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Joint Random Variables
Use a joint table, density function or CDF to 
solve probability question

Use and find independence of multiple RVS

Think about conditional probabilities with 
joint variables (which might be continuous)

What happens when you add random variables?

Use and find expectation of multiple RVS

How do multiple variables covary?



E[CS109]
This is actual midpoint of course

(Just wanted you to know)

Course Mean



Sea side



Four Prototypical Trajectories

Review



E[X + Y] = E[X] + E[Y]

Generalized:

Holds regardless of dependency between Xi’s
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Expected Values of Sums



Four Prototypical Trajectories

End Review





• Let E1, E2, ... En be events with indicator RVs Xi
§ If event Ei occurs, then Xi = 1, else Xi = 0
§ Recall E[Xi] = P(Ei)

§ Why? 

Bool Was Cool

Boole died of being too cool

E[Xi] = 0 · (1� P (Ei)) + 1 · P (Ei)

Bernoulli aka Indicator Random Variables were studied 
extensively by George Boole





• Let Y ~ Bin(n, p)
§ n independent trials
§ Let Xi = 1 if i-th trial is “success”, 0 otherwise
§ Xi ~ Ber(p)

Expectation of Binomial

E[Xi] = p
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• Let Y ~ NegBin(r, p)
§ Recall Y is number of trials until r “successes”
§ Let Xi = # of trials to get success after (i – 1)st success
§ Xi ~ Geo(p)  (i.e., Geometric RV)

Expectation of Negative Binomial

E[Y ] = E[
rX

i=1

Xi]

=
rX

i=1

E[Xi]

= E[X1] + E[X2] + . . . E[Xr]

=
r

p

Y = X1 +X2 + · · ·+Xr =
rX

i=1

Xi

E[Xi] =
1

p

E[Y ] = E[
rX

i=1

Xi]

=
rX

i=1

E[Xi]

= E[X1] + E[X2] + . . . E[Xr]

=
r

p

E[Y ] = E[
rX

i=1

Xi]

=
rX

i=1

E[Xi]

= E[X1] + E[X2] + . . . E[Xr]

=
r

p

E[Y ] = E[
rX

i=1

Xi]

=
rX

i=1

E[Xi]

= E[X1] + E[X2] + . . . E[Xr]

=
r

p



Differential Privacy

Aims to provide means to 
maximize the accuracy 
of probabilistic 
queries while minimizing 
the probability of 
identifying its records.

Cynthia Dwork’s celebrity lookalike is Cynthia Dwork.



# Maximize accuracy, while preserving privacy.
def calculateYi(Xi):

obfuscate = random()
if obfuscate:

return indicator(random())
else:

return Xi

Differential Privacy
100 independent values X1 … X100 where Xi ~ Bern(p)

random() returns 
True or False with 
equal likelihood



# Maximize accuracy, while preserving privacy.
def calculateYi(Xi):

obfuscate = random()
if obfuscate:

return indicator(random())
else:

return Xi

Differential Privacy

random() returns 
True or False with 
equal likelihood

100 independent values X1 … X100 where Xi ~ Bern(p)

What is E[Yi]? 

E[Yi] = P (Yi = 1) =
p

2
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4
E[Yi] = P (Yi = 1) =

p
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+

1

4



# Maximize accuracy, while preserving privacy.
def calculateYi(Xi):

obfuscate = random()
if obfuscate:

return indicator(random())
else:

return Xi

Differential Privacy
100 independent values X1 … X100 where Xi ~ Bern(p)

Let Z =
100X

i=1

Yi What is the E[Z]?
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# Maximize accuracy, while preserving privacy.
def calculateYi(Xi):

obfuscate = random()
if obfuscate:

return indicator(random())
else:

return Xi

Differential Privacy
100 independent values X1 … X100 where Xi ~ Bern(p)

Let Z =
100X

i=1

Yi How do you estimate p?

random() returns 
True or False with 
equal likelihood

Challenge: What is the probability that our estimate is good?

E[Z] = 50p+ 25

p ⇡ Z � 25

50



Four Prototypical Trajectories

More Practice!



