d
d θ

LL(θ)=0



  

Maximum likelihood for Bernoulli

The maximum likelihood p for 
Bernoulli random variables is the 
sample mean.

p̂=
1
m∑i=1

m

X i



  

Maximum likelihood for normal

The maximum likelihood μ for normal 
random variables is the sample mean,
and the maximum likelihood σ² is the 
“uncorrected” mean square deviaton.

μ̂=
1
m∑i=1

m

X i
^
σ

2
=

1
m∑i=1

m

(X i−μ̂)
2



  

Maximum likelihood for uniform

The maximum likelihood a and b for 
uniform random variables are the 
minimum and maximum of the data.

â=min
i

X i b̂=max
i

X i

a b

1
b−a



  

Maximum a posteriori estmaton

Choose the most likely parameters 
given the example data. You’ll need a 
prior probability over the parameters.

θ̂=arg max
θ

P(θ∣X1 ,…, X n)

=arg max
θ

[LL(θ)+ log P(θ)]



  

Laplace smoothing

Also known as add-one smoothing: 
assume you’ve seen one “imaginary” 
occurrence of each possible outcome.

pi=
#(X=i)+k

n+mk

pi=
# (X=i)+1

n+m or: “add-k” smoothing 
(if you believe equally 
likely is more plausible)



  

Parameter priors

Ber(p)

Bin(n, p)

MN(p)

Poi(λ)

Exp(λ)

N(μ, σ²)

X∼

p ~ Beta(a, b)

p ~ Beta(a, b)

p ~ Dir(a)

λ ~ Gamma(k, θ)

λ ~ Gamma(k, θ)

μ ~ N(μ’, σ’²)
σ²~ InvGamma(α, β)



  

Classifcaton

The most basic machine learning task: 
predict a label from a vector of features.

ŷ=arg max
y

P(Y= y∣X⃗= x⃗)

x(1)

x(2)

x(3)

y(1)=DOG
y(3)=DOG

y(3)=CAT



  

Naïve Bayes

A classifcaton algorithm using 
the assumpton that features 
are conditonally independent 
given the label.

ŷ=arg max
y

P̂ (Y= y)∏
j

P̂(X j=x j∣Y= y)

images: (lef) Virginia State Parks; (right) Renee Comet



  

Three secret ingredients

1. Maximum likelihood or maximum a 
posteriori for conditonal probabilites.

2. “Naïve Bayes assumpton”: features are 
independent conditoned on the label.

3. (Take logs for numerical stability.)

P̂( X⃗= x⃗∣Y= y)=∏
j

P̂(X j=x j∣Y= y)

P̂(X j=x j∣Y= y)=
#(X j=x j ,Y= y)[+1]

#(Y= y)[+2]



  

Logistc regression

A classifcaton algorithm using the 
assumpton that log odds are a 
linear functon of the features.

ŷ=arg max
y

1

1+e−θ⃗
T x⃗



  

Predictng 0/1 with the logistc

σ(z)=
1

1+e−z

z



  

Logistc regression: Pseudocode

initialize: θ = [0, 0, …, 0]  (m elements)

repeat many times:
    gradient = [0, 0, …, 0]  (m elements)

    for each training example (x(i), y(i)):
        for j = 0 to m:
            
            gradient[j] += 

    for j = 0 to m:
        θ[j] += η * gradient[j]

return θ

[ y(i)−σ(θ⃗T x⃗(i))] x j
(i)



  

Gradient ascent

An algorithm for computng an  
arg max by taking small steps 
uphill (i.e., in the directon of the 
gradient of the functon).

θ⃗← θ⃗+η⋅∇ θ⃗ f (θ⃗)

x 0

x 1

x 2

x 3
x 4

*

*



  

input 
layer

hidden 
layer

output 
layer

A simple neural network

Feedforward neural network

An algorithm for classifcaton or 
regression that uses layers of 
logistc regressions to discover its 
own features.

ŷ=σ(θ( ŷ)σ(θ(h) x⃗))



  Keep in touch!Keep in touch!
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