

CS109: Probability for Computer Scientists

Chris Piech

- Childhood: Nairobi, Kenya
- High School: Kuala Lumpur, Malaysia
- Stanford University Ph.D. in Deep Learning
- Research lab on AI for Social Good

I Took the First CS109 Class

Back when I looked like this 😳

Teaching Team

Professor: Chris Piech Diech@cs.stanford.edu C Thurs 1-3pm f Gates 202

TA: Julia Daniel a idaniei7@stanford.edu TBA 🗮 TBA

TA: Ana-Maria Istrate aistrate@stanford.edu TBD

🖶 ТВО

TA: Conner Smith Scsmith95@stanford.edu 🗮 TBD 👿 TBD

TA: Cooper Raterink E crat@stanford.edu 🗮 TBD 🐺 TBD

TA: David Liang a dwliang@stanford.edu TBD 🖶 TBD

TA: Nathan Dass andass@stanford.edu 👮 TBD TBD

PIECH, CSTUBA, STANTORD UNIVERSITY

Course mechanics (this is a light version. Please read the handout for details).

Essential Information

Are you in the right place?

Prereqs

What you really need:

CS106B/X (important):

- Recursion
- Hash Tables
- Binary Trees
- Programming

CS103 (ok as a corequisite):

- Proof techniques (induction)
- Set theory
- Math maturity

Math 51 or CME 100 (important)

- Multivariate differentiation
- Multivariate integration
- Basic facility with linear algebra (vectors)

Coding in CS109

Review session on Friday

Staff Contact

- Post to Piazza for clarification
- Go to Working Office Hours
- Email <u>cs109@cs.stanford.edu</u>
- Email Chris or go to his office for course level issues.

CS109 Units

Not Videotaped

* And you should expect to learn more

A CONDUCTION OF THE PARTY OF TH

Class Breakdown

45% 6 Assignments

20% Midterm Tuesday Oct 30th, 7-9pm

30% Final Wed Dec 12th, 3:30-6:30pm

5% Section Participation

Late Days

The Student Honor Code

Story of Modern Al

Modern Al or, How we learned to combine probability and programming

Brief History

Narrow Intelligence

General Intelligence

Early Optimism 1950

1955 Axioms $\models C$ ATP System (theorem prover) Yes No (proof/ Timeout answer)

AND ILLAGE THE STATE

Early Optimism 1950

"Machines will be capable, within twenty years, of doing any work a man can do." –Herbert Simon, 1952

Underwhelming Results 1950s to 1980s

The world is too complex

BRACEYOURSELVES

WINTER IS COMING

Something is going on in the world of AI

Big Milestones Pt 1

1997 Deep Blue

2005 Stanley

2011 Watson

Told Speech Was 30 Years Out

Almost perfect...

The Last Remaining Board Game

Computers Making Art

Self Driving Cars

What is going on?

[suspense]

Focus on one problem

Computer Vision

Classification

Classification

Classification

* It doesn't have to be correct all of the time

Can you do it?

What number is this?

What number is this?

How about now?

What a computer sees

What a human sees

Very hard to Program

public class HarryHat extends ConsoleProgram {

```
public void run() {
    println("Todo: Write program");
}
```


Two Great Ideas

1. Probability from Examples

2. Artificial Neurons

Two Great Ideas

1. Probability from Examples

2. Artificial Neurons

1. Probability From Examples

When Does the Magic Happen?

Lots of + Sound Data + Probability

Machine Learning

Basically just a rebranding of statistics and probability.

Vision is Hard

You see this:

Rut the comore coas this:											
DUI	. IIIE	Call	IEI d	2662	uns.						
194	210	201	212	199	213	215	195	178	158	182	209
180	189	190	221	209	205	191	167	147	115	129	163
114	126	140	188	176	165	152	140	170	106	78	88
87	103	115	154	143	142	149	153	173	101	57	57
102	112	106	131	122	138	152	147	128	84	58	66
94	95	79	104	105	124	129	113	107	87	69	67
68	71	69	98	89	92	98	95	89	88	76	67
41	56	68	99	63	45	60	82	58	76	75	65
20	43	69	75	56	41	51	73	55	70	63	44
50	50	57	69	75	75	73	74	53	68	59	37
72	59	53	66	84	92	84	74	57	72	63	42
67	61	58	65	75	78	76	73	59	75	69	50

[Andrew Ng]

Human Designed Features

Find edges at four orientations Sum up edge strength in each quadrant vector

[Andrew Ng]

Some Great Thinkers

Daphne Koller

Straight ML Not Perfect...

Motorcycle

Motorcycle

Two Great Ideas

1. Probability from Examples

2. Artificial Neurons

2. Artificial Neurons

Some Inputs are More Important

Artificial Neuron

Sigmoid Function

Neural Network

Forward Pass...

