

Joint Random Variables

Use a joint table, density function or CDF to solve probability question

Think about **conditional** probabilities with joint variables (which might be continuous)

Use and find **expectation** of multiple RVS

Use and find independence of multiple RVS

What happens when you add random variables?

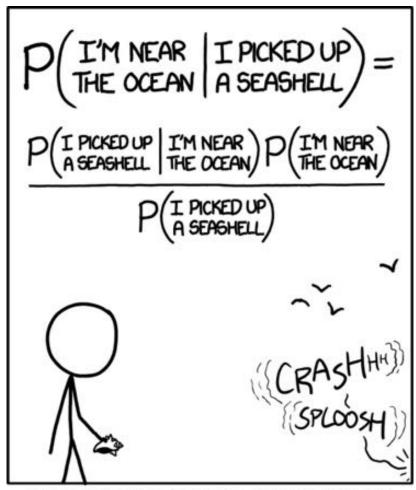
How do multiple variables **covary**?

Course Mean

E[CS109]

This is actual midpoint of course (Just wanted you to know)

Sea side



STATISTICALLY SPEAKING, IF YOU PICK UP A SEASHELL AND DON'T HOLD IT TO YOUR EAR, YOU CAN PROBABLY HEAR THE OCEAN.

Review

Expected Values of Sums

$$E[X + Y] = E[X] + E[Y]$$

Generalized:
$$E\left[\sum_{i=1}^{n} X_{i}\right] = \sum_{i=1}^{n} E[X_{i}]$$

Holds regardless of dependency between X_i 's

End Review

Bool Was Cool

- Let E₁, E₂, ... E_n be events with indicator RVs X_i
 - If event E_i occurs, then $X_i = 1$, else $X_i = 0$
 - Recall $E[X_i] = P(E_i)$
 - Why?

$$E[X_i] = 0 \cdot (1 - P(E_i)) + 1 \cdot P(E_i)$$

Bernoulli aka Indicator Random Variables were studied extensively by George Boole

Boole died of being too cool

Expectation of Binomial

- Let $Y \sim Bin(n, p)$
 - n independent trials
 - Let X_i = 1 if i-th trial is "success", 0 otherwise

•
$$X_i \sim \operatorname{Ber}(p)$$
 $E[X_i] = p$

$$Y = X_1 + X_2 + \dots + X_n = \sum_{i=1}^n X_i$$

$$E[Y] = E[\sum_{i=1}^n X_i]$$

$$= \sum_{i=1}^n E[X_i]$$

$$= E[X_1] + E[X_2] + \dots E[X_n]$$

$$= np$$

Expectation of Negative Binomial

- Let Y ~ NegBin(r, p)
 - Recall Y is number of trials until r "successes"
 - Let $X_i = \#$ of trials to get success after (i 1)st success
 - $E[X_i] = \frac{1}{n}$ ■ X_i ~ Geo(p) (i.e., Geometric RV) $Y = X_1 + X_2 + \dots + X_r = \sum_{i} X_i$ $E[Y] = E[\sum_{i=1}^{n} X_i]$ $=\sum E[X_i]$ $= E[X_1] + E[X_2] + \dots E[X_r]$

Aims to provide means to maximize the accuracy of probabilistic queries while minimizing the probability of identifying its records.

Cynthia Dwork's celebrity lookalike is Cynthia Dwork.

100 independent values $X_1 \dots X_{100}$ where $X_i \sim \text{Bern}(p)$

```
# Maximize accuracy, while preserving privacy.
def calculateYi(Xi):
   obfuscate = random()
   if obfuscate:
      return indicator(random())
   else:
      return Xi
random() returns
True or False with
equal likelihood
```

100 independent values $X_1 \dots X_{100}$ where $X_i \sim Bern(p)$

What is $E[Y_i]$?

$$E[Y_i] = P(Y_i = 1) = \frac{p}{2} + \frac{1}{4}$$

100 independent values $X_1 \dots X_{100}$ where $X_i \sim Bern(p)$

Let
$$Z = \sum_{i=1}^{100} Y_i$$

What is the E[Z]?

$$E[Z] = E\left[\sum_{i=1}^{100} Y_i\right] = \sum_{i=1}^{100} E[Y_i] := \sum_{i=1}^{100} \left(\frac{p}{2} + \frac{1}{4}\right) = 50p + 25$$

100 independent values $X_1 \dots X_{100}$ where $X_i \sim Bern(p)$

```
# Maximize accuracy, while preserving privacy.
def calculateYi(Xi):
   obfuscate = random()
   if obfuscate:
      return indicator(random())
   else:
      return Xi
random() returns
True or False with
equal likelihood
```

Let
$$Z = \sum_{i=1}^{100} Y_i$$
 $E[Z] = 50p + 25$ How do you estimate p ?

$$p \approx \frac{Z - 25}{50}$$

Challenge: What is the probability that our estimate is good?

