
– 1 –

Will Monroe
CS 109

Problem Set #6
August 10, 2017

Problem Set #6
Due: 12:30pm on Wednesday, August 16th

With problems by Mehran Sahami and Chris Piech

Please note that there will be no late days allowed on this assignment.

For each problem, briefly explain/justify how you obtained your answer. Brief explanations of
your answer are necessary to get full credit for a problem even if you have the correct numerical
answer. The explanations help us determine your understanding of the problem whether or not
you got the correct answer. Moreover, in the event of an incorrect answer, we can still try to give
you partial credit based on the explanation you provide. It is fine for your answers to include
summations, products, factorials, exponentials, or combinations; you don’t need to calculate those
all out to get a single numeric answer.

Unless otherwise stated, you may also use functions in a library like Python’s scipy.stats to
compute values of PMFs and CDFs; if you use these, provide your code that calls these functions
and explain how you arrived at each parameter to a function or constructor.

Written Problems
1. Program A will run 20 algorithms in sequence, with the running time for each algorithm

being independent random variables with mean = 50 seconds and variance = 100 seconds2.
Program B will run 20 algorithms in sequence, with the running time for each algorithm
being independent random variables with mean = 52 seconds and variance = 200 seconds2.
a. What is the approximate probability that ProgramA completes in less than 950 seconds?
b. What is the approximate probability that ProgramB completes in less than 950 seconds?
c. What is the approximate probability that ProgramA completes in less time than Program

B?

2. A fair 6-sided die is repeatedly rolled until the total sum of all the rolls exceeds 100.
Approximate the probability that at least 30 rolls are necessary to reach a sum that exceeds
100.

3. From past experience, we know that the midterm score for a student in CS 106Z is a random
variable with mean = 70. Assume that exam scores can be real values (i.e., fractional points
can be given), but scores cannot be negative.
a. Give an upper bound for the probability that a student’s midterm score will be greater

than or equal to 80.
b. Now, saywe are given the additional information that the variance of a student’smidterm

exam score in CS 106Z is 20 (and you can use this information for parts (c) and (d) below
as well). Give a bound on the probability that a student’s midterm score is between 60
and 80, inclusive.

– 2 –

c. According toChebyshev’s inequality, howmany studentswould have to take themidterm
in order to ensure, with at least 90% probability, that the class average would be within
5 of 70?

d. According to the Central Limit Theorem, how many students would have to take the
midterm in order to ensure, with at least 90% probability, that the class average would
be within 5 of 70?

4. Consider a sample of I.I.D. exponential random variables X1, X2, . . . , Xn, where each Xi ∼

Exp(λ).
a. Derive the maximum likelihood estimate for the parameter λ in the Exponential distri-

bution.
b. Is the estimator you derived in part (a) unbiased? You should give a “yes” or “no”

answer and a short informal justification for your answer. A formal derivation/proof is
not needed. (Hint: Johan Jensen might be interested in your answer).

c. Is the estimator you derived in part (a) consistent? (Again, you should give a “yes” or
“no” answer and a short informal justification for your answer. A formal derivation/proof
is not needed).

5. Say you have a set of binary input features/variables X1, X2, . . . , Xm that can be used to
make a prediction about a discrete binary output variable Y (i.e., each of the Xi as well as
Y can only take on the values 0 or 1). In using the input features/variables X1, X2, . . . , Xm
to make a prediction about Y , recall that the Naïve Bayes classifier makes the simplifying
assumption that P(X1, X2, . . . , Xn | Y) =

∏n
i=1 P(Xi | Y) in order to make it tractable to

compute arg maxY P(X,Y) = arg maxY P(X1, X2, . . . , Xn | Y)P(Y). Say that the first k input
variables X1, X2, . . . , Xk are actually all identical copies of each other, so that when one has
the value 0 or 1, they all do. Explain informally, but precisely, why this may be problematic
for the model learned by the Naïve Bayes classifier.

