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Joint Random Variables

Use a joint table, density function or CDF to 
solve probability question

Use and find independence of random variables

Think about conditional probabilities with 
joint variables (which might be continuous)

What happens when you add random variables?

Use and find expectation of random variables



Joint Probability Table

Walk Bike Scooter Drive
Marginal 

Year
Freshman 0.04 0.04 0.01 0.03 0.12
Sophomore 0.03 0.34 0.03 0.00 0.40
Junior 0.04 0.21 0.01 0.00 0.25
Senior 0.07 0.08 0.01 0.00 0.16
5+ 0.04 0.07 0.00 0.02 0.12

Marginal Mode 0.21 0.73 0.06 0.05



Continuous Joint Random Variables
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A joint probability density function gives the 
relative likelihood of more than one continuous 
random variable each taking on a specific value.
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• Cumulative Density Function (CDF):

ò ò
¥- ¥-

=
a b

YXYX dxdyyxfbaF   ),( ),( ,,

),(),( ,

2

,  baFbaf YXYX ba ¶¶
¶=

Jointly Continuous
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to 0 as
x → -∞,
y → -∞,

to 1 as
x → +∞,
y → +∞,

plot by Academo

Jointly CDF

https://academo.org/demos/3d-surface-plotter/?expression=1/(1+exp(-x))*1/(1+exp(-y))&xRange=-10,10&yRange=-10,10&resolution=25
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Probability for Instagram!



Gaussian Blur
In image processing, a Gaussian blur is the result of blurring 
an image by a Gaussian function. It is a widely used effect in 
graphics software, typically to reduce image noise. 

0.0000 0.0000 0.0000 0.0001 0.0001 0.0001 0.0000 0.0000 0.0000
0.0000 0.0001 0.0005 0.0020 0.0032 0.0020 0.0005 0.0001 0.0000
0.0000 0.0005 0.0052 0.0206 0.0326 0.0206 0.0052 0.0005 0.0000
0.0001 0.0020 0.0206 0.0821 0.1300 0.0821 0.0206 0.0020 0.0001
0.0001 0.0032 0.0326 0.1300 0.2060 0.1300 0.0326 0.0032 0.0001
0.0001 0.0020 0.0206 0.0821 0.1300 0.0821 0.0206 0.0020 0.0001
0.0000 0.0005 0.0052 0.0206 0.0326 0.0206 0.0052 0.0005 0.0000
0.0000 0.0001 0.0005 0.0020 0.0032 0.0020 0.0005 0.0001 0.0000
0.0000 0.0000 0.0000 0.0001 0.0001 0.0001 0.0000 0.0000 0.0000



Gaussian Blur
In image processing, a Gaussian blur is the result of blurring 
an image by a Gaussian function. It is a widely used effect in 
graphics software, typically to reduce image noise. 

Gaussian blurring with StDev = 3, is based on a joint probability 
distribution:
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Used to generate this weight matrix



Gaussian Blur

fX,Y (x, y) =
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Joint CDF

Each pixel is given a weight equal to the 
probability that X and Y are both within the 
pixel bounds. The center pixel covers the area 
where 

-0.5 ≤ x ≤ 0.5 and -0.5 ≤ y ≤ 0.5
What is the weight of the center pixel?
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Four Prototypical Trajectories

Properties of Joint Distributions



Boolean Operation on Variable = Event

P (X  5)

P (Y = 6)

Recall: any boolean question about a random 
variable makes for an event. For example:

P (5  Z  10)



Four Prototypical Trajectories

Conditionals with multiple variables



• Recall that for events E and F:
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• Recall that for events E and F:

• Now, have X and Y as discrete random variables
§ Conditional PMF of X given Y  (where pY(y) > 0):

§ Conditional CDF of X given Y  (where pY(y) > 0):
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Discrete Conditional Distributions



Joint Probability Table

Walk Bike Scooter Drive
Marginal 

Year
Freshman 0.04 0.04 0.01 0.03 0.12
Sophomore 0.03 0.34 0.03 0.00 0.40
Junior 0.04 0.21 0.01 0.00 0.25
Senior 0.07 0.08 0.01 0.00 0.16
5+ 0.04 0.07 0.00 0.02 0.12

Marginal Mode 0.21 0.73 0.06 0.05



Transport | Year



Lunch | Year



Relationship Status | Year



P(Buy Book Y | Bought Book X)

And It Applies to Books Too



P (X = x|Y = y) =
P (X = x, Y = y)

P (Y = y)

f
X|Y (x|y) · ✏x =

f
X|Y (x|y) · ✏x · ✏y

fY (y) · ✏y

f
X|Y (x|y) =

f
X|Y (x|y)
fY (y)

Continuous Conditional Distributions
Let X and Y be continuous random variables

P (X = x|Y = y) =
P (X = x, Y = y)

P (Y = y)

f
X|Y (x|y) · ✏x =

fX,Y (x, y) · ✏x · ✏y
fY (y) · ✏y

f
X|Y (x|y) =

fX,Y (x, y)

fY (y)

P (X = x|Y = y) =
P (X = x, Y = y)