More Practice!

Computer Cluster Utilization

- Computer cluster with k servers
 - Requests independently go to server i with probability p_i
 - Let event A_i = server i receives no requests
 - Let Bernoulli B_i be an indicator for A_i

- $X = \sum_{i=1}^{n} B_i$
- X = # of events $A_1, A_2, ..., A_k$ that occur
- Y = # servers that receive \geq 1 request = k X
- E[Y] after first n requests?
- Since requests independent: $P(A_i) = (1 p_i)^n$

$$E[X] = E\left[\sum_{i=1}^{k} B_i\right] = \sum_{i=1}^{k} E[B_i] = \sum_{i=1}^{k} P(A_i) = \sum_{i=1}^{k} (1 - p_i)^n$$

$$E[Y] = k - E[X] = k - \sum_{i=1}^{\kappa} (1 - p_i)^n$$

amazon

- * 52% of Amazons Profits
- **More profitable than Amazon's North America commerce operations

When stuck, brainstorm about random variables

Hash Tables (aka Toy Collecting)

- Consider a hash table with n buckets
 - Each string equally likely to get hashed into any bucket
 - Let X = # strings to hash until each bucket ≥ 1 string
 - What is E[X]?
 - Let X_i = # of trials to get success after i-th success
 - where "success" is hashing string to previously empty bucket
 - ∘ After *i* buckets have ≥ 1 string, probability of hashing a string to an empty bucket is p = (n i) / n

$$P(X_i = k) = \frac{n - i}{n} \left(\frac{i}{n}\right)^{k-1}$$
 equivalently: $X_i \sim \text{Geo}((n - i) / n)$

$$E[X_i] = 1 / p = n / (n - i)$$

•
$$X = X_0 + X_1 + ... + X_{n-1} \Rightarrow E[X] = E[X_0] + E[X_1] + ... + E[X_{n-1}]$$

 $E[X] = \frac{n}{n} + \frac{n}{n-1} + \frac{n}{n-2} + ... + \frac{n}{1} = n \left[\frac{1}{n} + \frac{1}{n-1} + ... + 1 \right] = O(n \log n)$

This is your final answer

Break

Conditional Expectation

Conditional Expectation

- X and Y are jointly discrete random variables
 - Recall conditional PMF of X given Y = y:

$$p_{X|Y}(x|y) = P(X = x|Y = y) = \frac{p_{X,Y}(x,y)}{p_Y(y)}$$

Define conditional expectation of X given Y = y:

$$E[X | Y = y] = \sum_{x} xP(X = x | Y = y) = \sum_{x} xp_{X|Y}(x | y)$$

Analogously, jointly continuous random variables:

$$f_{X|Y}(x | y) = \frac{f_{X,Y}(x,y)}{f_{Y}(y)}$$
 $E[X | Y = y] = \int_{-\infty}^{\infty} x f_{X|Y}(x | y) dx$

Rolling Dice

- Roll two 6-sided dice D₁ and D₂
 - $X = \text{value of } D_1 + D_2$ $Y = \text{value of } D_2$
 - What is E[X | Y = 6]?

$$E[X \mid Y = 6] = \sum_{x} xP(X = x \mid Y = 6)$$
$$= \left(\frac{1}{6}\right)(7 + 8 + 9 + 10 + 11 + 12) = \frac{57}{6} = 9.5$$

• Intuitively makes sense: 6 + E[value of D₁] = 6 + 3.5

Properties of Conditional Expectation

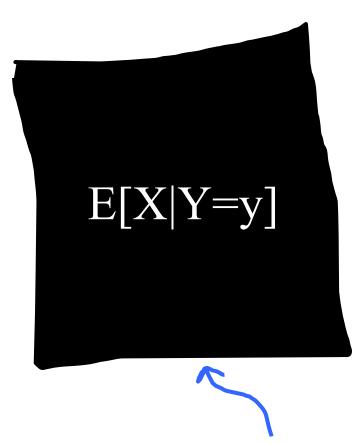
X and Y are jointly distributed random variables

$$E[g(X) | Y = y] = \sum_{x} g(x) p_{X|Y}(x | y)$$
 or $\int_{-\infty}^{\infty} g(x) f_{X|Y}(x | y) dx$

