

Gaussian

Chris Piech
CS109, Stanford University

Which is Random?

Abstract

Sequence 1: TTHHTHTTHTTTHTTTHTTTHTTHTHHTHHTHTHHTTTHHTHTHTTHTHHTTHTHHTHTTTH HTTHHTTHHHTHHTHTTHTHTTHHTHHHTTHTHTTTHHTTHTHTHTHTHTTHTHTHHHTTHT HTHHTHHHTHTHTTHTTHHTHTHTHTTHHTTHTHTTHHHTHTHTHTTHTTHHTTHTHHTHHH TTHHTHTTHTHTHTHTHTHTHHHTHTHTHTTHTHHTHTHTTHTTTH TTHHTHTHTHTHHHTTHHTHTTTHTHHTHTHTHHTHTTHTTHTHHTHTHTTT

Sequence 2: HTHHHTHTTHHTTTTTTTTHHHTTTHHTTTTHHTTHHHTTHTHTTTTTTHTHTTTTHHHHTH THTTHTTTHTTHTTTTHTH HHTHHTHHHHHHHTTHTHTTTHHTTTTHTHHTTHTTHTHTHTTHHHHHTTHTTTHTHTHHTT TTHTTTTTHHTHTHHHHTTTTHTHHHHHHTHTHTHTHHHTHTTHHHTHHHHHHTHHHTHTTT HHHTTTHHTHTTHHTHHHTHTTHTTHTTTHHTHTHTTTTHTHTHTTHTHTHT

Climate Sensitivity

Will the Warriors Win?

What is the probability that the Warriors win?
How do you model zero sum games?

Continuous Random Variables

Probability Density Function

The probability density function (PDF) of a continuous random variable represents the relative likelihood of various values.

Units of probability divided by units of X. Integrate it to get probabilities!

$$
P(a<X<b)=\int_{x=a}^{b} f_{X}(x) d x
$$

What do you get if you integrate over a
 probability density function?
 A probability!

Cumulative Density Function

A cumulative density function (CDF) is a "closed form" equation for the probability that a random variable is less than a given value

$$
F(x)=P(X<x)
$$

If you learn how to use a cumulative density function, you can avoid integrals!

$$
F_{X}(x)
$$

This is also shorthand notation for the PMF

Fundamental Properties

Fundamental Properties

Notation

$p(a)$ or $p_{X}(a) \quad$ Probability Mass Function (discrete) $\quad P(X=a)$
$f(a)$ or $f_{X}(a) \quad$ Probability Density Function (continuous)
$F(a)$ or $F_{X}(a) \quad$ Cumulative Density Function $\quad P(X \leq a)$

Density vs Cumulative

$f(\mathrm{x})=$ derivative of probability
$\mathrm{F}(\mathrm{x})=\mathrm{P}(\mathrm{X}<\mathrm{x})$
Piech, CS106A, Stanford University

Finding Constants

- X is a continuous random variable with PDF:

$$
f(x)=\left\{\begin{array}{cc}
2 x & 0 \leq x \leq 1 \\
0 & \text { otherwise }
\end{array}\right.
$$

What about $f(x)=3 x$?

Not a valid

PDF

$$
\begin{gathered}
\int_{0}^{1} 2 x d x=\left.x^{2}\right|_{0} ^{1}=1 \\
\text { valid PDF }
\end{gathered}
$$

$$
\int_{0}^{1} 3 x d x=\left.\frac{3}{2} x^{2}\right|_{0} ^{1}=\frac{3}{2}
$$

Big Day

The Normal Distribution

- X is a Normal Random Variable: $X \sim \mathrm{~N}\left(\mu, \sigma^{2}\right)$
- Probability Density Function (PDF):
$f(x)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-(x-\mu)^{2} / 2 \sigma^{2}}$
- $E[X]=\mu$
- $\operatorname{Var}(X)=\sigma^{2}$

- Also called "Gaussian"
- Note: $f(x)$ is symmetric about μ

Why use the normal?

- Common for natural phenomena: heights, weights, etc.
- Often results from the sum of multiple variables
- Most noise is Normal.
- Sample means are distributed normally.

Or that is what they want you to believe

But I Encourage you to be Critical

These are log-normal

- Common for natural phenomena: heights, weights, etc.

