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Step 1: Defining Your Terms

• What’s a ‘success’? What’s the sample space?


• What does each random variable actually represent, in 
English? Every definition of an event or a random variable 
should have a verb in it. (‘ = ’ is a verb)


• Make sure units match - particularly important for λ
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Translating English to 
Probability

What the problem asks: What you should immediately 
think:

“What’s the probability of _____ ” P(            )

“___ given ___”, “___ if ___” ___ | ___

“at least ___” could we use what we know 
about everything less than __?

“approximate ____.” use an approximation!

“How many ways…” combinatorics

these are just a few, and these are why practice is the best way to prepare for the exam!



Translating English to 
Probability

People can have blue or brown eyes. 
What’s the probability John has blue eyes 

if his mother has brown eyes?



Translating English to 
Probability

People can have blue or brown eyes. 
What’s the probability John has blue eyes 

if his mother has brown eyes?

1. What events are we given? 

2. What are we asked to solve?
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Counting

Sum Rule Inclusion-Exclusion 
Principle

I can choose to dress up as 
one of 5 superheroes or 

one of 4 farm animals. How 
many costume choices?

I can choose to dress up as one 
of 5 superheroes or one of 6 

strong female movie leads. 2 of 
the superheroes are female 

movie leads. 
How many costume choices?

outcomes = |A | + |B | |A | + |B | − |A ∩ B |
for any |A ∩ B |if |A ∩ B | = 0
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Counting

Product Rule Pigeonhole 
Principle

if all outcomes of B are possible 
regardless of the outcome of A

If m objects are placed into n 
buckets, then at least one bucket 
has at least ceiling(m / n) objects.

I can choose to go to one of 
3 parties and then trick-or-

treat in one of 5 
neighborhoods. How many 
different ways to celebrate?

If you have an infinite number 
of red, white, blue, and green 
socks in a drawer, how many 

must you pull out before being 
guaranteed a pair?

outcomes = |A | × |B |
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the divider method!

Combinatorics: 
Arranging Items

Permutations 
(ordered)

Combinations 
(unordered)

(n
k) =

n!
k!(n − k)!n!Distinct

n!
k1!k2! . . . kn! (n + r − 1

r − 1 )Indistinct
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Probability basics

Probability =
Event space

Sample space

P(E) = lim
x−>∞

n(E)
n

if all outcomes 
are equally likely!

(use counting with 
distinct objects)

in the general case

Axioms: 0 ≤ P(E) ≤ 1 P(S) = 1 P(EC) = 1 − P(E)



Conditional Probability

P(E |F) =
P(EF)
P(F)

definition:

P(EF) = P(E |F)P(F)

Chain Rule:
P(EF) = P(E ∩ F)*



Law of Total Probability
P(A) = P(A |B)P(B) + P(A |BC)P(BC)



Law of Total Probability

We can either walk to class, or we can bike.


If we walk to class, we have a 75% chance of being late. 
If we bike, we have a 10% chance of being late.


We walk if we can’t find our bike key, which happens 30% of 
the time.


What’s our probability of being late to class?

P(A) = P(A |B)P(B) + P(A |BC)P(BC)
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We can either walk to class, or we can bike. 
If we walk to class, we have a 50% chance of being late. 
If we bike, we have a 10% chance of being late. 
We walk if we can’t find our bike key, which happens 30% of 
the time. What’s our probability of being late to class?


Event W = we walk to class. Event B = we bike = W^C.

P(A) = P(A |B)P(B) + P(A |BC)P(BC)
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Law of Total Probability
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Law of Total Probability

Event W = we walk to class. Event B = we bike = W^C. 
Event L = we are late to class. 
P(L | W) = 0.5, P(L | B) = 0.1. 
P(W) = 0.3. 
P(L) = ? 


P(A) = P(A |B)P(B) + P(A |BC)P(BC)

bike

walk

total shaded = ?% 
of whole
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Law of Total Probability

Event W = we walk to class. Event B = we bike = W^C. 
Event L = we are late to class. 
P(L | W) = 0.5, P(L | B) = 0.1. 
P(W) = 0.3. 
P(L) = ? 


P(A) = P(A |B)P(B) + P(A |BC)P(BC)

P(L) = P(L |W )P(W ) + P(L |WC)P(WC)

= (0.5)(0.3) + (0.1)(0.7)

= 0.22

bike

walk



Law of Total Probability

Event W = we walk to class. Event B = we bike = W^C. 
Event L = we are late to class. 
P(L | W) = 0.5, P(L | B) = 0.1. 
P(W) = 0.3. 
P(L) = ? 


what if we can bike, walk, or 
take the Marguerite (> 2 options)?