Expectation of conditional sum:

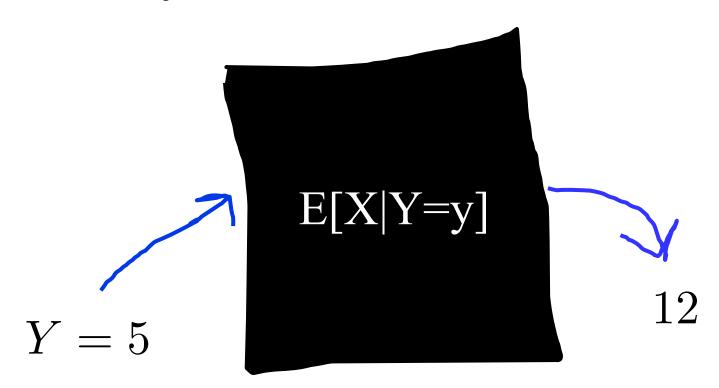
$$E\left[\sum_{i=1}^{n} X_{i} \mid Y = y\right] = \sum_{i=1}^{n} E[X_{i} \mid Y = y]$$

- Define $g(Y) = E[X \mid Y]$
- This is just function of Y

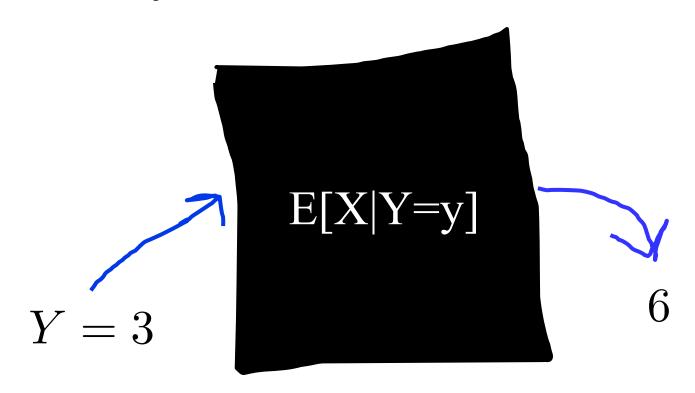


This is a function with Y as input

- Define g(Y) = E[X | Y]
- This is just function of Y



- Define g(Y) = E[X | Y]
- This is just function of Y



This is a number:

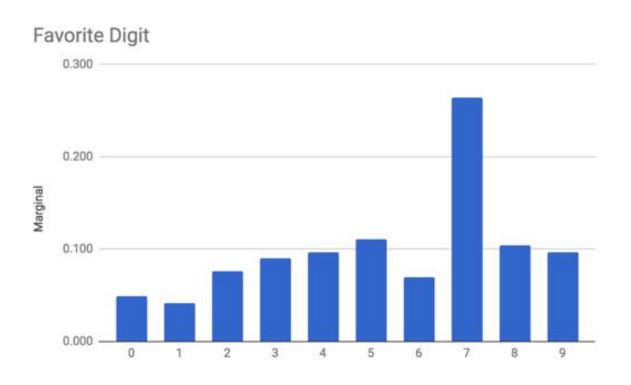
This is a function of y:

$$E[X|Y=y]$$

$$E[X=5]$$

Doesn't make sense. Take expectation of random variables, not events

X = favorite numberY = year in school



$$E[X] = 0 * 0.05 + ... + 9 * 0.10 = 5.38$$

X = favorite numberY = year in school

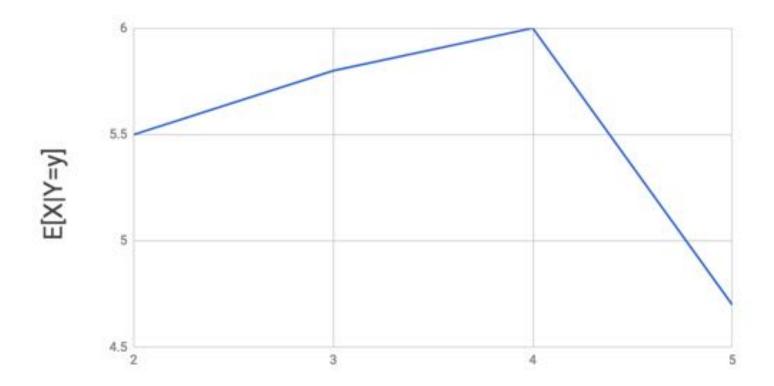
E[X | Y]?