Only if they are equally weighted

- Often results fom the sum of multiple variables

Most noise is assumed normal

- Most noise is Normal.
- Sample means are distributed normally.

It is the most important distribution

Because of a deeper truth...

"The simplest explanation is usually the best one"

Ockham's razor

Shaving your hypothesis since 14 th Century

Complexity is Tempting

* That describes the training data, but will it generalize?

Simplicity is Humble

* A Gaussian maximizes entropy for a given mean and variance

Carl Friedrich Gauss

- Carl Friedrich Gauss (1777-1855) was a remarkably influential German mathematician

- Started doing groundbreaking math as teenager
- Did not invent Normal distribution, but popularized it
- He looked like Martin Sheen
- Who is, of course, Charlie Sheen's father

Probability Density Function

$$
\mathcal{N}\left(\mu, \sigma^{2}\right) \quad f(x)=\frac{1}{\sigma \sqrt{2 \pi}} e^{\frac{-(x-\mu)^{2}}{2 \sigma^{2}}}
$$

Anatomy of a beautiful equation

$\mathcal{N}\left(\mu, \sigma^{2}\right)$

$$
f(x)=
$$

probability density at x
"exponential" 1
the distance to the mean
\downarrow
$\frac{-(x-\mu)^{2}}{2 \sigma^{2}}$
a constant
sigma shows up twice

Flowers on a Rose Bush

$$
X \sim N\left(\mu=4, \sigma^{2}=2\right)
$$

Scientist from Kenya

$$
X \sim N\left(\mu=4, \sigma^{2}=2\right)
$$

Let's try and integrate it!

$$
\begin{gathered}
P(a \leq X \leq b)= \\
\int_{a}^{b} \frac{1}{\sigma \sqrt{2 \pi}} e^{\frac{-(x-\mu)^{2}}{2 \sigma^{2}}} d x
\end{gathered}
$$

No closed form for the integral

No closed form for F(x)

Spoiler Alert

$\mathcal{N}\left(\mu, \sigma^{2}\right)$
A function that has been solved for numerically

The cumulative density function of any normal

* We are going to spend the next few slides getting here

Linear Transform of Normal is Normal

Let $X \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$

If $Y=a X+b$ then Y is also Normal

$$
\begin{aligned}
E[Y] & =E[a X+b] & \operatorname{Var}(Y) & =\operatorname{Var}(a X+b) \\
& =a E[X]+b & & =a^{2} \operatorname{Var}(X) \\
& =a \mu+b & & =a^{2} \sigma^{2}
\end{aligned}
$$

$$
Y \sim \mathcal{N}\left(a \mu+b, a^{2} \sigma^{2}\right)
$$

Special Linear Transform

If $Y=a X+b$ then Y is also Normal

$$
Y \sim \mathcal{N}\left(a \mu+b, a^{2} \sigma^{2}\right)
$$

There is a special case of linear transform for any X :

$$
Z=\frac{X-\mu}{\sigma}=\frac{1}{\sigma} X-\frac{\mu}{\sigma} \quad a=\frac{1}{\sigma} \quad b=-\frac{\mu}{\sigma}
$$

$$
\begin{aligned}
Z & \sim \mathcal{N}\left(a \mu+b, a^{2} \sigma^{2}\right) \\
& \sim \mathcal{N}\left(\frac{\mu}{\sigma}-\frac{\mu}{\sigma}, \frac{\sigma^{2}}{\sigma^{2}}\right) \\
& \sim \mathcal{N}(0,1)
\end{aligned}
$$

The Standard Normal

$$
Z \sim N\left(\mu=0, \sigma^{2}=1\right)
$$

*This is the probability density function for the standard normal

Phi

*This is the probability density function for the standard normal

Using Table of ϕ

Standard Normal Cumulative Probability Table

$$
\Phi(1.31)=0.7054
$$

Cumulative probabilities for POSITIVE z-values are shown in the following table:

z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.1	0.5398	0.5438	0.5478	0.5517	0.5857	0.5596	0.5636	0.5675	0.5714	0.5753
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.4	0.6584	0.6691	0.5628	0,6664	0.6700	0.6736	0.6772	0.6806	0.6844	0.6879
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0,8289	0.8315	0.8340	0.8365	0.8389
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.1	0.8543	0.8665	0.8685	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.2	0.8549	0 0, $0^{\text {a }}$	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319