P (Y = y)

f
X|Y (x|y) · ✏x =

fX,Y (x, y) · ✏x · ✏y
fY (y) · ✏y

f
X|Y (x|y) =

fX,Y (x, y)

fY (y)



Warmup: Bayes Revisited

P(B|E)   = 
P(E|B) P(B)

P(E)

Poste
rior b

elief
Prior belief

Likelihood of 
evidence

Normalization constant



Mixing Discrete and Continuous
Let X be a continuous random variable

Let N be a discrete random variable

P (X = x|N = n) =
P (N = n|X = x)P (X = x)

P (N = n)

P
X|N (x|n) =

P
N|X (n|x)PX (x)

PN (n)

f
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P (X = x|N = n) =
P (N = n|X = x)P (X = x)
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P
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p
N|X (n|x) =

f
X|N (x|n)pN (n)

fX (x)

P (X = x|N = n) =
P (N = n|X = x)P (X = x)

P (N = n)

P
X|N (x|n) =

P
N|X (n|x)PX (x)

PN (n)

f
X|N (x|n) · ✏x =

P
N|X (n|x)fX (x) · ✏x

PN (n)

f
X|N (x|n) =

P
N|X (n|x)fX (x)

PN (n)

All the Bayes Belong to Us

p
M|N (m|n) =

P
N|M (n|m)pM (m)

pN (n)

M,N are discrete. X, Y are continuous

OG Bay
es

Mix Ba
yes 

#1

Mix Ba
yes 

#2

All Co
ntinu

ous f
X|Y (x|y) =

f
Y |X (y|x)fX (x)

fY (y)





Warmup: Bayes Revisited

P(B|E)   = 
P(E|B) P(B)

P(E)

Poste
rior b

elief
Prior belief

Likelihood of 
evidence

Normalization constant



• X, Y follow a symmetric bivariate normal 
distribution if they have joint PDF: 

Warmup: Bivariate Normal

fX,Y (x, y) =
1

2⇡�2
· e�

[(x�µx)2+(y�µy)2]

2·�2

Here is an example where:

µx = 3

µy = 3

� = 2

x

y

fX,Y (x, y)

fX,Y (x, y)

-5 53-5

5

3

3
3xy(top view)

(side view)



Tracking in 2D Space?



Tracking in 2D Space: Prior

fX,Y (x, y) = K · e�
[(x�3)2+(y�3)2]

8

fX,Y (x, y) =
1

2⇡�2
· e�

[(x�µx)2+(y�µy)2]

2·�2

x

y

fX,Y (x, y)

-5 53-5
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3

Prior belief:

Prior belief with K:

µx = 3

µy = 3

� = 2

Satellite is at (0, 0)



You now observe a noisy distance reading. 
It says that your object is distance D away

We can say how likely that 
reading is if we know the 

actual location of the object… 

P(D | X, Y) is knowable!

µ = actual distance 

σ = 1

Tracking in 2D Space: Observation!



Observe a ping of the object that is distance D away from satellite!

Know that the distance of a ping is normal with respect to the true 
distance. 

µ = actual distance 

σ = 1

D|X,Y ⇠ N(µ =
p

x2 + y2,�2 = 1)

Tracking in 2D Space: Observation!



Tracking in 2D Space: Observation!
Observe a ping of the object that is distance D = 4 away!

Know that the distance of a ping is normal with respect to the true 
distance 

p
x2 + y2 = 4 µ = actual distance 

σ = 1





Tracking in 2D Space: Observation!
Observe a ping of the object that is distance D = 4 away!

Know that the distance of a ping is normal with respect to the true 
distance 

p
x2 + y2 = 4 µ = actual distance 

σ = 1



Observe a ping of the object that is distance D = 4 away from satellite!

D|X,Y ⇠ N(µ =
p

x2 + y2,�2 = 1)

Tracking in 2D Space: Observation!



p
x2 + y2 = 4

Tracking in 2D Space: New Belief

What is your new belief for the location of the object being tracked? 
Your joint probability density function can be expressed with a constant

µ = actual distance 

σ = 1

x

y

-5 53-5

5

3

(top view)

Prior

Observation

f(D = d|X = x, Y = y) = K · e�[d�
p

x2+y2]2

f(X = x, Y = y) = K · e�
[(x�3)2+(y�3)2]

8
1

2 2



Tracking in 2D Space: New Belief

For your notes…

f(X = x, Y = y|D = 4) =
f(D = 4|X = x, Y = y) · f(X = x, Y = y)

f(D = 4)

=
K1 · e�

[4�
p

x2+y2)2]
2 ·K2 · e�

[(x�3)2+(y�3)2]
8

f(D = 4)

=
K3 · e�

⇥
[4�

p
x2+y2)2]
2 + [(x�3)2+(y�3)2]

8

⇤

f(D = 4)

= K4 · e�
⇥

(4�
p

x2+y2)2

2 + [(x�3)2+(y�3)2]
8

⇤



Tracking in 2D Space: Posterior

x

y

-5 5
-5

5

(top view)

Prior Posterior

(top view) x

y

-5 5

-5

5
fX,Y

f
X,Y |D



Tracking in 2D Space: CS221



Four Prototypical Trajectories

Independence and Random Variables