Final coding problem
For the following problem, youwill be implementing theNaïveBayes classifier.Youmust implement
your algorithm in your choice of C, C++, Java, or Python. Please note that other programming
languages (e.g., R, MATLAB, etc.) are not allowed on this assignment. You can feel free (but
are under no obligation) to use the CS106A ACM Java libraries, the CS106B/X C++ libraries, or
the C++ Standard Template Libraries (STL) as well as the standard libraries that are part of these
languages. You should not use any non-standard libraries for these languages (e.g., other libraries
from the web). As a special exception, if you use Python, you may use the libraries NumPy and
SciPy, in addition to the libraries that are standard in the language (e.g., math, string, collections,
etc. libraries). Using NumPy and SciPy is not required; the assignment can be completed with only
standard math operations. No other external libraries are allowed (e.g., scikit-learn or Tensorflow).
You should turn in your source code as well as answers to the questions listed below. It’s fine if
your implementation is in a single file or if you use multiple files. In either case, please provide any
code you write.

You will be testing the algorithm with three datasets. A description of the datasets you will be
using, the file format for the data files, and instructions on how to obtain the data files are given

– 3 –

below. Note: you do not need to do any error checking in your file reading code (you can assume the
data is always correctly formatted). To simplify your implementation, you can assume that all input
features are always binary variables (0 or 1), and the output class is also always a binary variable
(0 or 1). For the assignment, our main interest is the results you obtain with the learning algorithm.
As a result, you do not need to worry about the generality of your implementation—i.e., you can
write your algorithms to only deal with binary input/output features. Your code should, however,
be general enough to work for any number of input features or data instances (within reason), as
the different datasets you will be dealing with contain different numbers of input features and data
instances. We will be grading your code only on functionality, not on programming style. With that
said, it is still in your interest to write good modular code as there are many opportunities for code
reuse in implementing this assignment.

Datasets
You will be running your learning algorithm on three datasets (each of which has a respective
training data file and testing data file). The datasets are described in more detail below. The data
files are available on the companion page to this assignment: http://cs109.stanford.edu/
psets/pset6.html.

Simple (simple-train.txt, simple-test.txt)
This is a simple dataset provided primarily to help you determine that your code is working
correctly. There are two input features, and the output class value is determined by the value of the
first feature (i.e., y = x1). The training dataset and testing dataset are identical, each containing four
data vectors. Your Naïve Bayes classifier implementation should be able to classify all instances in
the simple testing dataset with 100% accuracy after training on the simple training set.

Congressional voting records (vote-train.txt, vote-test.txt)
This dataset contains the congressional voting records from the U.S. House of Representatives
in 1984 on several key issues. Each input vector represents the voting record for one member
of Congress. There are 48 binary input features. The output class value represents the political
affiliation of the Congressperson (Democrat or Republican, encoded in binary). The training dataset
contains 300 data vectors, and the testing dataset contains 135 data vectors.

(Thanks to Jeff Schlimmer for providing this data to the UC Irvine Machine Learning Data Repos-
itory.)

Heart tomography diagnosis (heart-train.txt, heart-test.txt)
This dataset contains data related to diagnosing heart abnormalities based on tomography (X-ray)
information. Each input vector represents data extracted from the X-ray of one patient’s heart. There
are 22 binary input features. The output class value represents the diagnosis of the patient’s heart
(normal or abnormal, encoded in binary). The training dataset contains 80 data vectors, and the
testing dataset contains 187 data vectors.

(Thanks to Lukasz Kurgan and Krzysztof Cios for providing this data to the UC Irvine Machine
Learning Data Repository.)

http://cs109.stanford.edu/psets/pset6.html
http://cs109.stanford.edu/psets/pset6.html

– 4 –

Data file format
All the data files described above adhere to the following file format:

<number of input variables per vector>
<number of data vectors in file>
<first data vector>
<second data vector>
...
<n-th data vector>

Note that each data vector in the file consists of a number of input variable values that are binary
(0 or 1). The input variable values are separated by a single space. The last input variable value is
immediately followed by a colon character ‘:’, then a single space and then the value of the binary
output variable for the vector.