Symmetry of Phi

$$
\phi(a)=1-\phi(a)
$$

*This is the probability density function for the standard normal

Interval of Phi

$$
P(c<Z<d)=\phi(d)-\phi(c)
$$

$\mu=0$
$\phi(c)$

Compute $F(x)$ via Transform

Let $X \sim \mathcal{N}\left(\mu, \sigma^{2}\right) \quad Z=\frac{X-\mu}{\sigma}$
Use Z to compute $F(x)$

$$
\begin{aligned}
F_{X}(x) & =P(X \leq x) \\
& =P(X-\mu \leq x-\mu) \\
& =P\left(\frac{X-\mu}{\sigma} \leq \frac{x-\mu}{\sigma}\right) \\
& =P\left(Z \leq \frac{x-\mu}{\sigma}\right) \\
& =\Phi\left(\frac{x-\mu}{\sigma}\right)
\end{aligned}
$$

For normal distribution, $\mathrm{F}(\mathrm{x})$ is computed using the phi transform.

And here we are

$\mathcal{N}\left(\mu, \sigma^{2}\right)$
CDF of Standard Normal: A
function that has been solved for numerically

The cumulative density function (CDF) of any normal

Table of $\Phi(z)$ values in textbook, p. 201 and handout

Using Table of ϕ

Standard Normal Cumulative Probability Table

$$
\Phi(0.54)=0.7054
$$

Cumulative probabilities for POSITIVE z-values are shown in the following table:

\boldsymbol{z}	0.00	0.01	0.02	0.03	0.04	0.05	0.05	0.07	0.08	0.09
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.1	0.5398	0.5438	0.5478	0.8517	0.5557	0.5596	0.5636	0.8675	0.5714	0.5753
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.4	0.6554	0.6691	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
$\mathbf{0 . 5}$	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
$\mathbf{1 . 0}$	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
$\mathbf{1 . 1}$	0.8643	0.8665	0.8685	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.2	0.8849	0.8859	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
$\mathbf{1 . 4}$	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319

Table is kinda old school

Using Programming Library

Every modern programming language has a normal library

```
norm.cdf(x, mean, std)
```

$$
=P(X<x) \text { where } X \sim \mathcal{N}\left(\mu, \sigma^{2}\right)
$$

$$
=\Phi\left(\frac{x-\mu}{\sigma}\right)
$$

* This is from Python's scipy library

I made one for you

Flowers on a Rose Bush

$$
X \sim N\left(\mu=4, \sigma^{2}=2\right)
$$

Flowers on a Rose Bush

\# flowers on a

$$
X \sim N\left(\mu=4, \sigma^{2}=2\right)
$$ rose bush \rightarrow

$$
P(X>6) ?
$$

$$
\begin{aligned}
P(X>6) & =F_{X}(6) \\
& =\phi\left(\frac{6-\mu}{\sigma}\right) \\
& =\phi\left(\frac{6-4}{\sqrt{2}}\right) \\
& \approx \phi(1.414) \\
& \approx 0.921
\end{aligned}
$$

For any normal:

$$
F_{X}(x)=\phi\left(\frac{x-\mu}{\sigma}\right)
$$

Get Your Gaussian On

- $\mathrm{X} \sim \mathrm{N}(3,16) \quad \mu=3 \quad \sigma^{2}=16 \quad \sigma=4$
- What is $\mathrm{P}(\mathrm{X}>0)$?

$$
\begin{gathered}
P(X>0)=P\left(\frac{X-3}{4}>\frac{0-3}{4}\right)=P\left(Z>-\frac{3}{4}\right)=1-P\left(Z \leq-\frac{3}{4}\right) \\
1-\Phi\left(-\frac{3}{4}\right)=1-\left(1-\Phi\left(\frac{3}{4}\right)\right)=\Phi\left(\frac{3}{4}\right)=0.7734
\end{gathered}
$$

- What is $\mathrm{P}(2<\mathrm{X}<5)$?

$$
P(2<X<5)=P\left(\frac{2-3}{4}<\frac{X-3}{4}<\frac{5-3}{4}\right)=P\left(-\frac{1}{4}<Z<\frac{2}{4}\right)
$$

$$
\Phi\left(\frac{2}{4}\right)-\Phi\left(-\frac{1}{4}\right)=\Phi\left(\frac{1}{2}\right)-\left(1-\Phi\left(\frac{1}{4}\right)\right)=0.6915-(1-0.5987)=0.2902
$$

