

Gaussian

Chris Piech CS109, Stanford University

Which is Random?

Sequence 2:

Climate Sensitivity

Will the Warriors Win?

What is the probability that the Warriors win? How do you model zero sum games?

DENS

Continuous Random Variables

Probability Density Function

The **probability density function** (PDF) of a continuous random variable represents the relative likelihood of various values.

Units of probability *divided by units of X*. **Integrate it** to get probabilities!

$$P(a < X < b) = \int_{x=a}^{b} f_X(x) dx$$

What do you get if you integrate over a probability *density* function?

A probability!

Cumulative Density Function

A cumulative density function (CDF) is a "closed form" equation for the probability that a random variable is less than a given value

$$F(x) = P(X < x)$$

If you learn how to use a cumulative density function, you can avoid integrals!

 $F_X(x)$

This is also shorthand notation for the PMF

Fundamental Properties

Fundamental Properties

Notation

p(a) or $p_X(a)$ Probability Mass Function (discrete) P(X = a)

f(a) or $f_X(a)$ Probability Density Function (continuous)

F(a) or $F_X(a)$ Cumulative Density Function $P(X \le a)$

Piech, CS106A, Stanford University

Density vs Cumulative

 $f(\mathbf{x}) =$ derivative of probability $F(\mathbf{x}) = P(\mathbf{X} < \mathbf{x})$ Piech, CS106A, Stanford University

Finding Constants

• X is a continuous random variable with PDF:

Big Day

The Normal Distribution

- X is a **Normal Random Variable**: $X \sim N(\mu, \sigma^2)$
 - Probability Density Function (PDF):

•
$$E[X] = \mu$$

•
$$Var(X) = \sigma^2$$

- Also called "Gaussian"
- Note: f(x) is symmetric about μ

Why use the normal?

• Common for natural phenomena: heights, weights, etc.

Often results from the sum of multiple variables

• Most noise is Normal.

• Sample means are distributed normally.

Or that is what they want you to believe

But I Encourage you to be Critical

These are log-normal

• Common for natural phenomena: heights, weights, etc.

Only if they are equally weighted

Often results from the sum of multiple variables

Most noise is assumed normal

• Most noise is Normal.

• Sample means are distributed normally.

It is the most important distribution

Because of a deeper truth...

Complexity is Tempting

* That describes the training data, but will it generalize?

Simplicity is Humble

* A Gaussian maximizes entropy for a given mean and variance

Carl Friedrich Gauss

 Carl Friedrich Gauss (1777-1855) was a remarkably influential German mathematician

- Started doing groundbreaking math as teenager
 - Did not invent Normal distribution, but popularized it
- He looked like Martin Sheen
 - Who is, of course, Charlie Sheen's father

Probability Density Function

Anatomy of a beautiful equation

Flowers on a Rose Bush

 $X \sim N(\mu = 4, \sigma^2 = 2)$

Scientist from Kenya

 $X \sim N(\mu = 4, \sigma^2 = 2)$

Let's try and integrate it!

 $P(a \le X \le b) =$ $\int_{a}^{\sigma} \frac{1}{\sigma\sqrt{2\pi}} e^{\frac{-(x-\mu)^2}{2\sigma^2}} dx$

* Call me if you find an equation for this

No closed form for the integral

No closed form for F(x)

Spoiler Alert

* We are going to spend the next few slides getting here

Linear Transform of Normal is Normal

Let $X \sim \mathcal{N}(\mu, \sigma^2)$

If Y = aX + b then Y is also Normal

$$E[Y] = E[aX + b] \qquad Var(Y) = Var(aX + b)$$
$$= aE[X] + b \qquad = a^2 Var(X)$$
$$= a\mu + b \qquad = a^2 \sigma^2$$

$$Y \sim \mathcal{N}(a\mu + b, a^2 \sigma^2)$$

Special Linear Transform

If Y = aX + b then Y is also Normal $Y \sim \mathcal{N}(a\mu + b, a^2\sigma^2)$

There is a special case of linear transform for any *X*:

$$Z = \frac{X - \mu}{\sigma} = \frac{1}{\sigma} X - \frac{\mu}{\sigma} \qquad a = \frac{1}{\sigma} \qquad b = -\frac{\mu}{\sigma}$$
$$Z \sim \mathcal{N}(a\mu + b, a^2 \sigma^2)$$
$$\sim \mathcal{N}(\frac{\mu}{\sigma} - \frac{\mu}{\sigma}, \frac{\sigma^2}{\sigma^2})$$
$$\sim \mathcal{N}(0, 1)$$

*This is the probability density function for the standard normal

Phi

*This is the probability density function for the standard normal

Using Table of ϕ

Standard Normal Cumulative Probability Table

$\Phi(1.31) = 0.7054$

Cumulative probabilities for POSITIVE z-values are shown in the following table:

z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0,9306	0.9319

Symmetry of Phi

*This is the probability density function for the standard normal

Interval of Phi

Compute F(x) via Transform

Let
$$X \sim \mathcal{N}(\mu, \sigma^2)$$
 $Z = \frac{X - \mu}{\sigma}$

Use *Z* to compute F(x)

$$F_X(x) = P(X \le x)$$

= $P(X - \mu \le x - \mu)$
= $P\left(\frac{X - \mu}{\sigma} \le \frac{x - \mu}{\sigma}\right)$
= $P\left(Z \le \frac{x - \mu}{\sigma}\right)$
= $\Phi\left(\frac{x - \mu}{\sigma}\right)$

For normal distribution, F(x) is computed using the phi transform.

