Continuous Joint Distributions Chris Piech CS109, Stanford University

CS109 Flow

Learning Goals

1. Know how to use a multinomial

2. Be able to calculate large bayes problems using a computer

3. Use a Joint CDF

Motivating Examples

THE

A. Han

Madison

FEDERALIS A COLLECTION OF Original ESSAY

TEN IN FAVOUR OF

NEW CONSTITUStDev = 3

AS AGREED UPON BY TH

FEDERAL CONVEN

SEPTEMBER 17, 1787

 $StDev = 10$ **Defenses courtes naturality in**

Recall logs

Log Review

$$
e^y = x \qquad \log(x) = y
$$

Graph for $log(x)$

More info

Log Identities

$\log(a \cdot b) = \log(a) + \log(b)$

$\log(a/b) = \log(a) - \log(b)$

$\log(a^n) = n \cdot \log(a)$

Products become Sums!

$$
\log(a \cdot b) = \log(a) + \log(b)
$$

$$
\log(\prod_i a_i) = \sum_i \log(a_i)
$$

* Spoiler alert: This is important because the product of many small numbers gets hard for computers to represent.

Where we left off

Joint Probability Table

The Multinomial

- Multinomial distribution
	- *n* independent trials of experiment performed
	- Each trial results in one of *m* outcomes, with respective probabilities: $p_1, p_2, ..., p_m$ where
	- \blacktriangleright X_i = number of trials with outcome *i*

$$
P(X_1 = c_1, X_2 = c_2, ..., X_m = c_m) = \binom{n}{c_1, c_2, ..., c_m} p_1^{c_1} p_2^{c_2} ... p_m^{c_m}
$$

Joint distribution
which ordering the successes ordering are equal and mutually exclusive
and

$$
\sum_{i=1}^{m} c_i = n
$$

$$
\binom{n}{c_1, c_2, ..., c_m} = \frac{n!}{c_1!c_2!...c_m!}
$$

 $\sum_{i=1}^{m} p_i =$

 $\bm{\rho}_i$

1

m

i

1

The Multinomial

- Multinomial distribution
	- *n* independent trials of experiment performed
	- Each trial results in one of *m* outcomes, with respective probabilities: $p_1, p_2, ..., p_m$ where
	- \blacktriangleright X_i = number of trials with outcome *i*

$$
P(X_1 = c_1, X_2 = c_2, ..., X_m = c_m) = \binom{n}{c_1, c_2, ..., c_m} \prod_i p_i^{c_i}
$$

Joint distribution
When
where and

$$
\sum_{i=1}^{m} c_i = n
$$

$$
\binom{n}{c_1, c_2, ..., c_m} = \frac{n!}{c_1!c_2!...c_m!}
$$

 $\sum_{i=1}^{m} p_i =$

 $\bm{\rho}_i$

1

m

i

1

 $C = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$

Hello Die Rolls, My Old Friends

- 6-sided die is rolled 7 times
	- Roll results: 1 one, 1 two, 0 three, 2 four, 0 five, 3 six

$$
P(X_1 = 1, X_2 = 1, X_3 = 0, X_4 = 2, X_5 = 0, X_6 = 3)
$$

=
$$
\frac{7!}{1!1!0!2!0!3!} \left(\frac{1}{6}\right)^1 \left(\frac{1}{6}\right)^1 \left(\frac{1}{6}\right)^0 \left(\frac{1}{6}\right)^2 \left(\frac{1}{6}\right)^0 \left(\frac{1}{6}\right)^3 = 420 \left(\frac{1}{6}\right)^7
$$

- This is generalization of Binomial distribution
	- Binomial: each trial had 2 possible outcomes
	- § Multinomial: each trial has *m* possible outcomes

Probabilistic Text Analysis

According to the Global Language Monitor there are 988,968 words in the english language used on the internet.

Text is a Multinomial

Example document:

"Pay for Viagra with a credit-card. Viagra is great. So are credit-cards. Risk free Viagra. Click for free." $n = 18$

Who wrote the federalist papers?

Old and New Analysis

- Authorship of "Federalist Papers"
	- 85 essays advocating ratification of US constitution
	- § Written under pseudonym "Publius" o Really, Alexander Hamilton, James Madison and John Jay
	- § Who wrote which essays?
		- o Analyzed probability of words in each essay versus word distributions from known writings of three authors

Let's write a program!

Text is a Multinomial

Example document:

"Pay for Viagra with a credit-card. Viagra is great. So are credit-cards. Risk free Viagra. Click for free." $n = 18$

Continuous Random Variables

Joint Distributions

Continuous Joint Distribution

Riding the Marguerite

You are running to the bus stop. You don't know exactly when the bus arrives. You arrive at 2:20pm.

What is P(wait < 5 min)?

What is the probability that a dart hits at (456.234231234122355, 532.12344123456)?

