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Announcement: Problem Set #6

Due today!
That’s all, folks!

g

Congressional voting Heart disease
diagnosis




Announcements: Final exam

This Saturday, August 19, 12:15-3:15pm
in NVIDIA Auditorium

(pending maintenance)

Two pages (both sides) of notes

All material in the class through Monday

Review session:
Today after lecture, 2:30-3:20 in Huang 18



Two envelopes: A resolution

PN PN
“I'm trying to think: how likely
s It that you would have put
$40 in an envelope?
. $X $2X
Y =vy: amount in envelope chosen
E[W|Y:y, stay]:y not necessarily 0.5!

E[W|Y:y,switch]:%[P(X:%W:yﬂ-fZ y[P(X:y|Y:y)]

P(X=y)

P(XZY|Y:y):p(X:y)+P<X:y/2)




Two envelopes: A resolution

PN PN
“I'm trying to think: how likely
s It that you would have put
$40 in an envelope?
. $X $2X
Y =vy: amount in envelope chosen
E[W|Y:y, stay]:y not necessarily 0.5!

E[W|Y:y,switch]:%[P(X:%W:yﬂ-fZ y[P(X:y|Y:y)]

[P (X:y)] prior: if all equally likely, then this will be 0.5
P(X=y)+P(X=y/2)

P(X=y|y=y)=

P(X=y)=C?

> P(Xx=y)=) C=1

00-C=1777



Logistic regression

A classification algorithm using the
assumption that log odds are a
inear function of the features.




Review: The logistic function
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Review: Logistic regression
assumption

P(Y=1|X=%)=0(0"%)=

or in other words:

p=o(z) )
z=log o, 6T5<’:10gof(Y:1\X:5<’)
0" %

=0-X=0,-1+0,x,+0,x,+ - +0,_x_

m
Z 0,
i=0

x0=1)



Review: Gradient ascent

An algorithm for computing an
arg max by taking small steps
uphill (i.e., in the direction of the
gradient of the function).
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Review: Logistic regression algorithm

initialize: 6 = [0, 0O, .., O] (m elements)

repeat many times:
gradient = [0, 0, .., O] (m elements)

for each training example (x"/, v
for Jj = 0 to m:

gradient[J] += Lym—cﬂéTXMHXW

for Jj = 0 to m:
6[jJ] += n * gradient[]j]

return ©



Your brain on logistic regression

p=o(z)
z=0" %"
dendrites: ~axon:
take a weighted sum carries outgoing
of incoming stimuli pulse If potential

with electric potential  exceeds a threshold

Caution: Just a (greatly simplified)
model! All models are wrong—but
some are useful...



—eedforward neural network

An algorithm for classification or
regression that uses layers of

logistic regressions to discover its
own features.

5,:0(6@)0(6(11)}))

input hidden output
layer layer layer




A cartoon of logistic regression
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Logistic regression Is linear
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Logistic regression Is linear
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Logistic regression Is linear

<>

<0.5

non-linear function

X3 :[( X1 = X )2]

linear combination
of features

O O

y>0.5




A cartoon of logistic regression

@

non-linear function

=0 (R)

linear
combination
of features

<4




Stacking logistic regression




Unpacking the linear algebra

X h



Stacking logistic regression

‘learning
Its own
features”

Input hidden output
features representation class label



Maximum likelihood with neural nets




Maximum likelihood with neural nets




Maximum likelihood with neural nets
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Maximum likelihood with neural nets
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Backward propagation
of derivative values

Automatic differentiation

1= Wi+ W =cos(x1) +x2 K= =x



Sreaking the symmetry
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Input hidden output
features representation class label



Sreaking the symmetry
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-xpanding the toolbox

non-binary outputs



Applications: Image recognition
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-xpanding the toolbox

non-binary outputs convolutional layers



Applications: Image recognition

Image classification
Easiest classes
red fox (100) hen-of-the-woods (100)  ibex (100)  goldfinch (100) flat-coated retriever (100)

0200000608000 00C0D0 N B =l
/ t Ir ] ‘f i , f i! 1 ] lf ) j ! tiQt’-‘(100) hamster (100) porcupme(100) sllngray(100) Blenheim spaniel (100)
azrz2razzr2z222J § N
3333 H2T333H33333 & o

- Hardest classes
;—f f.--:l— :- f,..l:- {; ; iiﬁ j_. ‘g j; g, muzzle (71) hathet () water bottle (68) velvet (68) .. IIOEJp(SG)
6666666066666666 |
77F%1277 17177727 Sl O -
f J" 3’ 8‘ 3’ 3’ ? 3’ 3‘ ? '8 ? 4‘5 8 f hook (66)  spotlight (66) |ad|e(65) restaurant (64) letter opener (59)
157972979379 986¢9a4977

right: Russakovsky et al. (2015)



-xpanding the toolbox

non-binary outputs convolutional layers

recurrent connections



Applications: Speech recognition

\! who is the current president of France?