• Computer cluster with k servers
§ Requests independently go to server i with probability pi

§ Let event Ai = server i receives no requests
§ Let Bernoulli Bi be an indicator for Ai

§ X = # of events A1, A2, … Ak that occur 
§ Y = # servers that receive ≥ 1 request = k – X
§ E[Y] after first n requests?
§ Since requests independent: n
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Computer Cluster Utilization
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http://www.zdnet.com/article/amazons-finds-its-profit-horse-in-aws-why-its-so-disruptive-to-its-old-guard/

* 52% of Amazons Profits

**More profitable than Amazon’s North   
America commerce operations



Piech, CS106A, Stanford University

When stuck, brainstorm 
about random variables



Piech, CS106A, Stanford University



• Consider a hash table with n buckets
§ Each string equally likely to get hashed into any bucket

§ Let X = # strings to hash until each bucket ≥ 1 string

§ What is E[X]?

§ Let Xi = # of trials to get success after i-th success
o where “success” is hashing string to previously empty bucket

o After i buckets have ≥ 1 string, probability of hashing a string to 
an empty bucket is p = (n – i) / n

o equivalently:  Xi ~ Geo((n – i) / n)

o E[Xi] = 1 / p = n / (n – i)

§ X = X0 + X1 + ... + Xn-1 Þ E[X] = E[X0] + E[X1] + ... + E[Xn-1]
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Hash Tables (aka Toy Collecting)

This is your final answer



Four Prototypical Trajectories

Break





Four Prototypical Trajectories

Conditional Expectation



• X and Y are jointly discrete random variables
§ Recall conditional PMF of X given Y = y:

• Define conditional expectation of X given Y = y:

• Analogously, jointly continuous random variables:
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• Roll two 6-sided dice D1 and D2

§ X = value of D1 + D2 Y = value of D2

§ What is E[X | Y = 6]?

§ Intuitively makes sense: 6 + E[value of D1] = 6 + 3.5
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Rolling Dice



• X and Y are jointly distributed random variables

• Expectation of conditional sum:
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Properties of Conditional Expectation



• Define g(Y) = E[X | Y]
• This is just function of Y

Conditional Expectation Functions

E[X|Y=y]

This is a function with Y as input



Y = 5
12

Conditional Expectation Functions

E[X|Y=y]

• Define g(Y) = E[X | Y]
• This is just function of Y



Y = 3 6

Conditional Expectation Functions

E[X|Y=y]

• Define g(Y) = E[X | Y]
• This is just function of Y



Conditional Expectation Functions

Doesn’t make sense. Take expectation of random 
variables, not events

This is a number:

This is a function of y:



Conditional Expectation Functions
X = favorite number
Y = year in school

E[X] = 0 * 0.05 + … + 9 * 0.10 = 5.38 



Conditional Expectation Functions
X = favorite number
Y = year in school

E[X | Y] ?

Year in school, Y = y E[X | Y = y]

2 5.5

3 5.8

4 6.0

5 4.7



Conditional Expectation Functions
X = favorite number
Y = year in school

E[X | Y] ?

Year in school, Y = y E[X | Y = y]

2 5.5

3 5.8

4 6.0

5 4.7



X = units in fall quarter
Y = year in school

Conditional Expectation Functions

E[X | Y] ?



Law of Total Expectation
E[E[X|Y ]] = E[X]

E[E[X|Y ]] =
X

y

E[X|Y = y]P (Y = y)

=
X

y

X

x

xP (X = x|Y = y)P (Y = y)

=
X

y

X

x

xP (X = x, Y = y)

=
X

x

X

y

xP (X = x, Y = y)

=
X

x

x
X

y

P (X = x, Y = y)

=
X

x

xP (X = x)

= E[X]

g(Y) = E[X|Y]

Def of E[X|Y]

Chain rule!