Dart x location

intestinally small buckets, you end up with multidimensional probability density

Joint Probability Density Funciton

Joint Probability Density Funciton

$$
P(a_1 < X \le a_2, b_1 < Y \le b_2) = \int_{a_1}^{a_2} \int_{b_1}^{b_2} f_{X,Y}(x, y) dy dx
$$

Joint Probability Density Funciton

$$
P(a_1 < X \le a_2, b_1 < Y \le b_2) = \int_{a_1}^{a_2} \int_{b_1}^{b_2} f_{X,Y}(x, y) dy dx
$$

x

plot by **Academo**

Multiple Integrals Without Tears

- Let X and Y be two continuous random variables • where $0 \le X \le 1$ and $0 \le Y \le 2$
- We want to integrate $g(x,y) = xy$ w.r.t. X and Y:
	- First, do "innermost" integral (treat y as a constant):

$$
\int_{y=0}^{2} \int_{x=0}^{1} xy \, dx \, dy = \int_{y=0}^{2} \left(\int_{x=0}^{1} xy \, dx \right) dy = \int_{y=0}^{2} \int_{y=0}^{2} \left[\frac{x^2}{2} \right]_{0}^{1} dy = \int_{y=0}^{2} \int_{y=0}^{1} \frac{1}{2} dy
$$
\nThen, evaluate remaining (single) integral:

$$
\int_{y=0}^{2} y \frac{1}{2} dy = \left[\frac{y^2}{4} \right]_{0}^{2} = 1 - 0 = 1
$$

Marginalization

Marginal probabilities give the distribution of **a subset of the variables** (often, just one) of a joint distribution.

Sum/integrate over the variables you don't care about.

 $p_X(a) = \sum p_{X,Y}(a, y)$ *y* $f_X(a) = \int_{a}^{\infty}$ $-\infty$ *fX,Y* (*a, y*) *dy* $f_Y(b) = \int_{a}^{\infty}$ $-\infty$ *fX,Y* (*x, b*) *dx*

Darts!

Joint Cumulative Density Function

$$
F_{X,Y}(a,b) = P(X < a, Y < b)
$$

$$
F_{X,Y}(a,b) = \int_{-\infty}^{a} \int_{-\infty}^{b} f_{X,Y}(x,y) \, dy \, dx
$$

$$
f_{X,Y}(a,b) = \frac{\partial^2}{\partial a \, \partial b} F_{X,Y}(a,b)
$$

Joint CDF

Jointly Continuous

$$
P(a_1 < X \le a_2, b_1 < Y \le b_2) = \int_{a_1}^{a_2} \int_{b_1}^{b_2} f_{X,Y}(x, y) dy dx
$$

 $P(a_1 < X \le a_2, b_1 < Y \le b_2)$

 $P(a_1 < X \le a_2, b_1 < Y \le b_2) = F_{X,Y}(a_2, b_2)$

 $P(a_1 < X \le a_2, b_1 < Y \le b_2) = F_{X,Y}(a_2, b_2)$

$$
P(a_1 < X \le a_2, b_1 < Y \le b_2) = F_{X,Y}(a_2, b_2) - F_{X,Y}(a_1, b_2)
$$

$$
P(a_1 < X \le a_2, b_1 < Y \le b_2) = F_{X,Y}(a_2, b_2) - F_{X,Y}(a_1, b_2)
$$

Probability for Instagram!

Gaussian Blur

In image processing, a Gaussian blur is the result of blurring an image by a Gaussian function. It is a widely used effect in graphics software, typically to reduce image noise.

Gaussian blurring with StDev = 3, is based on a joint probability distribution:

> -0.5 0.5 $1.5₁$

Joint CDF

$$
F_{X,Y}(x,y) = \Phi\left(\frac{x}{3}\right) \cdot \Phi\left(\frac{y}{3}\right)
$$

Used to generate this weight matrix

Gaussian Blur

Joint PDF

$$
f_{X,Y}(x,y) = \frac{1}{2\pi \cdot 3^2} e^{-\frac{x^2 + y^2}{2 \cdot 3^2}}
$$

Joint CDF

$$
F_{X,Y}(x,y) = \Phi\left(\frac{x}{3}\right) \cdot \Phi\left(\frac{y}{3}\right)
$$

Weight Matrix
 $P(-0.5 < X < 0.5, -1.5$
 $= P(X < 0.5, Y < 0.5)$
 $- P(X < -0.5, Y)$ Y -0.5
 0.5 $1.5⁵$

Each pixel is given a weight equal to the probability that X and Y are both within the pixel bounds. The center pixel covers the area where

 $-0.5 \le x \le 0.5$ and $-0.5 \le y \le 0.5$

What is the weight of the center pixel?

$$
P(-0.5 < X < 0.5, -0.5 < Y < 0.5)
$$
\n
$$
= P(X < 0.5, Y < 0.5) - P(X < 0.5, Y < -0.5)
$$
\n
$$
- P(X < -0.5, Y < 0.5) + P(X < -0.5, Y < -0.5)
$$
\n
$$
= \phi \left(\frac{0.5}{3}\right) \cdot \phi \left(\frac{0.5}{3}\right) - 2\phi \left(\frac{0.5}{3}\right) \cdot \phi \left(\frac{-0.5}{3}\right)
$$
\n
$$
+ \phi \left(\frac{-0.5}{3}\right) \cdot \phi \left(\frac{-0.5}{3}\right)
$$
\n
$$
= 0.5662^2 - 2 \cdot 0.5662 \cdot 0.4338 + 0.4338^2 = 0.206
$$

Have a great weekend!