For example, here is the annotated simple-train.txt data file (with annotations in italic font on
the right-hand side):

File: simple-train.txt Explanation of lines in data file
2
4
0 0: 0
0 1: 0
1 0: 1
1 1: 1

← There are 2 input variables per vector in the file
← There are 4 data vectors in the file
← First data vector (has class 0)
← Second data vector (has class 0)
← Third data vector (has class 1)
← Fourth data vector (has class 1)

Training and testing your algorithm
The “training” data files should be used to train your learning algorithm (i.e., determine the model
parameters). The “testing” data file should be used to determine the accuracy of your model after
the training phase is complete. In other words, when we describe training an algorithm below, you
should take that to mean that you are working only with the “-train” file for a particular dataset to
determine the parameters of your model. When we then describe testing a model you should take
that to mean that you are using only the “-test” file for a particular dataset to determine how well
your model does at classifying the data.

Measuring model accuracy
After a model is trained, we determine its accuracy by testing it on a new set of data (generally not
the same data we used to train the model). We measure the model’s accuracy by determining how
many of the testing vectors were correctly classified — that is, the number of times the output class
value predicted by the model was the same as the actual output class value provided in the data. We
report accuracy by indicating the number testing data vectors that were tested of each class, and the
number that were correctly classified. For example, say we have a testing dataset consisting of 12
vectors total, where the first 5 vectors are of class y = 0 and the remaining 7 of class y = 1. When

– 5 –

we then make predictions for each data vector using our model, say we correctly predict class = 0
for 4 out of the first 5 vectors and then correctly predict class= 1 for 5 out of the next 7 vectors.
Our overall accuracy for the model would be 0.75 since we correctly classified a total of 9 out of
12 vectors. We would report these results as follows:

Class 0: tested 5, correctly classified 4
Class 1: tested 7, correctly classified 5
Overall: tested 12, correctly classified 9
Accuracy = 0.750

You should use this same accuracy reporting scheme for your Naïve Bayes implementation.

6. Implement the Naïve Bayes classifier for binary input/output data. Specifically, your classifier
should make predictions for the output variable using the rule: Ŷ = arg maxy P(X | Y)P(Y),
by employing the Naïve Bayes assumption, which states that:

P(X | Y) = P(X1, X2, . . . , Xm | Y) =
m∏

i=1
P(Xi | Y)

Thus, your programwill need to estimate the values P(Y) as well as P(Xi | Y) for all 1 ≤ i ≤ m
from the training data. Note that to estimate the probability mass function P(Xi | Y), you will
need to estimate both P(Xi | Y = 0) and P(Xi | Y = 1). For each of parts (a)-(c) below, you
should run your algorithm twice, the first time computing your probability estimates using
maximum likelihood estimation and the second time computing your probability estimates
using Laplace estimation.

a. Train your algorithm on the data file simple-train.txt. Test your algorithm on the
data file simple-test.txt and report your classification accuracy. Remember to do
this once with maximum likelihood estimation and once with Laplace estimation. As a
sanity check, you should be able to achieve 100% classification accuracy on the testing
data using a model trained with maximum likelihood estimation.

b. Train your algorithm on the data file vote-train.txt. Test your algorithm on the data
file vote-test.txt and report your classification accuracy. Remember to do this once
with maximum likelihood estimation and once with Laplace estimation. To give you a
sanity check of how well you should be doing, you should be able to achieve at least
90% classification accuracy on the testing data using a model trained with maximum
likelihood estimation.

c. Train your algorithm on the data file heart-train.txt. Test your algorithm on the
data file heart-test.txt and report your classification accuracy. Again, remember to
do this once with maximum likelihood estimation and once with Laplace estimation.

– 6 –

d. After running your algorithms on both the vote and heart data, did you see any differ-
ence between using maximum likelihood estimation versus Laplace estimation in your
accuracy results? In general, under what conditions (i.e., characteristics of the datasets)
do you think using Laplace estimation (rather than maximum likelihood estimation)
would be better (e.g., likely improve classification accuracy)? Under what conditions do
you think using maximum likelihood estimation (rather than Laplace estimation) would
be better?

e. Include your code for the Naïve Bayes classifier in your Gradescope submission. Please
make sure lines are not cut off at the right or bottom edge of pages.