Piech, CS106A, Stanford University

And here we are

Table of $\Phi(z)$ values in textbook, p. 201 and handout

Using Table of ϕ

Standard Normal Cumulative Probability Table

$\Phi(0.54) = 0.7054$

Cumulative probabilities for POSITIVE z-values are shown in the following table:

z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0,9306	0.9319

Table is kinda old school

Using Programming Library

Every modern programming language has a normal library

norm.cdf(x, mean, std)

=
$$P(X < x)$$
 where $X \sim \mathcal{N}(\mu, \sigma^2)$
= $\Phi\left(\frac{x-\mu}{\sigma}\right)$

* This is from Python's scipy library

I made one for you

Flowers on a Rose Bush

 $X \sim N(\mu = 4, \sigma^2 = 2)$

Flowers on a Rose Bush

flowers on a
rose bush
$$\sim X \sim N(\mu = 4, \sigma^2 = 2)$$

 $P(X > 6)?$

$$P(X > 6) = F_X(6)$$
$$= \phi\left(\frac{6-\mu}{\sigma}\right)$$
$$= \phi\left(\frac{6-4}{\sqrt{2}}\right)$$
$$\approx \phi(1.414)$$

For any normal:

$$F_X(x) = \phi\left(\frac{x-\mu}{\sigma}\right)$$

pprox 0.921

Get Your Gaussian On

- X ~ N(3, 16) $\mu = 3$ $\sigma^2 = 16$ $\sigma = 4$
 - What is P(X > 0)?

$$P(X > 0) = P(\frac{X-3}{4} > \frac{0-3}{4}) = P(Z > -\frac{3}{4}) = 1 - P(Z \le -\frac{3}{4})$$
$$1 - \Phi(-\frac{3}{4}) = 1 - (1 - \Phi(\frac{3}{4})) = \Phi(\frac{3}{4}) = 0.7734$$

• What is P(2 < X < 5)? $P(2 < X < 5) = P(\frac{2-3}{4} < \frac{X-3}{4} < \frac{5-3}{4}) = P(-\frac{1}{4} < Z < \frac{2}{4})$ $\Phi(\frac{2}{4}) - \Phi(-\frac{1}{4}) = \Phi(\frac{1}{2}) - (1 - \Phi(\frac{1}{4})) = 0.6915 - (1 - 0.5987) = 0.2902$

■ What is P(|X – 3| > 6)?

$$P(X < -3) + P(X > 9) = P(Z < \frac{-3-3}{4}) + P(Z > \frac{9-3}{4})$$

$$\Phi(-\frac{3}{2}) + (1 - \Phi(\frac{3}{2})) = 2(1 - \Phi(\frac{3}{2})) = 2(1 - 0.9332) = 0.1337$$

Noisy Wires

- Send voltage of 2 or -2 on wire (to denote 1 or 0)
 - X = voltage sent
 - R = voltage received = X + Y, where noise Y ~ N(0, 1)
 - Decode R: if $(R \ge 0.5)$ then 1, else 0
 - What is P(error after decoding | original bit = 1)?

 $P(2+Y < 0.5) = P(Y < -1.5) = \Phi(-1.5) = 1 - \Phi(1.5) \approx 0.0668$

• What is P(error after decoding | original bit = 0)? $P(-2+Y \ge 0.5) = P(Y \ge 2.5) = 1 - \Phi(2.5) \approx 0.0062$

Gaussian for uncertainty

What is the probability that the Warriors win? How do you model zero sum games?

DENST

How it works:

- Each team has an "ELO" score S, calculated based on their past performance.
- Each game, the team has ability $A \sim N(S, 200^2)$
- The team with the higher sampled ability wins.

Arpad Elo

 $P(\text{Warriors win}) = P(A_W > A_B)$

from random import *

```
WARRIORS_ELO = 1797
OPPONENT_ELO = 1555
VAR = 200 \times 200
```

```
nSuccess = 0
for i in range(NTRIALS):
    w = gauss(WARRIORS_ELO, VAR)
    b = gauss(OPPONENT_ELO, VAR)
    if w > b:
        nSuccess += 1
```

print float(nSuccess) / NTRIALS

How it works:

- Each team has an "ELO" score S, calculated based on their past performance.
- Each game, the team has ability $A \sim N(S, 200^2)$
- The team with the higher sampled ability wins.

Arpad Elo

That's all folks!