I switch the order of the sums

Move that x outside the y sum

Marginalization

Def of E[X]

E[E[X|Y ]] = E[X]



Law of Total Expectation

For any random variable X and any 
discrete random variable Y 



int Recurse() {
int x = randomInt(1, 3);  // Equally likely values

if (x == 1) return 3;
else if (x == 2) return (5 + Recurse());
else return (7 + Recurse());

}

• Let Y = value returned by Recurse().   What is E[Y]?
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Analyzing Recursive Code



Four Prototypical Trajectories

Protip: do this in CS161



Four Prototypical Trajectories

If we have time…



Your company has one job opening 
for a software engineer.

You have n candidates. But you 
have to say yes/no immediately
after each interview!

Proposed algorithm: reject the first 
k and accept the next one who is 
better than all of them.

What’s the best value of k?

xkcd by Randall Munroe

Hiring and Engineer

https://xkcd.com/1185


n candidates, must say yes/no immediately after each interview.
Reject the first k, accept the next who is better than all of them.
What’s the best value of k?

B: event that you hire the best engineer
X: position of the best engineer on the interview schedule

Hiring and Engineer

What is the



n candidates, must say yes/no immediately after each interview.
Reject the first k, accept the next who is better than all of them.
What’s the best value of k?

B: event that you hire the best engineer
X: position of the best engineer on the interview schedule

Hiring and Engineer

What is the
i k



n candidates, must say yes/no immediately after each interview.
Reject the first k, accept the next who is better than all of them.
What’s the best value of k?

B: event that you hire the best engineer
X: position of the best engineer on the interview schedule

Hiring and Engineer

What is the
ik

Hint: where is the
best among the first
i – 1 candidates?



n candidates, must say yes/no immediately after each interview.
Reject the first k, accept the next who is better than all of them.
What’s the best value of k?

B: event that you hire the best engineer
X: position of the best engineer on the interview schedule

Hiring and Engineer

What is the
ik

Hint: where is the
best among the first
i – 1 candidates?

Here?



n candidates, must say yes/no immediately after each interview.
Reject the first k, accept the next who is better than all of them.
What’s the best value of k?

B: event that you hire the best engineer
X: position of the best engineer on the interview schedule

Hiring and Engineer

What is the
ik

Hint: where is the
best among the first
i – 1 candidates?

Here?



n candidates, must say yes/no immediately after each interview.
Reject the first k, accept the next who is better than all of them.
What’s the best value of k?

B: event that you hire the best engineer
X: position of the best engineer on the interview schedule

Hiring and Engineer

ik

Hint: where is the
best among the first
i – 1 candidates?



n candidates, must say yes/no immediately after each interview.
Reject the first k, accept the next who is better than all of them.
What’s the best value of k?

B: event that you hire the best engineer
X: position of the best engineer on the interview schedule

Hiring and Engineer

Pk(B) =
1

n

nX

i=1

Pk(B|X = i)

=
1

n

nX
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k
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since we know Pk(Best|X = i)

⇡ 1

n

Z n

i=k+1

k

i� 1
di By Riemann Sum approximation

=
k

n
ln(i = 1)

����
n

k+1

=
k

n
ln

n� 1

k
⇡ k

n
ln

n

k

By the law of total expectation



n candidates, must say yes/no immediately after each interview.
Reject the first k, accept the next who is better than all of them.
What’s the best value of k?

B: event that you hire the best engineer
X: position of the best engineer on the interview schedule

Hiring and Engineer

By the law of total expectation

Fun fact. Optimized when: 



Four Prototypical Trajectories

That’s all folks!



5 3 7 4 8 6 2 1

Let’s Do Some Sorting!



5 3 7 4 8 6 2 1

select 
“pivot”

QuickSort



Partition array so:

• everything smaller than pivot is on left

• everything greater than or equal to pivot is on right

• pivot is in-between

5 3 7 4 8 6 2 1

Recursive Insight



Partition array so:

• everything smaller than pivot is on left

• everything greater than or equal to pivot is on right

• pivot is in-between

2 3 1 4 5 6 8 7

Recursive Insight



2 3 1 4 5 6 8 7

Now recursive sort “red” sub-array

Recursive Insight



1 2 3 4 5 6 8 7

Now recursive sort “red” sub-array

Recursive Insight



1 2 3 4 5 6 8 7

Now recursive sort “red” sub-array

Then, recursive sort “blue” sub-array

Recursive Insight



1 2 3 4 5 6 7 8

Now recursive sort “red” sub-array

Then, recursive sort “blue” sub-array

Recursive Insight



1 2 3 4 5 6 7 8

Everything is sorted!