- What is $\mathrm{P}(|\mathrm{X}-3|>6)$?

$$
\begin{gathered}
P(X<-3)+P(X>9)=P\left(Z<\frac{-3-3}{4}\right)+P\left(Z>\frac{9-3}{4}\right) \\
\Phi\left(-\frac{3}{2}\right)+\left(1-\Phi\left(\frac{3}{2}\right)\right)=2\left(1-\Phi\left(\frac{3}{2}\right)\right)=2(1-0.9332)=0.1337
\end{gathered}
$$

Noisy Wires

- Send voltage of 2 or -2 on wire (to denote 1 or 0)
- X = voltage sent
- $R=$ voltage received $=X+Y$, where noise $Y \sim N(0,1)$
- Decode R: if $(R \geq 0.5)$ then 1 , else 0
- What is $\mathrm{P}($ error after decoding | original bit $=1)$?

$$
P(2+Y<0.5)=P(Y<-1.5)=\Phi(-1.5)=1-\Phi(1.5) \approx 0.0668
$$

- What is $P($ error after decoding | original bit $=0)$?

$$
P(-2+Y \geq 0.5)=P(Y \geq 2.5)=1-\Phi(2.5) \approx 0.0062
$$

Gaussian for uncertainty

ELO Ratings

What is the probability that the Warriors win? How do you model zero sum games?

ELO Ratings

How it works:

- Each team has an "ELO" score S, calculated based on their past performance.
- Each game, the team has ability $A \sim N\left(S, 200^{2}\right)$
- The team with the higher sampled ability wins.

Arpad Elo
$A_{B} \sim \mathcal{N}\left(1555,200^{2}\right) \quad A_{W} \sim \mathcal{N}\left(1797,200^{2}\right)$

$P($ Warriors win $)=P\left(A_{W}>A_{B}\right)$

ELO Ratings

from random import *

```
WARRIORS_ELO = 1797
OPPONENT_ELO = 1555
VAR = 200 * 200
nSuccess = 0
for i in range(NTRIALS):
    w = gauss(WARRIORS_ELO, VAR)
    b = gauss(OPPONENT_ELO, VAR)
    if w > b:
    nSuccess += 1
```

print float(nSuccess) / NTRIALS

ELO Ratings

How it works:

- Each team has an "ELO" score S, calculated based on their past performance.
- Each game, the team has ability $A \sim N\left(S, 200^{2}\right)$
- The team with the higher sampled ability wins.

Arpad Elo
$A_{B} \sim \mathcal{N}\left(1555,200^{2}\right) \quad A_{W} \sim \mathcal{N}\left(1797,200^{2}\right)$

$$
P(\text { Warriors win })=P\left(A_{W}>A_{B}\right)
$$

$$
\approx 0.87
$$

That's all folks!

If time...

Gaussian for a big number world

Website Testing

- 100 people are given a new website design
- X = \# people whose time on site increases
- CEO will endorse new design if $X \geq 65$ What is P (CEO endorses change| it has no effect)?
- $X \sim \operatorname{Bin}(100,0.5)$. Want to calculate $P(X \geq 65)$

Website Testing

- 100 people are given a new website design
- X = \# people whose time on site increases
- CEO will endorse new design if $X \geq 65$ What is $P(C E O$ endorses changel it has no effect)?
- $X \sim \operatorname{Bin}(100,0.5)$. Want to calculate $P(X \geq 65)$

$$
n p=50 \quad n p(1-p)=25 \quad \sqrt{n p(1-p)}=5
$$

- Use Normal approximation: $\mathrm{Y} \sim \mathrm{N}(50,25)$

$$
P(Y \geq 65)=P\left(\frac{Y-50}{5}>\frac{65-50}{5}\right)=P(Z>3)=1-\phi(3) \approx 0.0013
$$

- Using Binomial: $P(X \geq 65) \approx 0.0018$

Website Testing

Continuity Correction

$$
P(X \geq 65)
$$

What about 64.9?