If time...

Gaussian for a big number world

Website Testing

- 100 people are given a new website design
 - X = # people whose time on site increases
 - CEO will endorse new design if X ≥ 65 What is P(CEO endorses change| it has no effect)?
 - X ~ Bin(100, 0.5). Want to calculate $P(X \ge 65)$

Website Testing

- 100 people are given a new website design
 - X = # people whose time on site increases
 - CEO will endorse new design if X ≥ 65 What is P(CEO endorses change| it has no effect)?
 - $X \sim Bin(100, 0.5)$. Want to calculate $P(X \ge 65)$

$$np = 50$$
 $np(1-p) = 25$ $\sqrt{np(1-p)} = 5$

Use Normal approximation: Y ~ N(50, 25)

$$P(Y \ge 65) = P\left(\frac{Y - 50}{5} > \frac{65 - 50}{5}\right) = P(Z > 3) = 1 - \phi(3) \approx 0.0013$$

• Using Binomial: $P(X \ge 65) \approx 0.0018$

Website Testing

Continuity Correction

Comparison when n = 100, p = 0.5

k

Normal Approximation of Binomial

- X ~ Bin(*n*, *p*)
 - E[X] = np Var(X) = np(1-p)
 - Poisson approx. good: n large (> 20), p small (< 0.05)
 - For large *n*: $X \approx Y \sim N(E[X], Var(X)) = N(np, np(1-p))$
 - Normal approx. good : $Var(X) = np(1 p) \ge 10$

$$P(X=k) \approx P\left(k - \frac{1}{2} < Y < k + \frac{1}{2}\right) = \Phi\left(\frac{k - np + 0.5}{\sqrt{np(1-p)}}\right) - \Phi\left(\frac{k - np - 0.5}{\sqrt{np(1-p)}}\right)$$

"Continuity correction"

Continuity Correction

Discrete (eg Binomial) probability question	
x = 6	5.5 < x < 6.5
x >= 6	x > 5.5
x > 6	x > 6.5
x < 6	x < 5.5
x <= 6	x < 6.5

Poll of polls?

French Elections:

Poll		Per n	acton	ton y	amon	elenchot
Ipsos/CEVIPOF/LeMonde						
Apr 19 – Apr 20	22	24	19	8	19	10
2,048 Registered Voters						
Elabe/BFMTV/L'Express						
Apr 19 – Apr 20	22	24	20	7	20	9
1,445 Registered Voters						
OpinionWay/ORPI/Radio Classíque/Les Echos						
Apr 18 – Apr 20	22	23	21	8	18	7
2,269 Registered Voters						
Harris/France Télévisions/L'emission Politique						
Apr 18 – Apr 20	21	25	20	8	19	9
962 Registered Voters						
BVA/Orange/Presse Regionale						
Apr 18 – Apr 19	23	24	19	9	19	8
1,427 Registered Voters						

Credit: fivethirtyeight.com

What is the probability that Le Pen / Macron wins?

Binomial Looks Gaussian

There is a deep reason for the Binomial/Normal approximation...

Normal Approximation of Binomial

- X ~ Bin(*n*, *p*)
 - E[X] = np Var(X) = np(1-p)
 - Poisson approx. good: n large (> 20), p small (< 0.05)
 - For large *n*: $X \approx Y \sim N(E[X], Var(X)) = N(np, np(1-p))$
 - Normal approx. good : $Var(X) = np(1-p) \ge 10$

$$P(X = k) \approx P\left(k - \frac{1}{2} < Y < k + \frac{1}{2}\right) = \Phi\left(\frac{k - np + 0.5}{\sqrt{np(1 - p)}}\right) - \Phi\left(\frac{k - np - 0.5}{\sqrt{np(1 - p)}}\right)$$

"Continuity correction"

Comparison when n = 100, p = 0.5

k

Stanford Admissions

- Stanford accepts 2480 students
 - Each accepted student has 68% chance of attending
 - X = # students who will attend. X ~ Bin(2480, 0.68)
 - What is P(X > 1745)?

np = 1686.4 $np(1-p) \approx 539.65$ $\sqrt{np(1-p)} \approx 23.23$

Use Normal approximation: Y ~ N(1686.4, 539.65)

$$P(X > 1745) \approx P(Y > 1745.5)$$

 $P(Y > 1745.5) = P\left(\frac{Y - 1686.4}{23.23} > \frac{1745.5 - 1686.4}{23.23}\right) = 1 - \Phi(2.54) \approx 0.0055$

• Using Binomial:

 $P(X > 1745) \approx 0.0053$

Changes in Stanford Admissions

 Stanford Daily, March 28, 2014
 "Class of 2018 Admit Rates Lowest in University History" by Alex Zivkovic

"Fewer students were admitted to the Class of 2018 than the Class of 2017, due to the increase in Stanford's yield rate which has increased over 5 percent in the past four years, according to Colleen Lim M.A. '80, Director of Undergraduate Admission."