-xpanding the toolbox

el

non-binary outputs convolutional layers

s 0

recurrent connections fancy maximization




Break time!



General principle of counting

An experiment consisting of two or more
separate parts has a number of outcomes
equal to the product of the number of
outcomes of each part.
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Principle of Inclusion/Exclusion

The total number of elements in two sets is the
sum of the number of elements of each set,
minus the number of elements in both sets.

|AUB|=|Al|+|B|—|ANB|




Inclusion/exclusion with
more than two sets

size of add or size of
the union subtract intersections
l (based on size) l

: l r
iL:J1E _Z Hl Z mEij

i <...<ir J:1

t T

sum over sum over
subset all subsets
S|Zes of that size




General Pigeonhole Principle

If m objects are placed in n buckets,
then at least one bucket must
contain at least [m/n] objects.

m = 7 objects

\ MO M }Q \‘0} [m/n] = 2

~ n=5buckets




Permutations

The number of ways of ordering
n distinguishable objects.




Permutations witn
indistinct elements

The number of ways of ordering n. objects,
where some groups are indistinguishable.

n!

n —
(kl,kz,...,km) K, 'k,!...k !

I<2 identical

y
@ I AU
K s 4

I<1 identical




Combinations

The number of unigue subsets of size k from a
larger set of size n.
(objects are distinguishable, unordered)

n _ n!
k]  k!(n—k)!
choose k

Yolloe L &




Sucketing

The number of ways of assigning n
distinguishable objects to a fixed
set of k buckets or labels.

kn

n objects

Lo/l || Jio Jo®

k buckets




Divider method

The number of ways of assigning n
indistinguishable objects to a fixed
set of k buckets or labels.

n+(k—1)
n
n objects
O O
® |0 o o®
k buckets

(k - 1 dividers)



A grid of ways of counting

Ordering Subsets Bucketing
All n
n
distinct n ' k k
' Creativity!
Some n. - Split into cases
indistinct - Use inclusion/exclusion
kl ' kz ' coe km ' - Reframe the problem

n+(k—1)

All

indistinct 1 1




Axioms of probability

[fENF=4, then
P(EUF)= P(E)+P(F)

(Sum rule, but with probabilities



How do | get started?

For word problems involving probability,
start by defining events!



https://arxiv.org/abs/1409.0575

Getting rid of ORs

Finding the probability of an OR of events
can be nasty. Try using De Morgan's laws
to turn it into an AND!

P(AUBU---UZ)=1—P(A°B‘---

<9




Definition of conditional probability

The conditional probability P(E | F) is the
probability that E happens, given that F
has happened. F is the new sample space.

P(EF)
P(F)

)

P(E|F)=

i




Chain rule of probability

The probability of both events happening
s the probability of one happening times
the probability of the other happening
given the first one.

P(F)P(E|F)

R 2R




General chain rule

The probability of a
IS the probability of
times the prob. of t
times the prob. of t
...etc.

of probability

| events happening
the first happening
he second given the first

ne third given the first two

P(EFG...)=P(E)P(F|E)P(GI|EF)...



Law of total probability

You can compute an overall probability
by adding up the case when an event
happens and when it doesn't happen.

P(F)=P(EF)+P(E°F)

=P(E)P(F|E)+P(E“)P(FIE®

S S S
.
— ~) + s/
" s*
\",'




General law of total probability

You can compute an overall probability
by summing over mutually exclusive and
exhaustive sub-cases.

—ZP E.F)
&
N

_ZP P(F|E,



Baves' theorem

You can “flip” a conditional probability
if you multiply by the probability of
the hypothesis and divide by the
probability of the observation.

1 P(FIE)P(E)
E =5




-inding the denominator

if you don't know P(F) on the bottom,
try using the law of total probability.

P(F|E)P(E)

P(E|F)=

(F]|
P(F|E)P(E)+P(FIE)P(.