Comparison when $n=100, p=0.5$

Normal Approximation of Binomial

- $X \sim \operatorname{Bin}(n, p)$
- $\mathrm{E}[\mathrm{X}]=n p \quad \operatorname{Var}(\mathrm{X})=n p(1-p)$
- Poisson approx. good: n large (> 20), p small (<0.05)
- For large $n: X \approx Y \sim N(E[X], \operatorname{Var}(X))=N(n p, n p(1-p))$
- Normal approx. good : $\operatorname{Var}(X)=n p(1-p) \geq 10$

$$
P(X=k) \approx P\left(k-\frac{1}{2}<Y<k+\frac{1}{2}\right)=\Phi\left(\frac{k-n p+0.5}{\sqrt{n p(1-p)}}\right)-\Phi\left(\frac{k-n p-0.5}{\sqrt{n p(1-p)}}\right)
$$

Continuity Correction

Discrete (eg Binomial) Continuous (Normal) probability question probability question

$$
\begin{array}{cc}
x=6 & 5.5<x<6.5 \\
x>=6 & x>5.5 \\
x>6 & x>6.5 \\
x<6 & x<5.5 \\
x<=6 & x<6.5
\end{array}
$$

Poll of polls?

French Elections:

Poll

Ipsos/CEVIPOF/LeMonde
Apr 19 - Apr 20
$\begin{array}{llllll}22 & 24 & 19 & 8 & 19 & 10\end{array}$
2,048 Registered Voters
Elabe/BFMTV/L'Express
Apr 19 - Apr 20
$\begin{array}{llllll}22 & 24 & 20 & 7 & 20 & 9\end{array}$
1,445 Registered Voters
OpinionWay/ORPI/Radio Classíque/Les Echos
Apr 18 - Apr 20
$\begin{array}{llllll}22 & 23 & 21 & 8 & 18 & 7\end{array}$
2,269 Registered Voters
Harris/France Télévisions/L'emission Politique
Apr 18 - Apr 20
$\begin{array}{llllll}21 & 25 & 20 & 8 & 19 & 9\end{array}$
962 Registered Voters
BVA/Orange/Presse Regionale
Apr 18-Apr 19
$\begin{array}{llllll}23 & 24 & 19 & 9 & 19 & 8\end{array}$
1,427 Registered Voters

Binomial Looks Gaussian

There is a deep reason for the Binomial/Normal approximation...

Normal Approximation of Binomial

- $X \sim \operatorname{Bin}(n, p)$
- $\mathrm{E}[\mathrm{X}]=n p \quad \operatorname{Var}(\mathrm{X})=n p(1-p)$
- Poisson approx. good: n large (> 20), p small (<0.05)
- For large $n: X \approx Y \sim N(E[X], \operatorname{Var}(X))=N(n p, n p(1-p))$
- Normal approx. good : $\operatorname{Var}(X)=n p(1-p) \geq 10$

$$
P(X=k) \approx P\left(k-\frac{1}{2}<Y<k+\frac{1}{2}\right)=\Phi\left(\frac{k-n p+0.5}{\sqrt{n p(1-p)}}\right)-\Phi\left(\frac{k-n p-0.5}{\sqrt{n p(1-p)}}\right)
$$

"Continuity correction"

Comparison when $n=100, p=0.5$

Stanford Admissions

- Stanford accepts 2480 students
- Each accepted student has 68\% chance of attending
- $X=\#$ students who will attend. $X \sim \operatorname{Bin}(2480,0.68)$
- What is $P(X>1745)$?
$n p=1686.4 \quad n p(1-p) \approx 539.65 \sqrt{n p(1-p)} \approx 23.23$
- Use Normal approximation: $\mathrm{Y} \sim \mathrm{N}(1686.4,539.65)$

$$
\begin{gathered}
P(X>1745) \approx P(Y>1745.5) \\
P(Y>1745.5)=P\left(\frac{Y-1686.4}{23.23}>\frac{1745.5-1686.4}{23.23}\right)=1-\Phi(2.54) \approx 0.0055
\end{gathered}
$$

- Using Binomial:

$$
P(X>1745) \approx 0.0053
$$

Changes in Stanford Admissions

- Stanford Daily, March 28, 2014
"Class of 2018 Admit Rates Lowest in University History" by Alex Zivkovic
"Fewer students were admitted to the Class of 2018 than the Class of 2017, due to the increase in Stanford's yield rate which has increased over 5 percent in the past four years, according to Colleen Lim M.A. '80, Director of Undergraduate Admission."