Year in school, Y = y	$\mathbf{E}[\mathbf{X} \mid \mathbf{Y} = \mathbf{y}]$
2	5.5
3	5.8
4	6.0
5	4.7

Conditional Expectation Functions

X = favorite numberY = year in school

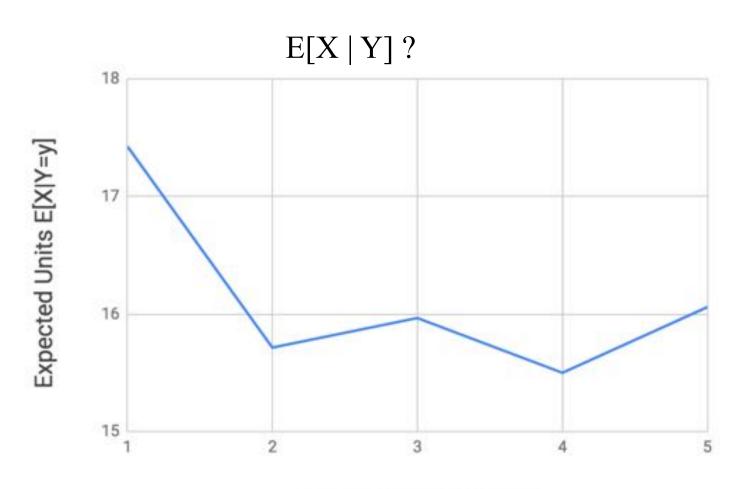
E[X | Y]?



Year in School (y=y)

Conditional Expectation Functions

X = units in fall quarterY = year in school



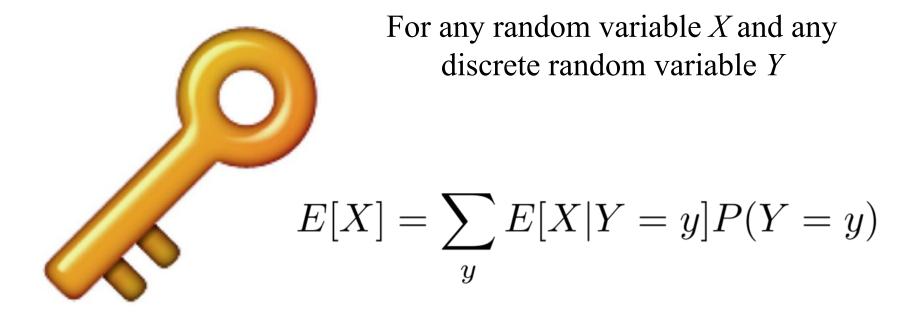
Year at Stanford (Y = y)

Law of Total Expectation

$$E[E[X|Y]] = E[X]$$

$$\begin{split} E[E[X|Y]] &= \sum_{y} E[X|Y=y] P(Y=y) & \text{g(Y)} = \text{E[X|Y]} \\ &= \sum_{y} \sum_{x} x P(X=x|Y=y) P(Y=y) & \text{Def of E[X|Y]} \\ &= \sum_{y} \sum_{x} x P(X=x,Y=y) & \text{Chain rule!} \\ &= \sum_{x} \sum_{y} x P(X=x,Y=y) & \text{I switch the order of the sums} \\ &= \sum_{x} x \sum_{y} P(X=x,Y=y) & \text{Move that x outside the y sum} \\ &= \sum_{x} x P(X=x) & \text{Marginalization} \\ &= E[X] & \text{Def of E[X]} \end{split}$$

Law of Total Expectation



Analyzing Recursive Code

```
int Recurse() {
     int x = randomInt(1, 3); // Equally likely values
     if (x == 1) return 3;
     else if (x == 2) return (5 + Recurse());
     else return (7 + Recurse());

    Let Y = value returned by Recurse(). What is E[Y]?

E[Y] = E[Y | X = 1]P(X = 1) + E[Y | X = 2]P(X = 2) + E[Y | X = 3]P(X = 3)
                          E[Y | X = 1] = 3
                  E[Y | X = 2] = E[5 + Y] = 5 + E[Y]
                  E[Y | X = 3] = E[7 + Y] = 7 + E[Y]
   E[Y] = 3(1/3) + (5 + E[Y])(1/3) + (7 + E[Y])(1/3) = (1/3)(15 + 2E[Y])
                             E[Y] = 15
```