P(E|F)=

P(F|E)P(E)
(E, )]

[ZP(F\ )P




Independence

Two events are independent if you can
multiply their probabilities to get the
probability of both happening.

P(EF)=P(E)P(F)

ElF
*— (“independent of”)

E S




Conditional iIndependence

Two events are conditionally independent if you can
multiply their conditional probabilities to get the
conditional probability of both happening.

P(EF|G)=P(E|G)P(F|G)

(ELF)|G
"
.




Random variables

A random variable takes on
values probabilistically.

P(X=2)==

36

0.18
0.16
0.14
0.12
0.10 -
0.08 -
0.06 -
0.04 -
0.02 -
0.00 -

P(X=x)

2 3 4 5 6 7 8 9 10 11 12
X



How do | get started?

For word problems involving probability,
start by defining events and random variables!




Probability mass function

The probability mass function
(PMF) of a random variable is
a function from values of the
variable to probabilities.

py(k):P(Y:k)

0.18
0.16
0.14
0.12
0.10 -
0.08 -
0.06 -
0.04 -
0.02 -
0.00 -

P(Y=k)

2 3 4 5 6 7 8 9 10 11 12
k



Cumulative distribution function

The cumulative distribution function
(CDF) of a random variable is a function
giving the probability that the random
variable is less than or equal to a value.

0.9

0.8
0.7
0.6
0.5
P(Y <k) 0.4
0.3
0.2 I
0.1
conl

2 3 4 5 6 7 8 9 10 11 12



-xpectation

The expectation of a random variable is
the “average” value of the variable
(weighted by probability).

0.18
0.16
0.14
0.12
0.10 -
0.08 -
0.06 -
0.04 -
0.02 -
0.00 -

P(X=x)

1
23456':89101112
X



Linearity of expectation

Adding random variables or
constants? Add the expectations.
Multiplying by a constant? Multiply
the expectation by the constant.

ElaX+bY +c|=aE| X |+bE|Y |+c

2X+4

TS N



INndicator variable

An indicator variable is a “Boolean’
variable, which takes values O or 1
corresponding to whether an event
takes place.

I=1[A]= 1 if event A occurs
0 otherwise




Variance

Variance is the average square of
the distance of a variable from the
expectation. Variance measures
the “spread” of the variable.

(X—E[X])]
=E[X’]-(E[X])’

0.18
0.16
0.14
0.12
0.10 -
0.08 -
0.06 -
0.04 -
0.02 -
0.00 -

P(X=x)

1
234:567:89:101112
X



Standard deviation

Standard deviation is the (“root-
mean-square”) average of the
distance of a variable from the
expectation.

SD(X)=+/Var(X)=VE[(X—E[X])]

0.18
0.16
0.14
0.12
0.10

*) 0.08 -
0.06 -
0.04 -
0.02 -
0.00 -

1
234:567:89:101112



Variance of a linear function

Adding a constant? Variance doesn't change.
Multiplying by a constant? Multiply the
variance by the square of the constant.

Var(aX+b)=E[(aX+b)’]—(E[aX +b])"
=E[a’ X*+2abX +b*]—(aE[ X ]+b)’
=a’E[X°]+2abE[X |+b’
—[a*(E[X])+2abE[ X ]+b"]
=a’E[X’]-a’(E[X])
=a’[E[X*]-(E[X])’]
—a’Var(X)




3asic distributions

Many types of random variables
come up repeatedly. Known
frequently-occurring distributions
lets you do computations without
deriving formulas from scratch.

variable parameters

\ fariwily /

X~Bin(n, p)

We have independent ,
INTEGER PLURAL NOUN

each of which with probability

VERB ENDING IN -S

. How many of the
REAL NUMBER REPEAT PLURAL NOUN

?
REPEAT VERB -S




Bernoulli random variable

An indicator variable (a possibly
biased coin flip) obeys a Bernoulli
distribution. Bernoulli random
variables can be O or 1.

X ~Ber(p)

px(1)=p
p X(O): 1—p (0 elsewhere)




Bernoullli: Fact sheet

PMEFE:

expectation: E[X]Zp
variance: Var(X)=p<1_P>

image (right): Gabriela Serrano



Binomial random variable

The number of heads on n
(possibly biased) coin flips obeys a
binomial distribution.

X ~Bin(n, p)

n

; p“(1—p)"™* if keN,0<k=<n

px<k):

0 otherwise




Binomial: Fact sheet

number of trials (flips, program runs, ...)

v

X ~Bin(n, p)

f )

probability of “success” (heads, crash, ...)

