The Random Variable for Probabilities Chris Piech

CS109, Stanford University

Assignment Grades

We have 2055 assignment distributions from grade scope

Today we are going to learn something unintuitive, beautiful and useful

Review

Conditioning with a continuous random variable feels odd at first. But then it gets fun.

Its like snorkeling…

Continuous Conditional Distributions

- Let X be continuous random variable
- Let E be an event:

$$
P(E|X = x) = \frac{P(X = x, E)}{P(X = x)}
$$

$$
= \frac{P(X = x|E)P(E)}{P(X = x)}
$$

$$
= \frac{f_X(x|E)P(E)\epsilon_x}{f_X(x)\epsilon_x}
$$

$$
= \frac{f_X(x|E)P(E)}{f_X(x)}
$$

Continuous Conditional Distributions

- Let X be a measure of time to answer a question
- Let E be the event that the user is a human:

$$
P(E|X = x) = \frac{P(X = x, E)}{P(X = x)}
$$

$$
= \frac{P(X = x|E)P(E)}{P(X = x)}
$$

$$
= \frac{f_X(x|E)P(E)\epsilon_x}{f_X(x)\epsilon_x}
$$

$$
= \frac{f_X(x|E)P(E)}{f_X(x)}
$$

Biometric Keystroke

- Let X be a measure of time to answer a question
- Let E be the event that the user is a human
- What if you don't know normalization term?:

End Review

Lets play a game

Roll a dice twice. If either time you roll a 6, I win. Otherwise you win.

Demo

We are going to think of probabilities as random variables!!!

- Flip a coin $(n + m)$ times, comes up with n heads
	- We don't know probability X that coin comes up heads

Frequentist

$$
X = \lim_{n+m \to \infty} \frac{n}{n+m}
$$

$$
\approx \frac{n}{n+m}
$$

$$
f_{X|N}(x|n) =
$$

$$
\frac{P(N=n|X=x)f_X(x)}{P(N=n)}
$$

 X is a single value X is a random variable

- Flip a coin $(n + m)$ times, comes up with n heads
	- \bullet We don't know probability X that coin comes up heads
	- Our belief before flipping coins is that: $X \sim$ Uni(0, 1)
	- \blacksquare Let N = number of heads
	- Given $X = x$, coin flips independent: $(N | X) \sim Bin(n+m, x)$

$$
f_{X|N}(x|n) = \frac{P(N=n|X=x)f_X(x)}{P(N=n)}
$$
\n\nBayesian\n"posterior"\n\nprobability\n
$$
distribution
$$
\n

- Flip a coin $(n + m)$ times, comes up with n heads
	- \bullet We don't know probability X that coin comes up heads
	- Our belief before flipping coins is that: $X \sim$ Uni(0, 1)
	- \blacksquare Let N = number of heads
	- Given $X = x$, coin flips independent: $(N | X) \sim Bin(n+m, x)$

$$
f_{X|N}(x|n) = \frac{P(N=n|X=x) f_X(x)}{P(N=n)}
$$

\nBinomial
$$
= \frac{\binom{n+m}{n} x^n (1-x)^m}{P(N=n)} \qquad M_{O_{V_{\mathcal{C}}}} \neq_{P_{\mathcal{C}}}
$$

$$
= \frac{\binom{n+m}{n}}{P(N=n)} x^n (1-x)^m
$$

$$
= \frac{1}{c} \cdot x^n (1-x)^m \qquad \text{where } c = \int_0^1 x^n (1-x)^m dx
$$

If you start with a $X \sim \text{Uni}(0, 1)$ prior over probability, and observe: *n* "successes" and *m* "failures"…

Your new belief about the probability is:

$$
f_X(x) = \frac{1}{c} \cdot x^n (1 - x)^m
$$

where
$$
c = \int_0^1 x^n (1 - x)^m
$$

Equivalently

If you start with a $X \sim \text{Uni}(0, 1)$ prior over probability, and observe: let $a =$ num "successes" + 1 let $b =$ num "failures" + 1