Recursive Insight



void Quicksort(int arr[], int n)
{

if (n < 2) return;

int boundary = Partition(arr, n);

// Sort subarray up to pivot
Quicksort(arr, boundary);

// Sort subarray after pivot to end
Quicksort(arr + boundary + 1, n – boundary - 1);

}

“boundary” is the index of the pivot



Partition

5 3 7 4 8 6 2 1

Before

After

2 3 1 4 5 6 8 7

Pivot

Does one comparison for every element 
in the array and the pivot.

Complexity of quicksort is determined by 
number of comparisons made to pivot



• QuickSort is O(n log n), where n = # elems to sort
§ But in “worst case” it can be O(n2)
§ Worst case occurs when every time pivot is selected, it 

is maximal or minimal remaining element

Complexity QuickSort



• Let X = # comparisons made when sorting n elems
§ E[X] gives us expected running time of algorithm
§ Given V1, V2, ..., Vn in random order to sort
§ Let Y1, Y2, ..., Yn be V1, V2, ..., Vn in sorted order

Expected Running Time of QuickSort



Four Prototypical Trajectories

When are Ya and Yb are compared?



Lets Imagine Our Array in Sorted Order

1 3 5 7 9 11

Ya Yb

Whether or not they are compared 
depends on pivot choice

Y1 Y2 Y3 Y4 Y5 Y6



Lets Imagine Our Array in Sorted Order

1 3 5 7 9 11

Ya Yb

Whether or not they are compared 
depends on pivot choice



P(Ya and Yb ever compared)

1 3 5 7 9 11

Ya Yb

Consider pivot choice: Ya

They are compared



P(Ya and Yb ever compared)

1 3 5 7 9 11

Ya Yb

Consider pivot choice: Yb

They are compared



P(Ya and Yb ever compared)

1 3 5 7 9 11

Ya Yb

Consider pivot choice: 7

They are not compared



P(Ya and Yb ever compared)

1 3 5 7 9 11

Ya Yb

Consider pivot choice: < Ya

Whether or not they are compared 
depends on future pivots



P(Ya and Yb ever compared)

1 3 5 7 9 11

Ya Yb

Consider pivot choice: > Yb

Whether or not they are compared 
depends on future pivots



P(Ya and Yb ever compared)

5 7 9

Ya Yb

Are Ya and Yb compared?

Keep repeating pivot choice until you get a pivot
In the range [Ya, Yb] inclusive



• Let X = # comparisons made when sorting n elems
§ E[X] gives us expected running time of algorithm
§ Given V1, V2, ..., Vn in random order to sort
§ Let Y1, Y2, ..., Yn be V1, V2, ..., Vn in sorted order
§ Let Ia,b = 1 if Ya and Yb are compared, 0 otherwise

§ Order where Yb > Ya, so we have: å å
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Expected Running Time of QuickSort



Expected Running Time of QuickSort

I1,2 + I1,3 + … + I1,n

+ I2,3 + … + I2,n

When a = 1

When a = 2

When a = n-1 + In-1,n

Contains a comparison between each i and j
(where i does not equal j) 

exactly once
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• Let X = # comparisons made when sorting n elems
§ E[X] gives us expected running time of algorithm
§ Given V1, V2, ..., Vn in random order to sort
§ Let Y1, Y2, ..., Yn be V1, V2, ..., Vn in sorted order
§ Let Ia,b = 1 if Ya and Yb are compared, 0 otherwise
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Expected Running Time of QuickSort



• Consider when Ya and Yb are directly compared
§ We only care about case where pivot chosen from set: 

{Ya, Ya+1, Ya+2, ..., Yb} 
§ From that set either Ya and Yb must be selected as pivot 

(with equal probability) in order to be compared
§ So,
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Bring it on Home (i.e. Solve the Sum)

Thanks 
Riemann



Four Prototypical Trajectories
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