Protip: do this in CS161

If we have time...

```
DEFINE JOBINEPANELIQUOXSORT(UST):
    OK 50 YOU CHOOSE, A PIVOT
    THEN DIVIDE THE LIST IN HALF
    FOR ENOH HAVE:
        CHECK TO SEE IF IT'S SORTED
             NO WAIT IT DOESN'T MAITER
        COMPARE EACH ELEMENT TO THE PILOT
             THE DIGGER ONES GO IN A NEW LIST
             THE EQUAL ONES GO INTO, UH
             THE SECOND LIST FROM BEITORE
        HANG ON, LET HE WAYE THE LISTS
             THIS IS LIST A
             THE NEW ONE IS LIST B
        PUTTHE BIG ONES INTO LIST B
        NOU TAKE THE SECOND LIST
             CALL IT UST, UH, AZ
        WHICH ONE UPO THE PIVOT IN?
        SCRATCH ALL THAT
        IT JUST REZURSMELY CAUS ITSELF
        UNTIL BOTH LISTS ARE EMPTY
             RIGHT?
        NOT EMPTY, BUT YOU KNOW WHAT I MEAN
    AM I ALLOWED TO USE THE STANDARD LIBRARIES?
```

Your company has one job opening for a software engineer.

You have *n* candidates. But you have to say yes/no **immediately** after each interview!

Proposed algorithm: reject the first k and accept the next one who is better than all of them.

What's the best value of *k*?

n candidates, must say yes/no **immediately** after each interview. Reject the first k, accept the next who is better than all of them. What's the best value of k?

B: event that you hire the best engineer

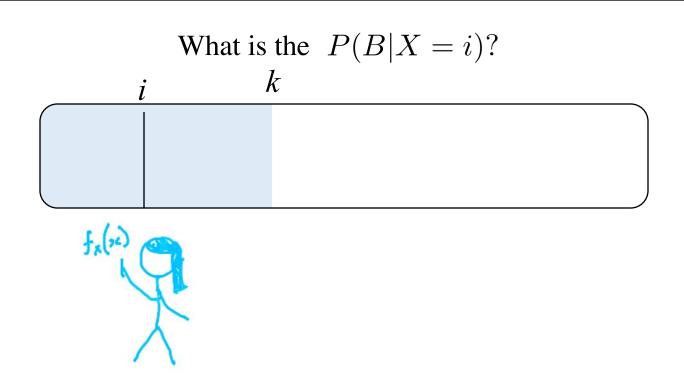
X: position of the best engineer on the interview schedule

What is the P(B|X=i)?

n candidates, must say yes/no **immediately** after each interview. Reject the first k, accept the next who is better than all of them. What's the best value of k?

B: event that you hire the best engineer

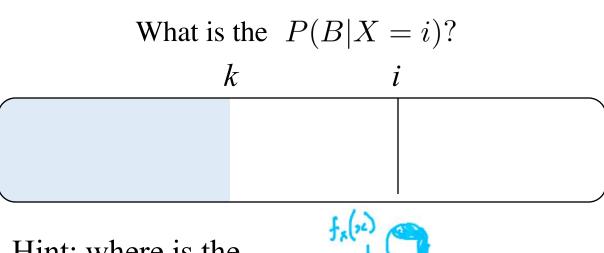
X: position of the best engineer on the interview schedule



n candidates, must say yes/no **immediately** after each interview. Reject the first k, accept the next who is better than all of them. What's the best value of k?

B: event that you hire the best engineer

X: position of the best engineer on the interview schedule

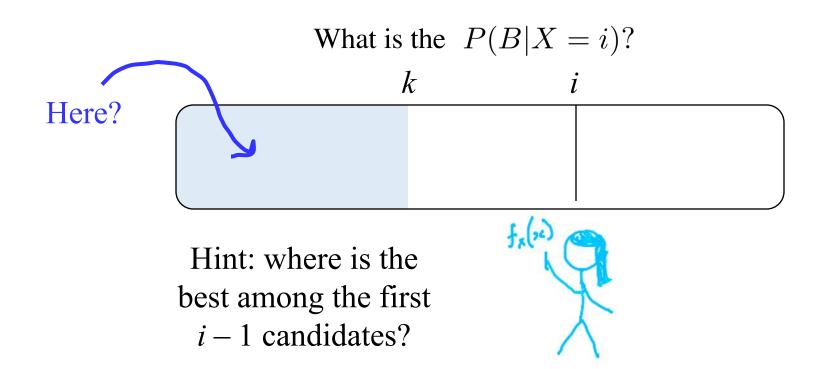


Hint: where is the best among the first i-1 candidates?

n candidates, must say yes/no **immediately** after each interview. Reject the first k, accept the next who is better than all of them. What's the best value of k?