(
n

’ p“(1—p)"™" if keN,0<k<n

PME: py (k)=

| 0 otherwise

expectation:  E [X]: np
variance: Var(X)an(l—P)
note: Ber(p)ZBiD(l ’ P)



Poisson random variable

The number of occurrences of an
event that occurs with constant
rate A (per unit time), in 1 unit of
time, obeys a Poisson distribution.

X ~Poi(\)
(
Y
e — it x€Z,x=0
px<k): k!
0 otherwise




Poisson: Fact sheet

X ~Poi ()

f

rate of events (requests, earthquakes,
chocolate chips, ...)
per unit time (hour, year, cookie, ...)

(

Sk .
- pX(k):e o it keZ k=0
0 otherwise
expectation:  E [X]: A
variance: Var(X) = A



Poisson approximation of binomial
A=np

0.3
0.25
= Bin(10, 0.3)
0.2 “Bin(100, 0.03) |
P(X=k) = Poi(3)
0.15
0.1
0.05




Geometric random variable

The number of trials it takes to get
one success, If successes occur
independently with probability p,
obeys a geometric distribution.

X ~Geo( p)

f

1-p) " p if keZ k=1
o=l ,
pX( ) 0 otherwise

\




Geometric: Fact sheet

X ~Geo( p)
}

probability of “success” (catch, heads, crash, ...)

(1-p)'p if kEZ, k=1

PMF k)=
pX( ) t 0 otherwise
1-(1-p) if keZ, k=1
F. k)= ’
- X( ) 0 otherwise

expectation: E[X]:

variance: Var(X): 1_p



Negative binomial random variable

The number of trials it takes to get r
successes, If successes occur

independently with probability p,
obeys a negative binomial distribution.

X ~NegBin(r, p)

(

n—1
r—1
& 0 otherwise

p(1—p)"" if n€Z,n>r




Negative binomial: Fact sheet

number of sucesses (heads, crash, ...)

X~NegBin(r,p)
N }
number of trials (flips, probability of “success’
program runs, ...)
(
=1\ (1—p)"" if neZ,n=r
e py(n)=ilr—1
0 otherwise

\
expectation: E[X] r
p
(1_p) note:
p° Geo(p)=NegBin(1, p)

variance: Var ( X)



Continuous random variables

A continuous random variable has a
value that'’s a real number (not
necessarily an integer).

Replace sums with integrals!
P(a<X<b)=F,(b)—F,(a)

Fola)= [ dx filx)

X——00




&

Probability density function

The probability density function (PDF)
of a continuous random variable

represents the relative likelihood of
various values.

Units of probability divided by units of X.
Integrate it to get probabilities!

P(a<Xsb):xia dx[fx(x)]



f(x) is not a probability

Rather, it has “units” of probability

divided by units of X.

2 min X

J—

2:00pm

A

M\

[0.05 prob/min:

2:20pm 2:30pm

= 0.1 prob



Uniform random variable

A uniform random variable Is
equally likely to be any value in
a single real number interval.

X ~Uni(a,p)
folx={poa 1 el
0 otherwise




Umform -act sheet

minimum value

maximum value

if x€la,B]

0 otherwise

| | B=a if xelo,p] o+
CDF: Fxlx)= 1 it x>f expectation: E[X]: P
| 0 otherwise 2
(p—a)

variance: Var(X) —

image: Hahal69



-xponential random variable

An exponential random variable
is the amount of time until the
first event when events occur
as in the Poisson distribution.

X~Exp(\)

f (X): 7\6_}”( if x>0
5 0 otherwise

image: Adrian Sampson



-xponential: Fact sheet

rate of events per unit time

X ~Exp (M)

time until first event

he ™ if x>0
PDF: —.
fx(x) 0 otherwise
1—e ™ if x>0
CDOF: F =
x(X) 0 otherwise
expectation: E[X]:%

variance: VEII(X) —

image: Adrian Sampson


https://www.flickr.com/photos/gabrielaserrano/6336519698

A grid of random variables

number of successes time to get successes

One One

trial X ~ Ber (p) X ~ GEO (p) success
\ +

|n=1 |r=1

Several

we X~Bin(n,p) | X~NegBin(r,p) e

One success

!qft;rr\;a; X ~ POI ( 7\ ) X ~ EXP ( 7\,) after interval

of time




Normal random variable

An normal (= Gaussian) random variable is
a good approximation to many other

distributions. It often results from sums or
averages of independent random variables.

