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We have 2055 assignment distributions from grade scope



Four Prototypical Trajectories

Today we are going to learn 
something unintuitive, beautiful and 

useful



Four Prototypical Trajectories

Review
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Conditioning with a 
continuous random 

variable feels odd at first. 
But then it gets fun. 

Its like snorkeling…



• Let X be continuous random variable
• Let E be an event:
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• Let X be a measure of time to answer a question
• Let E be the event that the user is a human:
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• Let X be a measure of time to answer a question
• Let E be the event that the user is a human
• What if you don’t know normalization term?:

Biometric Keystroke

P (E|X = x)

P (EC |X = x)
=

fX(x|E)P (E)
fX(x)

fX(x|EC)P (EC)
fX(x)

=
fX(x|E)P (E)

fX(x|EC)P (EC)

P (E|X = x) =
fX(x|E)P (E)

fX(x)

Normal pdf Prior

???
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End Review



Lets play a game
Roll a dice twice. If either time you roll a 6, I win. 

Otherwise you win. 



Demo

Flip a Coin With Unknown Probability
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We are going to think of 
probabilities as random 

variables!!!



• Flip a coin (n + m) times, comes up with n heads
§ We don’t know probability X that coin comes up heads

Flip a Coin With Unknown Probability

Frequentist Bayesian

X = lim
n+m!1

n

n+m

⇡ n

n+m

fX|N (x|n) =
P (N = n|X = x)fX(x)

P (N = n)

X is a single value X is a random variable



• Flip a coin (n + m) times, comes up with n heads
§ We don’t know probability X that coin comes up heads

§ Our belief before flipping coins is that: X ~ Uni(0, 1)

§ Let N = number of heads

§ Given X = x, coin flips independent: (N | X) ~ Bin(n + m, x)

Flip a Coin With Unknown Probability

fX|N (x|n) = P (N = n|X = x)fX(x)

P (N = n)

=

�n+m
n

�
xn(1� x)m

P (N = n)

=

�n+m
n

�

P (N = n)
xn(1� x)m

=
1

c
· xn(1� x)m where c =

Z 1

0
xn(1� x)mdx

Bayesian
“posterior” 
probability 
distribution

Bayesian “prior”
probability 
distribution
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Binomial Move terms around
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If you start with a X ~ Uni(0, 1) prior 
over probability, and observe: 
n “successes” and 
m “failures”…

Your new belief about the probability is:

Flip a Coin With Unknown Probability

where



Piech, CS106A, Stanford University

If you start with a X ~ Uni(0, 1) prior 
over probability, and observe: 

let a = num “successes” + 1 
let b = num “failures” + 1

Your new belief about the probability is:

Equivalently

where



• X is a Beta Random Variable: X ~ Beta(a, b)
§ Probability Density Function (PDF):      (where a, b > 0)

where 

§ Symmetric when a = b

§
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Beta Random Variable



Meta Beta

Used to represent a 
distributed belief of a probability
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Beta is a distribution for 
probabilities
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Beta Parameters:

a = “successes” + 1
b = “failures” + 1



• Flip a coin (n + m) times, comes up with n heads
§ We don’t know probability X that coin comes up heads

§ Our belief before flipping coins is that: X ~ Uni(0, 1)

§ Let N = number of heads

§ Given X = x, coin flips independent: (N | X) ~ Bin(n + m, x)
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• X | (N = n, M = m) ~ Beta(a = n + 1, b = m + 1)
§ Prior X ~ Uni(0, 1)

§ Check this out, boss:
o Beta(a = 1, b = 1) =?

o Beta(a = 1, b = 1) = Uni(0, 1)

§ So, prior X ~ Beta(a = 1, b = 1)
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Understanding Beta

N successes
M failures



If the Prior was a Beta…

fX(x) =
1

B(a, b)
xa�1(1� x)b�1

If our prior belief about X was beta

What is our posterior belief about X after observing n heads 
(and m tails)?

f(X = x|N = n) = ???

f(X = x)

X is our random variable for probability



If the Prior was a Beta…
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§ If “Prior” distribution of X (before seeing flips) is Beta

§ Then “Posterior” distribution of X (after flips) is Beta

• Beta is a conjugate distribution for Beta
§ Prior and posterior parametric forms are the same! 
§ Practically, conjugate means easy update:

o Add number of “heads” and “tails” seen to Beta parameters

Understanding Beta



• Can set X ~ Beta(a, b) as prior to reflect how 
biased you think coin is apriori
§ This is a subjective probability!
§ Prior probability for X based on seeing (a + b – 2) 

“imaginary” trials, where 
(a – 1) of them were heads.
(b – 1) of them were tails.

