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• Childhood: Nairobi, Kenya
• High School: Kuala Lumpur, Malaysia
• Stanford University Ph.D. in Deep Learning
• Research lab on AI for Social Good

Chris Piech

The problem I really want to 
solve is to make high quality 
more education accessible

I originally concentrated in graphics and worked at Pixar

My parents are 
interesting folks
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I Took the First CS109 Class

Back when I looked like this J
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Teaching Team
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Course mechanics
(this is a light version. Please read the handout 

for details).
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cs109.stanford.edu

Essential Information

cs106b.stanford.edu
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Are you in the right place?
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Prereqs

CS106B/X (important):
• Recursion
• Hash Tables
• Binary Trees
• Programming

CS103 (ok as a corequisite):
• Proof techniques (induction)
• Set theory
• Math maturity

Math 51 or CME 100  (important)
• Multivariate differentiation
• Multivariate integration
• Basic facility with linear algebra (vectors)

What you really need:
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Coding in CS109

Review session on Friday
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• Post to Piazza for clarification

• Go to Working Office Hours

• Email cs109@cs.stanford.edu

• Email Chris or go to his office for course level issues.

10

Staff Contact

mailto:cs109@cs.stanford.edu
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5 Units

3 Units
-or-

4 Units

Are you an
Undergrad?

Do you want
to take CS109 for

fewer units?

Start Here

CS109 Units

Hours per week = Units⇥ 3

Average about 10 hours / week for assignments

Yes

No

No

Yes
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Not Videotaped

* And you should expect to learn more
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6 Assignments

Class Breakdown

Midterm
Tuesday Oct 30th, 7-9pm 

Final
Wed Dec 12th, 3:30-6:30pm

Section Participation

45%

20%

30%

5%
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2
Late Days
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The Student Honor Code
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Story of Modern AI
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Four Prototypical Trajectories

Modern AI
or, How we learned to combine 
probability and programming
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Brief History
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Narrow Intelligence

Play Chess

Translate 
Turkish

Drive a 
Car

Play Breako
ut
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General Intelligence

Play Chess

Translate 
Turkish

Drive a 
Car

Play Breako
ut
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1952 1955

Early Optimism 1950
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Early Optimism 1950

“Machines will be capable, 
within twenty years, of doing 
any work a man can do.” 
–Herbert Simon, 1952
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The world is too complex

Underwhelming Results 1950s to 1980s
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Something is going on in the world of AI
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1997 Deep Blue

2005 Stanley

2011 Watson

Big Milestones Pt 1
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Almost perfect…

Told Speech Was 30 Years Out
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The Last Remaining Board Game
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Computers Making Art
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Self Driving Cars
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What is going on?



Piech, CS106A, Stanford University

[suspense]
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Focus on one problem
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Computer Vision
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Logistic Regression is like the Harry Pottery Sorting HatClassification

That is a picture 
of a one
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Logistic Regression is like the Harry Pottery Sorting HatClassification

That is a picture 
of a zero
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Classification

That is a picture 
of an zero

* It doesn’t have to be 
correct all of the time
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Can you do it?
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What number is this?
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What number is this?



Piech, CS106A, Stanford University

0 0 1 0 1 0 1 0 0 0 1 1 1 0 1
1 0 0 1 0 1 1 1 0 1 0 0 0 0 0
1 1 1 0 1 0 0 1 1 0 0 1 0 1 0
1 1 1 1 1 0 0 0 0 0 1 1 0 1 1
0 0 0 1 1 0 0 1 0 0 0 1 1 1 0
1 0 0 1 1 0 0 0 1 0 1 1 1 1 0
1 1 0 1 1 0 0 1 1 0 1 1 1 0 0
1 0 1 0 0 1 0 0 1 0 0 1 1 1 1
0 0 0 0 1 0 1 0 1 1 0 0 1 1 1
0 1 1 0 0 0 0 0 1 1 1 1 1 1 0
0 0 1 0 1 1 1 0 0 0 1 0 0 0 0
0 1 1 1 0 1 0 0 1 0 0 0 0 0 1
1 1 0 0 0 0 0 0 0 0 1 0 0 1 1
0 0 0 0 0 0 0 0 1 1 1 1 0 0 1
0 0 1 1 1 0 1 0 1 1 0 0 0 1 0

How about now?
What a computer sees

What a human sees
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Very hard to Program

public class HarryHat extends ConsoleProgram {

public void run() {
println(“Todo: Write program”);

}

}

??
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Two Great Ideas

2. Artificial Neurons

1. Probability from Examples



Piech, CS106A, Stanford University

Two Great Ideas

1. Probability from Examples

2. Artificial Neurons
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1. Probability From Examples
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When Does the Magic Happen?

Lots of 
Data

Sound
Probability+
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Basically just a rebranding of statistics 
and probability.