X~N(u,0’)




Normal: Fact sheet

mean
v,
X~N (M,? )
variance (o = standard deviation)
|
PDF: fX<X):O 2756 2\ o

CDF: FX(X):(D

X;“){dm(x)

(no closed form)

expectation: E[X]:M

variance: Var(X) — ()'2



The Standard Normal

)

Z~N(0,1
b4




Normal approximation to binomial

large n, medium p

0.08 = Bin(n, p)
“N(np, np(1 - p))




Continuity correction

X ~Bin(n,p)
Y ~N (np,np(1-p))
P(X>55)~P(Y>54.5)

B Bin(100, 0.5)
— Normal(50, 25)

:§§§§§§§§§§§§§§§§§§§§§',&
NN\

A\

X
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69

X

When approximating a discrete distribution with
a continuous distribution, adjust the bounds by
0.5 to account for the missing half-bar.



Joint distributions

A joint distribution combines
multiple random variables. Its PDF
or PMF gives the probability or
relative likelihood of both random
variables taking on specific values.

pyx yla,b)=P(X=a,Y=b)



Joint probability mass function

A joint probability mass function
gives the probability of more than
one discrete random variable each

taking on a specific value (an AND
of the 2+ values).

pyx yla,b)=P(X=a,Y=b)

Y
0 1 2

0 0.05 0.20 0.10
% 1 0.10 0.10 0.10
2 0.05 0.10 0.20




Joint probability density function

A joint probability density function
gives the relative likelihood of
more than one continuous

random variable each taking on a
specific value.

P(a,<X<a, b;<Y <b,)=




Marginalization

Marginal probabilities give the
distribution of a subset of the variables
(often, just one) of a joint distribution.

Sum/integrate over the variables you
don't care about.

:Z pX,Y(a:Y)




Joint cumulative distribution function

to 1 as

FX,Y(X:y):P(XSX,YSy) X —> +oo,

Y —> +oo

-10

plot by Academo



Multinomial random variable

An multinomial random variable
records the number of times each
outcome occurs, when an
experiment with multiple outcomes
(e.g. die roll) is run multiple times.

Xl,...,XmNMN(n,pl,pz,...,pm)

/P(Xlzcl,Xzzcz,...,Xm:cm)

vector! n C

Cl C2 m
— P1 P> -.-Pn
C,,Cpyen,C.




Independence of
discrete random variables

Two random variables are
independent if knowing the value
of one tells you nothing about the
value of the other (for all values!).

X1Y iff Vx,y:
P(X=x,Y=y)=P(X=x)P(Y=y)

_Or_

pX,Y(X:Y):pX(X)pY(Y>




Independence of
continuous random variables

Two random variables are
independent if knowing the value
of one tells you nothing about the
value of the other (for all values!).

X1Y iff Vx,y:
fX,Y(X>Y):fX<X)fY(Y>

or

fxv(x,y)=g(x)h(y)

_Or_

FX,Y(X’y):FX<X)FY(y)



https://commons.wikimedia.org/wiki/File:Stanford_shuttle_caltrain.jpg

Convolution

A convolution is the
distribution of the sum of two
independent random variables.

frla)=J dyfila=y)f,(y)



https://www.flickr.com/photos/adrian_s/23939804

S | . d d t b . . ‘
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n flips m flips

X: number of heads Y: number of heads
in first n flips iIn next m flips

X~Bin(n, p) Y ~Bin(m,p)
X+Y ~Bin(n+m, p)

More generally:

X.~Bin(n,, p) ZX Bin
all X, mdependent =1

an,p



https://www.flickr.com/photos/adrian_s/23939804

Sum of independent Poissons

A, chips/cookie A, chips/cookie
X: number of chips Y: number of chips

in first cookie in second cookie
X ~Poi(A,) Y ~Poi(X,)
X+Y ~Poi(A,+1\,)

More generally:

N
X,~Poi (A ZX Poi| D A,
all X. mdependent =1 i=1



Sum of independent normals

AN M

X~N(w,,0,’) Y~N(u,,0,’)

X+YNN(M1+M2a 012'|'022>

More generally:

N
XiNN(Mi:Oi2) = Z X,~N
all X. independent  '=! '




Sum of independent uniforms

1 1
0 0

0 1 0] 1
X~Uni(0,1) Y ~Uni(0,1)

fX+Y(a>:j:OdeX(a_Y)fY(Y>

= [ dyfyla=y)ubeT

ra-ytobein]|O, 1])

1

,then we need O <y

Case 1: <ag<1 <a (for
<ag<2,thenweneeda-1<y<1

1:if O
Case 2:if 1

[ a
), dy-1=a 0<axl1 1
nl
dy-1=2—a 1<ax2 /\
o 1 O

0 otherwise




Discrete conditional distributions

The value of a random variable,
conditioned on the value of some
other random variable, has a
probability distribution.