B: event that you hire the best engineer

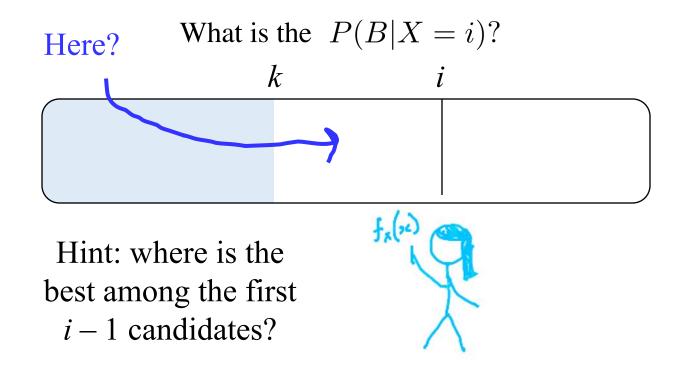
X: position of the best engineer on the interview schedule



n candidates, must say yes/no **immediately** after each interview. Reject the first k, accept the next who is better than all of them. What's the best value of k?

B: event that you hire the best engineer

X: position of the best engineer on the interview schedule



n candidates, must say yes/no **immediately** after each interview. Reject the first k, accept the next who is better than all of them. What's the best value of k?

B: event that you hire the best engineer

X: position of the best engineer on the interview schedule

$$P(B|X=i) = \frac{k}{i-1} \text{ if } i > k$$

Hint: where is the best among the first i-1 candidates?

n candidates, must say yes/no **immediately** after each interview. Reject the first k, accept the next who is better than all of them. What's the best value of k?

B: event that you hire the best engineer

X: position of the best engineer on the interview schedule

$$P_k(B) = \sum_{i=1}^n P_k(B|X=i) P(X=i)$$
 By the law of total expectation
$$= \frac{1}{n} \sum_{i=1}^n P_k(B|X=i)$$
 since we know $P_k(Best|X=i)$
$$\approx \frac{1}{n} \int_{i=k+1}^n \frac{k}{i-1} di$$
 By Riemann Sum approximation
$$= \frac{k}{n} \ln(i=1) \Big|_{k+1}^n = \frac{k}{n} \ln \frac{n-1}{k} \approx \frac{k}{n} \ln \frac{n}{k}$$

n candidates, must say yes/no **immediately** after each interview. Reject the first k, accept the next who is better than all of them. What's the best value of k?

B: event that you hire the best engineer

X: position of the best engineer on the interview schedule

$$P_k(B) = \sum_{i=1}^n P_k(B|X=i) P(X=i)$$
 By the law of total expectation
$$\approx \frac{k}{n} \ln \frac{n}{k}$$

Fun fact. Optimized when:
$$k = \frac{n}{e}$$

That's all folks!

Let's Do Some Sorting!

5 3 7 4 8 6 2 1

QuickSort

select "pivot"

5 3	7	4	8	6	2	1
-----	---	---	---	---	---	---

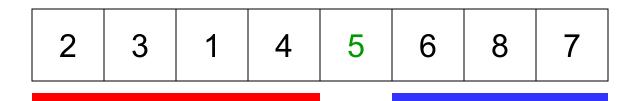
Partition array so:

- everything smaller than pivot is on left
- everything greater than or equal to pivot is on right
- pivot is in-between

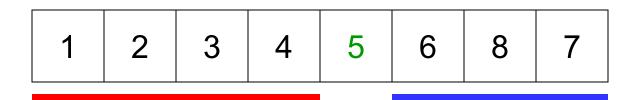


Partition array so:

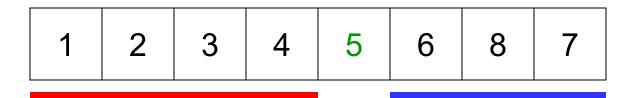
- everything smaller than pivot is on left
- everything greater than or equal to pivot is on right
- pivot is in-between