Machine Learning
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[

Why is this hard?
You see this: 

But the camera sees this:

[Andrew Ng]

Vision is Hard
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Human Features
0.1 0.7

0.60.4

0.1 0.4

0.50.5

0.1 0.6

0.70.5

0.2 0.3

0.40.4

0.1
0.7
0.4
0.6
0.1
0.4
0.5
0.5
…

Find edges
at four 
orientations

Sum up edge 
strength in
each quadrant

Final 
feature 
vector

[Andrew Ng]

Human Designed Features
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Some Great Thinkers

Daphne Koller
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Motorcycle

Motorcycle

Motorcycle

Motorcycle

Motorcycle Motorcycle

Motorcycle

Motorcycle

Motorcycle

Straight ML Not Perfect…
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Two Great Ideas

2. Artificial Neurons

1. Probability from Examples
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2. Artificial Neurons
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Neuron
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Neuron
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Neuron
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Neuron
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Some Inputs are More Important
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Artificial Neuron

1

1

0

1

2

3

-2

1

6 0.99
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Sigmoid Function
1

1

0

1

2

3

-2

1

6 0.99

1

1 + e�x

An artificial neuron is like a little probability calculator
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Neural Network

Each node represents 
a neuron (or a vector 

of neurons)

Each edge represents 
the weight of the 

interaction

Pixels
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Forward Pass…
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Forward Pass

Each node represents 
a neuron (or a vector 

of neurons)

Each edge represents 
the weight of the 

interaction
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Forward Pass

Each node represents 
a neuron (or a vector 

of neurons)

Each edge represents 
the weight of the 

interaction
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Forward Pass

Each node represents 
a neuron (or a vector 

of neurons)

Each edge represents 
the weight of the 

interaction
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Forward Pass
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Forward Pass
Interpret the last 

neuron as the 
“probability” that the 

image is of a 1
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Backward Pass
The image had a 0 but we 

predicted a high probability 
that it was a 1
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Backward Pass

We start by making our 
missprediction a numerical 

“loss”

The image had a 0 but we 
predicted a high probability 

that it was a 1
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Backward Pass
The image had a 0 but we 

predicted a high probability 
that it was a 1

We start by making our 
missprediction a numerical 

“loss”

Update each connection
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Chose weights that maximize the probability of the right 
answers

For on
e dat

um

For II
D data

P (Y = y|X = X) = (ŷ)y(1� ŷ)1�y

L(✓) =
nY

i=1

P (Y = y(i)|X = x(i))

=
nY

i=1

(ŷ(i))y
(i)

·
h
1� (ŷ(i))

i(1�y(i))

P (Y = 1|X = x) = ŷ ŷ = �

0

@
mhX

j=0

hj✓
(ŷ)
j

1

A
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Gradient Ascent

Walk uphill and you will find a local maxima 
(if your step size is small enough)
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Gradient of output layer params

@ŷ

@✓(ŷ)i

= ŷ[1� ŷ] · hi

@ŷ

@✓(ŷ)i
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That looks
 scarier th

an it is
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Chain Rule Down the Network
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Where you will be by the end of class
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When you train, 
something really neat happens
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pixels

edges

object parts
(combination 
of edges)

object models

[Honglak Lee]

Training set: Aligned
images of faces. 

Visualize the Weights
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Google Brain
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1 Trillion Artificial Neurons

Google Brain
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Optimal stimulus 
by numerical optimization

Le, et al., Building high-level features using large-scale unsupervised learning. ICML 2012

Top stimuli from the test set

A Neuron That Fires When It Sees Cats
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Neuron 1

Neuron 2

Neuron 3

Neuron 4

Neuron 5

Le, et al., Building high-level features using large-scale unsupervised learning. ICML 2012

Other Neurons
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Autonomous Tutor
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Prediction Results
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Huge improvement in ability 
to predict for real students

Piech et al, 2015
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Not once, but twice, AI was revolutionized by 
people who understood probability theory.
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End of Story



Piech, CS106A, Stanford University

Except it isn’t the end of the story…



Piech, CS106A, Stanford University

Probability is more than just machine learning
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Abundance of Important Problems
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Algorithms and Probability

Hash Fn

Eg Raytracing Eg HashMaps
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Medicine and Probability
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Autocomplete
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Probability in Practice
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Philosophy and Probability
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Art and Probability
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Probabilistic Analysis of Algorithms
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�The sexy job in the next 10 years 
will be statisticians.�

-Hal Varian, Chief Economist at Google
(from New York Times, August 6, 2009)

Microsoft's competitive advantage, [Bill Gates] 
responded, was its expertise in "Bayesian 

[probabilistic] networks.�
(from Los Angeles Times, Oct. 28, 1996)

#1 Most Desired Skill in Industry
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�I believe over the next decade computing will become 
even more ubiquitous and intelligence will become ambient. 
The coevolution of software and new hardware form factors 
will intermediate and digitize — many of the things we do 
and experience in business, life and our world. This will be 
made possible by an ever-growing network of connected 
devices, incredible computing capacity from the cloud, 
insights from big data, and intelligence from machine 
learning.�

-- Satya Nadella (CEO, Microsoft)
Email to all employees on first day as CEO (Feb. 04, 2014)

#1 Most Desired Skill in Industry
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Most CS PhD students list their highest desiderata upon 
graduation as: 

“Better understanding of probability”

#1 Most Desired Skill in Academia
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Foundation for your future
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But its not always intuitive
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Zika Test

Positive Zika.
What is the probability of zika?

• 0.08% of people have zika
• 90% positive rate for people with zika
• 7% positive rate for people without zika

The right answer is 1%
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Probability = Important + Needs Study 

Delayed gratification
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What is CS109?
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Traditional View of Probability
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http://www.site.comhttp://www.site.comhttp://www.site.com

CS View of Probability

Give you the tools necessary to build and 
understand probabilistic CS algorithms.
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Heart Ancestry

Netflix

CS View of Probability
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CS View of Probability
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Teach you how to write programs 
that most people are not able to write. 

CS View of Probability
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Lets dive in…
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Counting
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Counting

Core Probability

Probabilistic 
modelling 

choices

Machine 
Learning

Our Route