P(X=x,Y=y)
P(Y=y)

K :pX,Y(X:Y)

py(y)

px|Y(X,Y>:

PDF Single In a relationship It's complicated / Other TOTALS
Freshman 0.00 0.00 0.00 0.00
Sophomore 008 0.00 000 008
Junior 0.19 0.19 0.13 0.50
Senior . . . .
Grad student / Other 0.38 0.06 0.00 0.44
TOTALS 0.63 0.25 0.13 1.00




Continuous conditional distributions

The value of a random variable,
conditioned on the value of some
other random variable, has a
probability distribution.




Ratios of continuous probabilities

The probability of an exact value for
a continuous random variable is O.

But ratios of these probabilities are
still well-defined!




Beta random variable

An beta random variable models the
probability of a trial's success, given
previous trials. The PDF/CDF let you
compute probabilities of probabilities!

X ~Beta(a,b)

era_l(l—x)b_l if 0<x<1
L 0 otherwise

T Beta@zs) Beta8,2)




Beta: Fact sheet

number of
successes + 1

v

X ~Beta(a,b)

} }

probability ~ number of
of success failures + 1

Cx(1—x)" if 0<x<1

t 0 otherwise

PDF: fx(x):

da
tation: BE| X |=——
expectation [ ] a+b

variance: V&F(X): ab

(a+b)*(a+b+1)




Subjective priors

X|A~Beta@+ 1, N-a+1) X ~ Beta(1, 1)
‘posterior’ “prior”
N P(A=alXx=x)f, (x)*

fx|A(X‘CI): P(AZCI) —— petap)

How did we decide on
Beta(1, 1) for the prior? "

Beta(1, 1): “we haven't seen any rolls yet.”
Beta(4, 1): “we’ve seen 3 sixes and O non-sixes.”
Beta(2, 6): “we’ve seen 1 six and 5 non-sixes.”

Beta prior = “imaginary” previous trials



Covariance

The covariance of two
variables is a measure of how
much they vary together.

Cov(X,Y)=E[(X~E[X])(Y —E[Y])]

y ° . L4 y
4 * . ..!OQ..: ... .‘.. 4
peo% s LU
T AT,
®qe [} .0..:. L]
:-:-"'s.i"?'.".%t.‘ pe ™ oo
2 ® " ’:: s ,‘...', 2
SRR £
° L Seo o (g
. o0 “..O é. .:0..3 :. :. '&‘gﬂo
. ¢ oﬁ. *” ..o [}
e gl ®e ©e . X ‘



-xpectation of a product

if two random variables are independent,
then the expectation of their product
equals the product of their expectations.

X1lY =
E|XY|=E|X|E|Y]|
E[g(X)h(Y)]=E[g(X)]E[h(Y)]



https://academo.org/demos/3d-surface-plotter/?expression=1%2F(1%2Bexp(-x))*1%2F(1%2Bexp(-y))&xRange=-10%2C10&yRange=-10%2C10&resolution=25

Correlation

The correlation of two variables is a
measure of the linear dependence

between them, scaled to always take on
values between -1 and 1.

Cov(X,Y)
V Var(X) Var(Y)

p(X,Y)=

L ° Y . . L
° . ¢ « ° . %
. . :l‘o." ‘: e’ o N \C.‘%.‘
o oM, o ¥ o, %, 2 e f% o
(Y "0 f 0,0 L] ~‘. ) ~: LY ‘
%t % Y X ® oe®e
. O‘?.'$.~fo < o.° ?e.‘
. ® o )
Joe * ‘o{g""' 0?: ‘.:.c ° ‘.‘.‘ T S
‘o.o’q.snc‘.g“w‘ ‘:“: . é .
wioAB iy ¢ 3 %e oy
e o
[y [ ° o * B b ]
o ee, o, o
o2 % o [ o) "’
0% 0y L S ¢
2 [ . ° ° { ] 'o.
2 . - a 2 3



Conditional expectation

One can compute the expectation of a
random variable while conditioning on
the values of other random variables.