§ Beta(1, 1) ~ Uni(0, 1)  à we haven’t seen any 
“imaginary trials”, so apriori know nothing about coin

• Update to get posterior probability
§ X | (n heads and m tails) ~ Beta(a + n, b + m)

Further Understanding Beta



Enchanted Die

Let X be the probability of rolling a “1” 
on Chris’ die.

Prior: Imagine 10 die rolls where 
only showed up as a “1”

What is the updated probability density 
function of X after our observations?

Observation: Roll it a few times…



Check out Demo!



Four Prototypical Trajectories

Damn



Beta Example
Before being tested, a medicine is believed to “work” about 80% of 
the time. The medicine is tried on 20 patients. It “works” for 14 and 
“doesn’t work” for 6. What is your new belief that the drug works?

Frequentist:



Beta Example
Before being tested, a medicine is believed to “work” about 80% of 
the time. The medicine is tried on 20 patients. It “works” for 14 and 
“doesn’t work” for 6. What is your new belief that the drug works?

Prior:

80 successes / 100 trials

Interpretation:

8 successes / 10 trials

4 successes / 5 trials

Bayesian:



Beta Example
Before being tested, a medicine is believed to “work” about 80% of 
the time. The medicine is tried on 20 patients. It “works” for 14 and 
“doesn’t work” for 6. What is your new belief that the drug works?

Bayesian:
Prior:

Posterior:

Prior

Posterior

m
od
e



Four Prototypical Trajectories

Next level?
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We have 2055 assignment distributions from gradescope



Distributions
Binomial

Uniform

Normal

Exponential

Beta

Neg BinomialPoisson

Geometric

Beta



Four Prototypical Trajectories

Grades must be bounded



Four Prototypical Trajectories

Normal: No



Four Prototypical Trajectories

Poisson: No



Four Prototypical Trajectories

Exponential: No



Four Prototypical Trajectories

Beta: Looks Good!



Assignment Grades Demo
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a = 8.28, b = 3.16

a = 3.46, b = 0.35
a = 5.06, b = 3.79

a = 4.03, b = 3.00



Beta is a Better Fit

Unpublished results. Based on Gradescope data



Beta is a Better Fit For All Class Sizes

Unpublished results. Based on Gradescope data



Binomial Interpretation

Each student has the same probability of getting each 
point. Generate grades by flipping a coin 100 times for 
each student. The resulting distribution is binomial.

- Binomial



What the Binomial said, but approximated.

Normal Interpretation

- Normal



Beta Interpretation

Each student’s ability is represented as a probability –
perhaps their probability of getting a generic point. 
Each student has their own probability, however, the 
distribution of probabilities in a class is a Beta 
distribution. 

- Beta

* This is an opinion. It is open for debate
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a = 4.03, b = 3.00

These are the distribution of student point probabilitities



Assignment Grades Demo
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X ⇠ Beta(a = 8.28, b = 3.16)

What is the semantics of E[X]?



Assignment Grades

X ⇠ Beta(a = 8.28, b = 3.16)

What is the probability that a student is bellow the mean?

E[X] =
a

a+ b
=

8.28

8.28 + 3.16
⇡ 0.7238

P (X < 0.7238) = FX(0.7238)

Wait what? Chris are you holding out on me?

P (X < E[X]) = 0.46

stats.beta.cdf(x, a, b)



Implications

• Will be combined with Item Response Theory which 
models how assignment difficulty and student ability 
combine to give point probabilities.

• Machine learning on education data will be more 
accurate.

• Analysis of “mixture” distributions can be better.

• Better understand how variance impacts weighting.



Four Prototypical Trajectories

Beta: 
The probability density 

for probabilities
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Beta is a distribution for 
probabilities
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If you start with a X ~ Uni(0, 1) prior 
over probability, and observe: 

let a = num “successes” + 1 
let b = num “failures” + 1

Your new belief about the probability is:

Beta Distribution

where
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Any parameter for a 
“parameterized” random 

variable can be thought of 
as a random variable.

Eg:


