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Will Monroe
CS 109 July 19, 2017

Practice Midterm Solutions
With solutions by Mehran Sahami

1. a. The answer to this question is simply a multinomial coefficient, which can be writ-
ten/computed in numerous ways:(
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We select (remove) two drinks of the same type to give to Larry and Sergey (there is only
1 way to do this for each type of drink). The remaining 10 drinks are then distributed to
the remaining 10 students. The three terms above correspond respectively to CapriSuns,
Cokes, and Otter Pops being given to Larry and Sergey.
Note that each of the multinomial coefficients could have been written in different ways
(analogously to what was shown in part (a)).
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Weselect two drinks to remain in the bag and the remaining 10 drinks are then distributed
to the 10 students. The six terms above correspond respectively to the cases where the
two drinks left in the cooler are: (a) 2 CapriSuns, (b) 2 Cokes, (c) 2 Otter Pops, (d) 1
CapriSun and 1 Coke, (e) 1 CapriSun and 1 Otter Pops, and (f) 1 Coke and 1 Otter Pops.
Note that each of the multinomial coefficients could have been written in different ways
(analogously to what was shown in part (a)).

2. There are multiple ways to obtain this answer; here are two:
The first (common) method is to let X = number of slices of pizza eaten immediately after
last slice of cheese pizza is eaten. Note that X ∼ NegBin(12, 0.5) since there are 12 slices of
cheese pizza and slices of the two pizzas are equally likely to get eaten.
Now, we want to consider all cases where 12 ≤ X ≤ 21, since at least 12 slices of pizza must
be eaten in order for there to be a chance that the last cheese slice was eaten, and if no more
than 21 (out of 24) slices are eaten when the last cheese slice is eaten, then at least 3 slices
of pepperoni must remain. Thus, the probability we want is given by the expression:
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A second method to compute the answer is to use a set of Binomial variables defined as:
Yi = number of cheese slices eaten at time when i total slices have been eaten. We have
Yi ∼ Bin(i, 0.5), since we have i trials (slices of pizza eaten), where there is a 50% chance that
each slice eaten is cheese. Here, we want to compute: 1

2
∑20

i=11 P(Yi = 11), since we want to
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find the probability that when 11 slices of cheese pizza have been eaten (i.e., only one cheese
slice remains), a total of 11 to 20 slices of pizza have been eaten. We then multiply by 1/2
to denote the chance that the next slice eaten is in fact the 12th (last) slice of cheese. At that
time a total of 12 to 21 slices of pizza will have been eaten, with 12 of those slices having
been cheese, which means there are at least 3 slices of pepperoni remaining. Solving yields:
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And just to show the equivalence of this result, if we let j = i + 1, we can rewrite the
expression immediately above in the same way we computed it in the first method:
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3. a. Let X = the number of times the randomly chosen song is played.
Here the probability p of selecting the particular song = 1/500 and the number of
independent trials (song selections) n = 200. So, we have X ∼ Bin(200, 1/500). We
want to compute:

P(X > 4) = 1 − P(X ≤ 4) = 1 −
4∑

i=0
P(X = i) = 1 −

4∑
i=0

(
200

i

) (
1

500

) i (499
500

)200−i

b. Let p = probability that a randomly chosen song is played more than 4 times. As
determined in part (a): p = 1 −
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Now, let Y = the number of songs that have been heard more than 4 times. Here, this
problem set-up fits the Poisson paradigm (it is really the same as computing if 3 buckets
in a hash table each have more the 4 strings hashed to them). Thus, we have:Y ∼ Poi(λ)
where λ = 500p, and p is defined as above.
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Note that a normal approximation is not as appropriate as a Poisson approximation here
since p is a very small value.

4. a. Let Xi = the value rolled on die i, where 1 ≤ i ≤ 4. P(X ≥ k) = P(X1 ≥ k, X2 ≥

k, X3 ≥ k, X4 ≥ k) =
(

6−k+1
6

)4
, since all four rolls must be greater than or equal to k.

b. Using the definition of expectation:
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Alternatively, one can use a property covered in Lecture 12 (and therefore not required
knowledge for the midterm), which is that if X is non-negative, then:
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The two expressions to compute E[X] above are, indeed, equivalent.
c. E[S] = E[T − X] = E[T] − E[X]

Let Xi = the value rolled on die i, where 1 ≤ i ≤ 4. As computed in class, we know
that E[Xi] = 3.5 for all 1 ≤ i ≤ 4.
E[T] = E[X1 + X2 + X3 + X4] = E[X1] + E[X2] + E[X3] + E[X4] = 4(3.5) = 14
So, E[S] = 14 − E[X], where E[X] is as computed in part (b).

5. a. We are given the PMF for the random variable X , which is the popularity rank of the
song for a random play. So we can plug in i = 10:

P(X = 10) =
1
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b. Let Y be a random variable equal to the number of times the most popular song is
listened to over the course of the day. If we consider each play to be a trial which
succeeds if the song is the most popular, then Y ∼ Bin(n, p), where n is the number of
plays (1 billion = 109) and p is the probability that the song is the most popular. From
the PMF, the probability that the song is the most popular is

p = P(X = 1) =
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Here, n is very large, and p is fairly small (using the fact that
∑3·107

n=1
1
n ≈ 17.8, we can

figure out that p = 1
17.8 ≈ 0.056). So a Poisson approximation is a good choice here.

We can approximate Y ≈ W ∼ Poi(λ = np).
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(The last step, plugging in the values we already defined for n and p, is not necessary
for full credit.)
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6. Let X = lifetime of screen in our laptop.
Let event A = manufacturer A produced the screen.
Let event B = manufacturer B produced the screen.

a. We want to compute P(A | X > 18). Using Bayes Theorem, we have:

P(A | X > 18) =
P(X > 18 | A)P(A)
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Noting that (X | A) ∼ N(20, 4), we have:

P(A | X > 18) =
(0.5)

(
1 − P( X−20

2 ≤ 18−20
2 )

)
P(X > 18)

=
(0.5)Φ(1)
P(X > 18)

=
(0.5)(0.8413)

P(X > 18)

Now, we need to compute P(X > 18):

P(X > 18) = P(X > 18 | A)P(A) + P(X > 18 | B)P(B)
= P(X > 18 | A)(0.5) + P(X > 18 | B)(0.5)
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Substituting P(X > 18) into the expression for P(A | X > 18), yields the answer:
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b. Here, we want to compute P(B | X > 18). Using Bayes Theorem, we have:

P(B | X > 18) =
P(X > 18 | B)P(B)

P(X > 18)
=

(1 − P(X ≤ 18 | B)) · 0.5
P(X > 18)

Noting that (X | B) ∼ Exp(1/20), we have:
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Substituting the previously computed value for P(X > 18) into the expression for
P(B | X > 18), yields the final answer:
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