E[X‘Y:)’]:Z XPx|y(X‘Y>

E[XIY=y]= | dxfyy(xly)



Quicksort

You've been told Quicksort is
O(n log n), “average case”.

Now you get to find out why!



Quicksort's ordinary life

Let X =lnumber of comparisonsjto the pivot.
What is E[X]? expected number of events = indicator variables!

112134516 7|8

Y, Y, Y
Define Y, ... Yn = elements in sorted order.
Indicator variables [ = 1if Ya and Yb are ever compared.

nz_:l Zn:\Iab-:nZ_: Z E[I,]

a=1 b= a+) | a=1 b=a+1

n—1 n unigue pairs

=> > P(Y,and Y, ever compared )

a=1b=a+1



Shall | compare thee to...

P( Ya and YID ever compared) = ?

Y, Y,
Case 1: 1121314516718 yes!
} f
Y, Y,
Case 2: 112 (314|516 7|8 no!
P
Y, .
Case 3: 1|2|3]4]|5|6]|7]8 Rt
b4 f
2

. P(Y_,and Y, ever comparecl):b_a_l_1



The home stretch

n—1 n

E[X]=). ), P(Y, and Y, ever compared)

a=1 b=a+1

n—1 n 2
:Z Z b—a+1

a=1b=a+1

an_f 2In(n—a+1) <

a=1

1
da2Iln(n—a+1)

1

n_
~ |

a

2
=—2 f dylny

y=n

=—2[ylny-yl_,

:—M—(nlnn

constants

~~ n n
2 b—i+1~ J dbb—i+1
b=a+1 b=a+1
=[2In(b—a+1)],_,.,
=2In(n—a+1)—2In?2
—__ NZln(n—a+1) for large n
“:1?3’ V=) fudv:uv—fvdu
du:;dy dv=dy flnydyzylny—f)(\j—idy
)] =—ylny—y+C
lower-order

term



Variance of a sum

The variance of a sum of random
variables is equal to the sum of pairwise
covariances (including variances and
double-counted pairs).

n n )

ZVar( ) 22‘ Z‘ COV(XI-,XJ-)
i=1 =1 j=i+1 y,
note: independent = Cov =0




Sample mean

A sample mean is an average of random
variables drawn (usually independently)
from the same distribution.




Parameter estimation

Sometimes we don't know things like
the expectation and variance of a
distribution; we have to estimate
them from incomplete information.

- 1x 1 _

X:_ Xi 2: . — °
n; S n—1i;(X’ X)

é:arggnaXLL(O)




Unbiased estimator

An unbiased estimator is a random
variable that has expectation equal to
the quantity you are estimating.

E[X|=u=E[X|]




Variance of the sample mean

The sample mean is a random variable; it
can differ among samples. That means it
has a variance.

2

Var()_():%

? P Y




Sample variance

Samples can be used to estimate the
variance of the original distribution.

S'= ! ZZOL_XY

n—1;i5




Variance of the sample mean
2?7

- |s a single number

2
_o

n

- Shrinks with number of samples

- Measures the stability of an estimate

VS.

Sample variance

— |s a random variable

- Constant with number of samples (Noz)

- |s an estimate (of a variance) itself



D-values

A p-value gives the probability of an
extreme result, assuming that any
extremeness Is due to chance.

p=P(‘X—M>d‘I --0)




Bootstrapping

Bootstrapping allows you to compute
complicated statistics from samples
using simulation.




Bootstrap for p-values

def pvalue bootstrap (samplel, sample2):

n = len(samplel)
m = len (sample?2)
observed diff = abs(np.mean(sample2) -

np.mean (samplel))
samplel + sample?

universal pmf

count extreme = 0

for 1 1in range (10000) :
resamplel = np.random.choilce (universal pmf, n)
resample?Z = np.random.choilce (universal pmf, m)

new diff = abs(np.mean(resample?) -
np.mean (resamplel))
if new diff >= observed diff:
count extreme += 1
return count extreme / 10000.



Markov's inequality

Knowing the expectation of a
non-negative random variable
lets you bound the probability
of high values for that variable.




Chebyshev’'s inequality

Knowing the expectation and variance
of a random variable lets you bound
the probability of extreme values for

that variable.




One-sided Chebyshev's inequality




Jensen’s inequality

The expectation of a convex function
of a random variable can't be less than
the value of the function applied to
the expectation.