Your new belief about the probability is:

$$
f_X(x) = \frac{1}{c} \cdot x^{a-1} (1-x)^{b-1}
$$

Beta Random Variable

- X is a **Beta Random Variable**: X ~ Beta(*a*, *b*)
	- § Probability Density Function (PDF): (where *a*, *b* > 0)

- § Symmetric when *a* = *b*
- § $a + b$ $E[X] = \frac{a}{\cdots}$ + $[X] = \frac{a}{a+b}$ $Var(X) = \frac{a}{(a+b)^2(a+b+1)}$ $(a+b)^2(a+b)$ $Var(X) = \frac{ab}{(x-a)^2}$

Meta Beta

Used to represent a distributed belief of a probability

Beta is a distribution for probabilities

Beta Parameters:

 $a =$ "successes" + 1 $b =$ "failures" + 1

Back to flipping coins

- Flip a coin $(n + m)$ times, comes up with n heads
	- \bullet We don't know probability X that coin comes up heads
	- Our belief before flipping coins is that: $X \sim$ Uni(0, 1)
	- Let $N =$ number of heads
	- Given $X = x$, coin flips independent: $(N | X) \sim Bin(n+m, x)$

$$
f_{X|N}(x|n) = \frac{P(N=n|X=x)f_X(x)}{P(N=n)}
$$

=
$$
\frac{\binom{n+m}{n}x^n(1-x)^m}{P(N=n)}
$$

=
$$
\frac{\binom{n+m}{n}}{P(N=n)}x^n(1-x)^m
$$

=
$$
\frac{1}{c} \cdot x^n(1-x)^m \quad \text{where } c = \int_0^1 x^n(1-x)^m dx
$$

Understanding Beta

- $X | (N = n, M = m) \sim Beta(a = n + 1, b = m + 1)$
	- Prior $X \sim$ Uni(0, 1)
	- Check this out, boss:

 \circ Beta(a = 1, b = 1) =? M failures

$$
f(x) = \frac{1}{B(a,b)} x^{a-1} (1-x)^{b-1} = \frac{1}{B(a,b)} x^0 (1-x)^0
$$

$$
= \frac{1}{\int_0^1 1 \, dx} 1 = 1 \quad \text{where} \quad 0 < x < 1
$$

$$
∴ Beta(a = 1, b = 1) = Uni(0, 1)
$$

• So, prior $X \sim Beta(a = 1, b = 1)$

N successes

If the Prior was a Beta…

If our **prior belief** about X was beta X is our random variable for probability

$$
f(X = x) = \frac{1}{B(a, b)} x^{a-1} (1 - x)^{b-1}
$$

What is our **posterior belief** about X after observing *n* heads (and *m* tails)?

$$
f(X=x|N=n) = ???
$$

If the Prior was a Beta… *f<i>f*** (***x***) =** *p***(***N* **=** *n***[|]***V* **=** *x***)***f***(***Y* **=** *n***)**

$$
f(X = x|N = n) = \frac{P(N = n|X = x)f(X = x)}{P(N = n)}
$$

=
$$
\frac{\binom{n+m}{n}x^n(1-x)^m f(X = x)}{P(N = n)}
$$

=
$$
\frac{\binom{n+m}{n}x^n(1-x)^m \frac{1}{B(a,b)}x^{a-1}(1-x)^{b-1}}{P(N = n)}
$$

=
$$
K_1 \cdot \binom{n+m}{n}x^n(1-x)^m \frac{1}{B(a,b)}x^{a-1}(1-x)^{b-1}
$$

=
$$
K_3 \cdot x^n(1-x)^m x^{a-1}(1-x)^{b-1}
$$

=
$$
K_3 \cdot x^{n+a-1}(1-x)^{m+b-1}
$$

$$
X|N \sim \text{Beta}(n+a, m+b)
$$

Understanding Beta

- If "Prior" distribution of X (before seeing flips) is Beta
- Then "Posterior" distribution of X (after flips) is Beta
- Beta is a **conjugate** distribution for Beta
	- Prior and posterior parametric forms are the same!
	- Practically, conjugate means easy update:
		- ^o Add number of "heads" and "tails" seen to Beta parameters

Further Understanding Beta

- Can set X ~ Beta(*a*, *b*) as prior to reflect how biased you think coin is apriori
	- This is a subjective probability!
	- **Prior probability for X based on seeing** $(a + b 2)$ "imaginary" trials, where

(*a* – 1) of them were heads.