Backward Pass

Backward Pass

Backward Pass

Chose weights that maximize the probability of the right answers

$$P(Y = 1 | X = \mathbf{x}) = \mathbf{\hat{y}}$$
 $\hat{y} = \sigma \left(\sum_{j=0}^{m_h} \mathbf{h}_j \theta_j^{(\hat{y})} \right)$

For one datum
$$P(Y = y | X = \mathbf{X}) = (\hat{y})^y (1 - \hat{y})^{1-y}$$

For IID data

$$L(\theta) = \prod_{i=1}^{n} P(Y = y^{(i)} | X = \mathbf{x}^{(i)})$$

$$= \prod_{i=1}^{n} (\hat{y}^{(i)})^{y^{(i)}} \cdot \left[1 - (\hat{y}^{(i)})\right]^{(1-y^{(i)})}$$

Gradient Ascent

Walk uphill and you will find a local maxima (if your step size is small enough) Piech, CS106A, Stanford University

Gradient of output layer params

$$\frac{\partial L}{\partial \theta_i^{(\hat{y})}} = \frac{\partial L}{\partial \hat{y}} \cdot \frac{\partial \hat{y}}{\partial \theta_i^{(\hat{y})}}$$
$$\hat{y} = \sigma \left(\sum_{j=0}^{m_h} \mathbf{h}_j \theta_j^{(\hat{y})} \right)$$
$$\frac{\partial \hat{y}}{\partial \theta_i^{(\hat{y})}} = \sigma \left(\sum_{j=0}^{m_h} \mathbf{h}_j \theta_j^{(\hat{y})} \right) \left[1 - \sigma \left(\sum_{j=0}^{m_h} \mathbf{h}_j \theta_j^{(\hat{y})} \right) \right] \cdot \frac{\partial}{\partial \theta_i^{(\hat{y})}} \sum_{j=0}^{m_h} \mathbf{h}_j \theta_j^{(\hat{y})}$$
$$= \hat{y} [1 - \hat{y}] \cdot \frac{\partial}{\partial \theta_i^{(\hat{y})}} \sum_{j=0}^{m_h} \mathbf{h}_j \theta_j^{(\hat{y})}$$
$$= \hat{y} [1 - \hat{y}] \cdot h_i$$
That looks scarier than it is

Chain Rule Down the Network

Where you will be by the end of class

When you train, something really neat happens

Visualize the Weights

Training set: Aligned images of faces.

object models

object parts (combination of edges)

edges

[Honglak Lee]

Google Brain

Google Brain

1 Trillion Artificial Neurons

A Neuron That Fires When It Sees Cats

Top stimuli from the test set

Optimal stimulus by numerical optimization

Le, et al., Building high-level features using large-scale unsupervised learning. ICML 2012

Other Neurons

Le, et al., Building high-level features using large-scale unsupervised learning. ICML 2012

Autonomous Tutor

Prediction Results

Not once, but twice, AI was revolutionized by people who understood probability theory.

End of Story

Except it isn't the end of the story...

Probability is more than just machine learning

Abundance of Important Problems

Algorithms and Probability

Eg Raytracing

Eg HashMaps

Medicine and Probability

Autocomplete

dinosaurs we	Advanced Search Language Tools
inosaurs websites for kids	
dinosaurs we're back	
dinosaurs webcomic	
dinosaurs webquest	
dinosaurs were made up by the cia to discourage time travel	
dinosaurs website	
dinosaurs went extinct	
dinosaurs weight	
dinosaurs we are scientists	
dinosaurs weed episode	
Google Search I'm Feeling Lucky	

Probability in Practice

Philosophy and Probability

Art and Probability

Probabilistic Analysis of Algorithms

#1 Most Desired Skill in Industry

Microsoft's competitive advantage, [Bill Gates] responded, was its expertise in "Bayesian [probabilistic] networks. " (from Los Angeles Times, Oct. 28, 1996)

"The sexy job in the next 10 years will be statisticians." -Hal Varian, Chief Economist at Google (from New York Times, August 6, 2009)

#1 Most Desired Skill in Industry

"I believe over the next decade computing will become even more ubiquitous and intelligence will become ambient. The coevolution of software and new hardware form factors will intermediate and digitize — many of the things we do and experience in business, life and our world. This will be made possible by an ever-growing network of connected devices, incredible computing capacity from the cloud, insights from big data, and intelligence from <u>machine</u> <u>learning</u>."

-- Satya Nadella (CEO, Microsoft)

Email to all employees on first day as CEO (Feb. 04, 2014)

#1 Most Desired Skill in Academia

Most CS PhD students list their highest desiderata upon graduation as:

"Better understanding of probability"

Foundation for your future

But its not always intuitive

Zika Test

Positive Zika. What is the probability of zika?

- 0.08% of people have zika
- 90% positive rate for people with zika
- 7% positive rate for people without zika

The right answer is 1%

Probability = Important + Needs Study

Delayed gratification

What is CS109?

Traditional View of Probability

CS View of Probability

http://www.site.com

Give you the tools necessary to build and understand probabilistic CS algorithms.

CS View of Probability

Heart

Netflix

NETFLIX

Piech, CS106
CS View of Probability

CS View of Probability

Teach you how to write programs that most people are not able to write.

Lets dive in...

Counting

Our Route

Piech, CS106A, Stanford University