
– 1–

Getting started with Python

Will Monroe
CS 109

Supplementary Handout #3
July 2, 2017

While we will not require you to use a specific programming language in CS 109 this quarter, we
highly recommend programming in Python for probability applications. Python has become the
de-facto standard language for doing machine learning, and it is easy to learn if you’ve previously
programmed in another imperative/object-oriented language like Java or C++.

Installation
If you haven’t installed Python before, we recommend the Anaconda distribution:

https://www.continuum.io/downloads

Anaconda comes by default with several useful and tricky-to-install libraries: numpy and scipy
offer efficient math operations on vectors and matrices, plus some handy math functions that aren’t
in the standard library (particularly scipy’s functions for dealing with commonly used probability
distributions); and matplotlib gives you a way of making plots and visualizations. If you’ve used
MATLAB before, you’ll find that numpy plus matplotlib gives you a very close substitute (albeit
a little more verbosely).

You can also try to install these libraries yourself on a previously installed version of Python. At a
command line:

python get-pip.py
pip install numpy scipy matplotlib

The first line is only necessary if you do not have pip already installed. If you are using Python 3,
you may need to replace python with python3 and pip with pip3 in the above commands.

Python 2 and Python 3
Python has two major versions that are both in widespread use. The differences between Python
2 and Python 3 are small but lead to incompatibilities in code between the two versions. For the
purposes of this class, it does not matter which version you use.

By far the most common reason one might want to use Python 2 is because one wants to use the
occasional old library that doesn’t support Python 3; certain things about strings, files, and Unicode
are also a bit harder to learn in Python 3. However, Python 3 also has a number of really cool new
language features and standard libraries that can make up for these problems.1

1http://python-3-for-scientists.readthedocs.io/en/latest/python3_user_features.html

https://www.continuum.io/downloads
http://python-3-for-scientists.readthedocs.io/en/latest/python3_user_features.html

– 2–

Running Python programs
Unlike when you might have used Eclipse in 106A or Visual Studio/XCode in 106B, Python doesn’t
have a single widely-used editor just for it. Many people simply write their Python programs in
general-purpose programmers’ text editors (Vim, Emacs, Sublime Text, Atom, Notepad++) and run
them from the command line.

Suppose you write a Python program and save it as /home/myusername/cs109/helloworld.py.
You can run it by opening up a terminal, switching to that directory (cd /home/myusername/cs109)
and running

python helloworld.py

If you just run python instead (not providing a file name), it will give you an interactive shell. In
the interactive shell, you can type in Python commands line by line and see the results immediately!
This can be very handy when you all you need is a one- or two-line program.

You might want to check that scipy is installed by typing this line into the interactive shell:

import scipy.stats; print(scipy.stats.norm.cdf(2.0))

It should display a number around 0.977.

Troubleshooting
• When I try to run something, I get python: command not found or "python" is not
recognized as an internal or external command, operable program or batch
file. Python probably isn’t in your PATH variable. With Mac and Linux, you can edit
~/.bash_profile and add

PATH="$PATH:(path to Python installation)/bin"

With Windows, Anaconda recommends using the Anaconda Command Line rather than
the usual Windows Command Prompt; this should take care of any PATH issues. However, if
necessary, the PATH variable can be found in the Advanced System Settings tool (instructions:
https://www.computerhope.com/issues/ch000549.htm).

• When I try to import scipy, I get ImportError: No module named scipy. First make
sure you are either using Anaconda or have already used pip to successfully install scipy.
If this seems to have worked but you still can’t import scipy, you might have more than one
version of Python, and the library got installed to the other version. You can determine where
your Python executable is by running the following Python code:

import sys
print(sys.executable)

https://www.computerhope.com/issues/ch000549.htm

– 3–

You can then force pip to install there. First, find out where pip is:
which pip

Suppose the code above tells you that Python is located at/home/myusername/.local/bin/python,
and pip is at /usr/bin/pip. You can install scipy to that python using

/home/myusername/.local/bin/python /usr/bin/pip install scipy

Useful libraries
Python’s best feature is its broad-coverage set of standard libraries, which allow you to do many
things in one or two lines that take dozens in other languages. In this class, you’ll want to make
use of two specific libraries having to do with probability: random, which is built-in and contains
random number generators; and scipy.stats, which is a separate package and contains functions
that return values of probability distributions (we’ll cover those starting in Week 3).

Here’s an overview of the most useful functions in each library, plus math for good measure:

math.sqrt(x) Computes
√

x
math.exp(x) Computes ex

math.factorial(n) Computes n!

random.randint(a, b) Returns a random integer between
a and b, inclusive

random.random() Returns a uniform float in the interval [0, 1)
random.choice(seq) Draws one element of a sequence, equally likely
random.sample(seq, k) Draws k elements without replacement
random.shuffle(seq) Shuffles a sequence, in-place

random.gauss(mean, std) Draws from a normal distribution
note: standard deviation, not variance!

random.expovariate(lambd) Draws from an exponential distribution
random.betavariate(a, b) Draws from a beta distribution

scipy.special.binom(n, m) Computes
(

n
m

)
(as a float)

scipy.stats.binom(n, p) Binomial distribution
scipy.stats.norm(n, p).pmf(x) Probability mass function (PMF)

of binomial distribution
scipy.stats.binom(n, p).cdf(x) Cumulative distribution function (CDF)

of binomial distribution
scipy.stats.poisson(lambd) Poisson distribution
scipy.stats.geom(p) Geometric distribution

– 4–

scipy.stats.norm(mean, std) Normal distribution
note: standard deviation, not variance!

scipy.stats.norm(mean, std).pdf(x) Probability density function (PDF)
of normal distribution

scipy.stats.norm(mean, std).cdf(x) Cumulative distribution function (CDF)
of normal distribution

scipy.stats.expon(0, scale=1 / lambd) Exponential distribution
scipy.stats.beta(a, b) Beta distribution