P(A) = P(A |B)P(B) + P(A |BC)P(BC)

bike

walk



Law of Total Probability

Event W = we walk to class. Event B = we bike = W^C. 
Event L = we are late to class. 
P(L | W) = 0.5, P(L | B) = 0.1. 
P(W) = 0.3. 
P(L) = ? 


what if we can bike, walk, or 
take the Marguerite (> 2 options)?


events for “scale factors” must be: 
   - mutually exclusive, and 
   - exhaustive

P(A) = P(A |B)P(B) + P(A |BC)P(BC)

bike

walk



Bayes’ Rule

P(E |F) =
P(F |E)P(E)

P(F)



Bayes’ Rule

P(E |F) =
P(F |E)P(E)

P(F)

posterior priorlikelihood

normalization 
constant



Bayes’ Rule

P(E |F) =
P(F |E)P(E)

P(F)

P(F |E)P(E) + P(F |EC)P(EC)
divide the event F into all the possible ways it can happen; use LoTP



Old Principles, New Tricks



DeMorgan’s Laws



Mutual Exclusion

“OR”

Independence
Independence

“AND”

P(EF) = P(E)P(F) |E ∩ F | = 0



Independence

“AND”

Independence

P(EF) = P(E)P(F)

Conditional 
Independence

“AND [if]”

P(EF |G) = P(E |G)P(F |G)
P(E |FG) = P(E |G)

If E and F are independent…..

…..that does not mean they’ll be 
independent if another event happens!

& vice versa
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Expectation & Variance

E[X] = ∑
x:P(x)>0

x * P(x) E[X] = ∫x
x * p(x)dx

Discrete definition Continuous definition



Expectation & Variance

E[X] = ∑
x:P(x)>0

x * P(x) E[X] = ∫x
x * p(x)dx

Discrete definition Continuous definition

Properties of Expectation Properties of Variance

E[X + Y] = E[X] + E[Y]

E[aX + b] = aE[X] + b

Var(aX + b) = a2Var(X)

Var(X) = E[(X − μ)2]

Var(X) = E[X2] − E[X]2

E[g(X)] = ∑
x

g(x) * pX(x)



All our (discrete) friends
Ber(p) Bin(n, p) Poi(λ) Geo(p) NegBin 

(r, p)

P(X) = p

E[X] = p E[X] = np E[X] = λ E[X] = 
1 / p

E[X] = 
r / p

Var(X) = 
p(1-p)

Var(X) = 
np(1-p) Var(X) = λ

Getting candy or 
not at a random 

house

# houses out of 20 
that give out candy

# houses in an 
hour that give out 

candy

# houses to visit 
before getting 

candy

# houses to visit 
before getting 
candy 3 times

(n
k)pk(1 − p)n−k λke−λ

k!
(1 − p)k−1p (k − 1

r − 1)pr(1 − p)k−r

1 − p
p2

r(1 − p)
p2



All our (continuous) friends
Uni(α, β) Exp(λ) N(μ, σ)

E[x] = 1 / λ E[x] = μ

thickness of sidewalk 
pavement between houses

time until feet get too sore 
to trick or treat

weight of filled candy 
baskets

f(x) = λe−λx

F(x) = 1 − e−λx

Var(x) =
1
λ2Var(x) =

(β − α)2

12

E(x) =
α + β

2

P(a ≤ X ≤ b) =
b − a
β − α

f(x) =
1

β − α
f(x) =

1

σ 2π
e

−(x − μ)2

2σ2

F(x) = Φ(
x − μ

σ
)

Var(x) = σ2



Approximations
When can we approximate a binomial?

p is small

Binomial

PoissonNormal
p is moderate

n is large



Continuity correction

• Only applies to PDF - why?



Joint Distributions
• Discrete case: 


• Continuous case: 
 
 
 

• For joint distributions to be independent, both their joint 
probability density function must be factorable and the 
bounds of the variables must be separable.

px,y(a, b) = P(X = a, Y = b) . Px(a) = ∑
y

Px,y(a, y)

P(a1 < x ≤ a2, b1 < y ≤ b2) = ∫
a2

a1
∫

b2

b1

fX,Y(x, y)dydx

fX(a) = ∫
∞

−∞
fX,Y(a, y)dy



Convolutions

(general case)



Practice Problems



How many ways are there to 
rearrange the letters of the 
alphabet such that none of 
the 5 vowels are next to each 
other?





Assume SAT scores are 
normally distributed, with 
mean 500 and variance 1000. 
If two students take the 
exam, what is the probability 
that their combined score is 
greater than 1020?





Are Hogwarts house and favorite pet independent?