E[f(X)]=f (E[X)
i f(x)20




Law of large numbers

A sample mean will converge
to the true mean if you take
a large enough sample.

lim P(| X —u|>¢|=0

n=» oo

P 1

lim()_()zu)

n=» oo



Consistent estimator

An consistent estimator is a random
variable that has a limit (as number
of samples gets large) equal to the
quantity you are estimating.

lim P(|0—6|<¢)=1

n=» oo

tttttt



Review: Central limit theorem

Sums and averages of IID random
variables are normally distributed.

_ 1
XEZ:X n

Z Z: N(nu,noc?)

2



-asily-confused principles

Constant multiple  Sum of identical CLT
of a normal normals

X~N(w,0°)  X,~N(u,0°)  X;~???

(independent (independent
& identical) & identical)

! ! !

nX~N (nu [njo?) > X,~N(nufno’) D X,~N(nu,no’)
i=1 i=1

(exactly) (approximately,
for large n)




Parameters

6
~ Ber(p) 0=p
Poi()\) 0=\
Uni(a, b) 0 =|a, b]
" N(u, o) 0 = [, 0]




Maximum likelihood estimation

Choose parameters that maximize the
ikelihood (joint probability given
parameters) of the example data.

A

O=arg gnaXLL(G)




How to: ML

1. Compute the likelihood.
L(0)=P(X,,..., X, |0)

2. Take its log.
LL(6)=log L(0)

3. Maximize this as a function of the parameters.

d _
ELL(e)_o X.



Maximum likelihood for Bernoulli

The maximum likelihood p for
Bernoulli random variables is the
sample mean.




Maximum likelihood for normal

The maximum likelihood u for normal
random variables is the sample mean,
and the maximum likelihood o¢° is the
“uncorrected” mean square deviation.

A

/

> x

1
m =1

/TN

1 m
T X

N

=
=
T -



Maximum likelihood for uniform

The maximum likelihood a and b for
uniform random variables are the
minimum and maximum of the data.

a=min X b=max X,

l l

i
QJI
)
)




Maximum a posteriori estimation

Choose the most likely parameters
given the example data. You'll need a
prior probability over the parameters.

ézarggnaXP(G\Xl,...,Xn)
—arg max |LL(0)+log P(0)|
0



Laplace smoothing

Also known as add-one smoothing:
assume you've seen one “imaginary’
occurrence of each possible outcome.

Di—

#(X=i)+1

n+m

or: “add-k” smoothing
(if you believe equally
likely is more plausible)

#(X=i)+k
n+mk

Pi—



Parameter priors

[ Ber(p)

Bin(n, p)

p ~ Betala, b)

p ~ Beta(a, b)

n ~ Dir(a)

A ~ Gammalk, 6)
A ~ Gammalk, 6)

o~ N(, o)
o’~ InvGammala, ()



Classification

The most basic machine learning task:
predict a label from a vector of features.

y=arg maXP(Y:y\XZEE)




Naive Bayes

A classification algorithm using
the assumption that features
are conditionally independent
given the label.

y

C‘E et B AC ON

H" MEL
o p

y=arg maXP(Y y)H IS(XJ:X-
J

images: (left) Virginia State Parks; (right) Renee Comet



Three secret ingredients

1. Maximum likelihood or maximum a
posteriori for conditional probabilities.

oo #(X=x,Y=y)[+1]
P ==y o]

2. “Naive Bayes assumption”: features are
independent conditioned on the label.

IS(XZX\YZy)ZH IS(XJ-:X]- Y=y)
J

3. (Take logs for numerical stability.)



Logistic regression

A classification algorithm using the
assumption that log odds are a
inear function of the features.

y =arg max

y 1+e




Predicting O/1 with the logistic




Logistic regression: Pseudocode

initialize: 6 = [0, 0O, .., O] (m elements)

repeat many times:
gradient = [0, 0, .., O] (m elements)

for each training example (x"/, v
for Jj = 0 to m:

gradient[J] += L¢U_C“6T}mﬂxm

for Jj = 0 to m:
6[jJ] += n * gradient[]j]

return ©



Gradient ascent

An algorithm for computing an
arg max by taking small steps
uphill (i.e., in the direction of the
gradient of the function).

)

N/
S

s e
= '000‘"‘%‘;"\‘{v§:§

.

NS
s




—eedforward neural network

An algorithm for classification or
regression that uses layers of

logistic regressions to discover its
own features.

5,:0(6@)0(6(11)}))

input hidden output
layer layer layer
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