Now recursive sort "red" sub-array

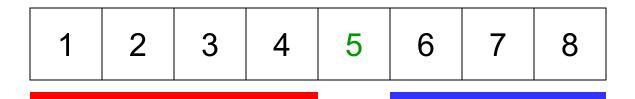


Now recursive sort "red" sub-array



Now recursive sort "red" sub-array

Then, recursive sort "blue" sub-array



Now recursive sort "red" sub-array

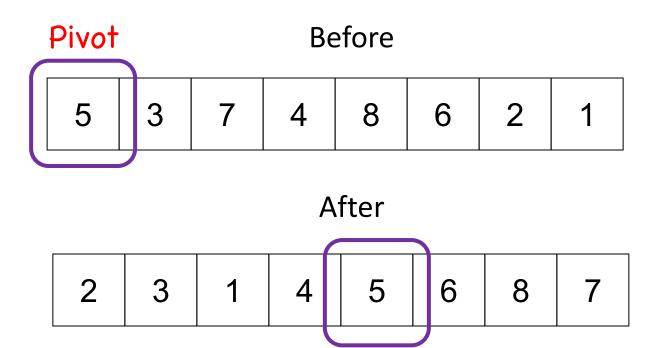
Then, recursive sort "blue" sub-array

Everything is sorted!

```
void Quicksort(int arr[], int n)
   if (n < 2) return;
   int boundary = Partition(arr, n);
   // Sort subarray up to pivot
   Quicksort(arr, boundary);
   // Sort subarray after pivot to end
   Quicksort(arr + boundary + 1, n - boundary - 1);
```

"boundary" is the index of the pivot

Partition



Does one comparison for every element in the array and the pivot.

Complexity of quicksort is determined by number of comparisons made to pivot

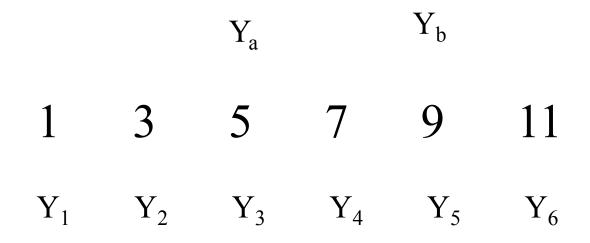
Complexity QuickSort

- QuickSort is O(n log n), where n = # elems to sort
 - But in "worst case" it can be O(n²)
 - Worst case occurs when every time pivot is selected, it is maximal or minimal remaining element

- Let X = # comparisons made when sorting n elems
 - E[X] gives us expected running time of algorithm
 - Given V₁, V₂, ..., V_n in random order to sort
 - Let Y₁, Y₂, ..., Y_n be V₁, V₂, ..., V_n in sorted order

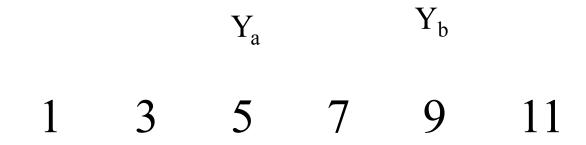
When are Y_a and Y_b are compared?

Lets Imagine Our Array in Sorted Order

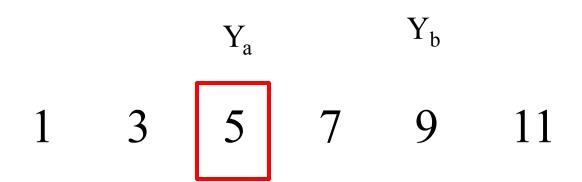


Whether or not they are compared depends on pivot choice

Lets Imagine Our Array in Sorted Order

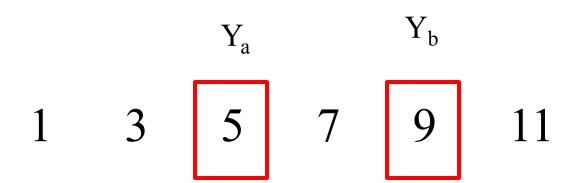


Whether or not they are compared depends on pivot choice



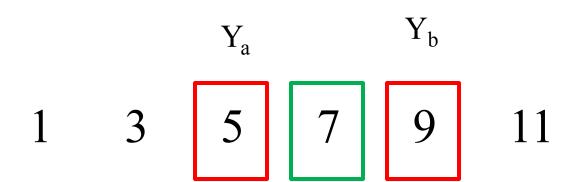
Consider pivot choice: Ya

They are compared



Consider pivot choice: Y_b

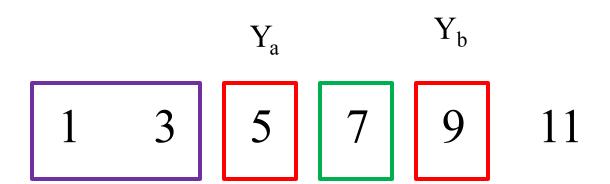
They are compared



Consider pivot choice: 7

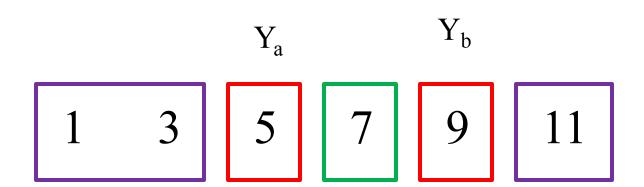
They are **not** compared

P(Y_a and Y_b ever compared)



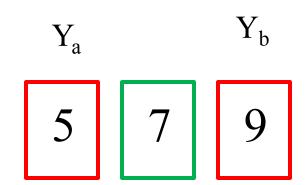
Consider pivot choice: < Y_a

Whether or not they are compared depends on future pivots



Consider pivot choice: > Y_b

Whether or not they are compared depends on future pivots



Are Y_a and Y_b compared?