 $(b - 1)$ of them were tails.

- Beta(1, 1) \sim Uni(0, 1) \rightarrow we haven't seen any "imaginary trials", so apriori know nothing about coin
- Update to get posterior probability
	- \blacktriangleright X | (n heads and m tails) ~ Beta(a + n, b + m)

Enchanted Die

Let X be the probability of rolling a "1" on Chris' die.

Prior: Imagine 10 die rolls where only showed up as a "1"

Observation: Roll it a few times…

What is the updated probability density function of *X* after our observations?

Check out Demo!

Damn

Beta Example

Before being tested, a medicine is believed to "work" about 80% of the time. The medicine is tried on 20 patients. It "works" for 14 and "doesn't work" for 6. What is your new belief that the drug works?

Frequentist:

$$
p \approx \frac{14}{20} = 0.7
$$

Beta Example

Before being tested, a medicine is believed to "work" about 80% of the time. The medicine is tried on 20 patients. It "works" for 14 and "doesn't work" for 6. What is your new belief that the drug works?

> Bayesian: $X \sim \text{Beta}$ Prior: Interpretation: $X \sim \text{Beta}(a = 81, b = 21)$ 80 successes / 100 trials $X \sim \text{Beta}(a = 9, b = 3)$ 8 successes / 10 trials $X \sim \text{Beta}(a = 5, b = 2)$ 4 successes / 5 trials

Beta Example

Before being tested, a medicine is believed to "work" about 80% of the time. The medicine is tried on 20 patients. It "works" for 14 and "doesn't work" for 6. What is your new belief that the drug works?

Next level?

Assignment Grades

We have 2055 assignment distributions from gradescope

Distributions

Grades must be bounded

Normal: No

Poisson: No

Exponential: No

Beta: Looks Good!

Assignment Grades Demo

Assignment Grades Demo

 $X \sim Beta(a = 8.28, b = 3.16)$

Assignment Grades

We have 2055 assignment distributions from grade scope

Beta is a Better Fit

Unpublished results. Based on Gradescope data

Beta is a Better Fit For All Class Sizes

Unpublished results. Based on Gradescope data

Binomial Interpretation

Each student has **the same** probability of getting each point. Generate grades by flipping a coin 100 times for each student. The resulting distribution is binomial.

- Binomial

Normal Interpretation

What the Binomial said, but approximated.

- Normal

Beta Interpretation

Each student's ability is represented as a probability – perhaps their probability of getting a generic point. Each student has their **own** probability, however, the distribution of probabilities in a class is a Beta distribution.

- Beta

* This is an opinion. It is open for debate

Assignment Grades

These are the distribution of student *point probabilitities*

Assignment Grades Demo

What is the semantics of E[X]?

 $X \sim Beta(a = 8.28, b = 3.16)$

Assignment Grades

What is the probability that a student is bellow the mean?

$$
X \sim Beta(a = 8.28, b = 3.16)
$$

$$
E[X] = \frac{a}{a+b} = \frac{8.28}{8.28 + 3.16} \approx 0.7238
$$

$$
P(X < 0.7238) = F_X(0.7238)
$$

Wait what? Chris are you holding out on me?

stats.beta.cdf(x, a, b)

$$
P(X < E[X]) = 0.46
$$

Implications

- Will be combined with Item Response Theory which models how assignment difficulty and student ability combine to give *point probabilities*.
- Machine learning on education data will be more accurate.
- Analysis of "mixture" distributions can be better.
- Better understand how variance impacts weighting.

Beta: The probability density for probabilities

Beta is a distribution for probabilities

Beta Distribution

Your new belief about the probability is:

$$
f_X(x) = \frac{1}{c} \cdot x^{a-1} (1-x)^{b-1}
$$

where $c = \int_{0}^{1} x^{a-1} (1-x)^{b-1}$

Any parameter for a "parameterized" random variable can be thought of as a random variable.

Eg: $X \sim N(\mu, \sigma^2)$