Keep repeating pivot choice until you get a pivot In the range [Y_a, Y_b] inclusive

- Let X = # comparisons made when sorting n elems
 - E[X] gives us expected running time of algorithm
 - Given V₁, V₂, ..., V_n in random order to sort
 - Let Y₁, Y₂, ..., Y_n be V₁, V₂, ..., V_n in sorted order
 - Let I_{a,b} = 1 if Y_a and Y_b are compared, 0 otherwise
 - Order where $Y_b > Y_a$, so we have: $X = \sum_{a=1}^{n-1} \sum_{b=a+1}^{n} I_{a,b}$

Aside:
$$X = \sum_{a=1}^{n-1} \sum_{b=a+1}^{n} I_{a,b}$$

When
$$a = 1$$

$$I_{1,2} + I_{1,3} + ... + I_{1,n}$$
 When $a = 2$
$$+ I_{2,3} + ... + I_{2,n}$$
 When $a = n-1$
$$+ I_{n-1,n}$$

Contains a comparison between each *i* and *j* (where *i* does not equal *j*) exactly once

- Let X = # comparisons made when sorting n elems
 - E[X] gives us expected running time of algorithm
 - Given V₁, V₂, ..., V_n in random order to sort
 - Let Y₁, Y₂, ..., Y_n be V₁, V₂, ..., V_n in sorted order
 - Let I_{a,b} = 1 if Y_a and Y_b are compared, 0 otherwise
 - Order where $Y_b > Y_a$, so we have: $X = \sum_{a=1}^{n-1} \sum_{b=a+1}^{n} I_{a,b}$

$$E[X] = E\left[\sum_{a=1}^{n-1} \sum_{b=a+1}^{n} I_{a,b}\right] = \sum_{a=1}^{n-1} \sum_{b=a+1}^{n} E[I_{a,b}] = \sum_{a=1}^{n-1} \sum_{b=a+1}^{n} P(Y_a \text{ and } Y_b \text{ ever compared})$$

P(Ya and Yb ever compared)

- Consider when Y_a and Y_b are directly compared
 - We only care about case where pivot chosen from set: {Y_a, Y_{a+1}, Y_{a+2}, ..., Y_b}
 - From that set either Y_a and Y_b must be selected as pivot (with equal probability) in order to be compared
 - So,

$$P(Y_a \text{ and } Y_b \text{ ever compared}) = \frac{2}{b-a+1}$$

$$E[X] = \sum_{a=1}^{n-1} \sum_{b=a+1}^{n} P(Y_a \text{ and } Y_b \text{ ever compared}) = \sum_{a=1}^{n-1} \sum_{b=a+1}^{n} \frac{2}{b-a+1}$$

Bring it on Home (i.e. Solve the Sum)

$$E[X] = \sum_{a=1}^{n-1} \sum_{b=a+1}^{n} \frac{2}{b-a+1}$$

$$\sum_{b=a+1}^{n} \frac{2}{b-a+1} \approx \int_{a+1}^{n} \frac{2}{b-a+1} db \qquad \text{Recall: } \int \frac{1}{x} dx = \ln(x)$$
Thanks
$$= 2\ln(b-a+1) \Big|_{a+1}^{n} = 2\ln(n-a+1) - 2\ln(2)$$

$$\approx 2\ln(n-a+1) \text{ for large } n$$

$$E[X] \approx \sum_{a=1}^{n-1} 2\ln(n-a+1) \approx 2 \int_{a=1}^{n-1} \ln(n-a+1) da \qquad \text{Let } y = n-a+1$$

$$= -2 \int_{y=n}^{2} \ln(y) dy \qquad \text{Recall: } \int \ln(x) dx = x \ln(x) - x$$

$$= -2(y \ln(y) - y) \Big|_{n}^{2}$$

 $= -2[(2\ln(2) - 2) - (n\ln(n) - n)] \approx 2n\ln(n) - 2n = O(n\log n)$

Ahhh ©