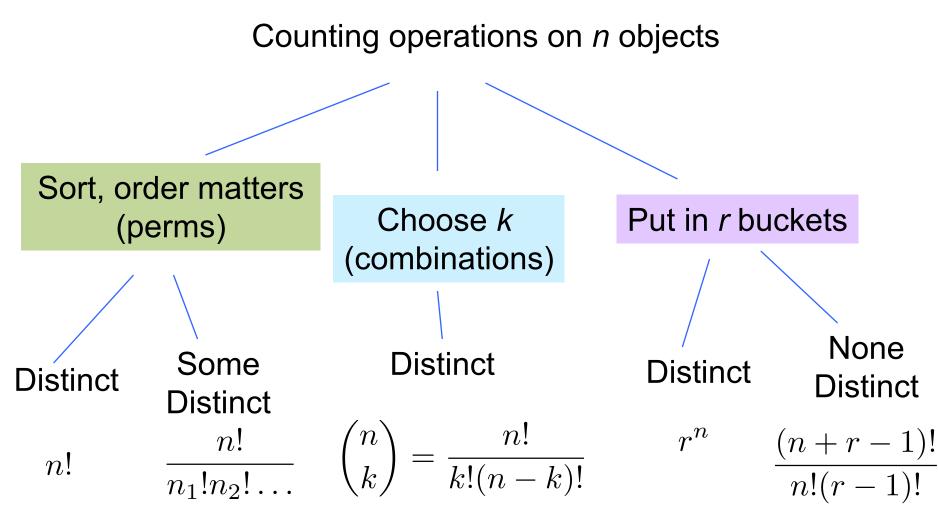
Probability

ORI

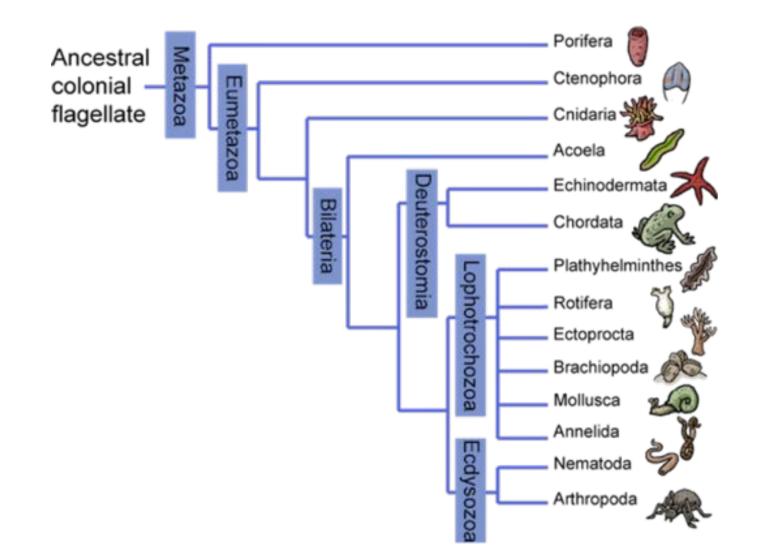
189

Counting Rules



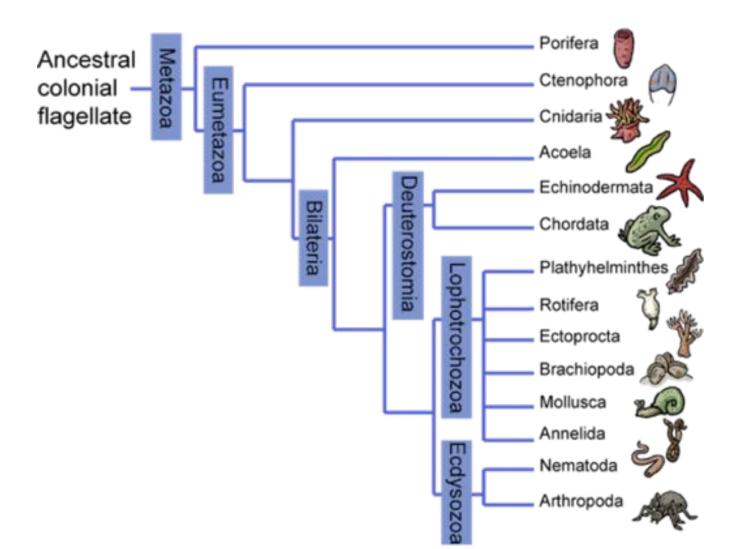
Counting Review

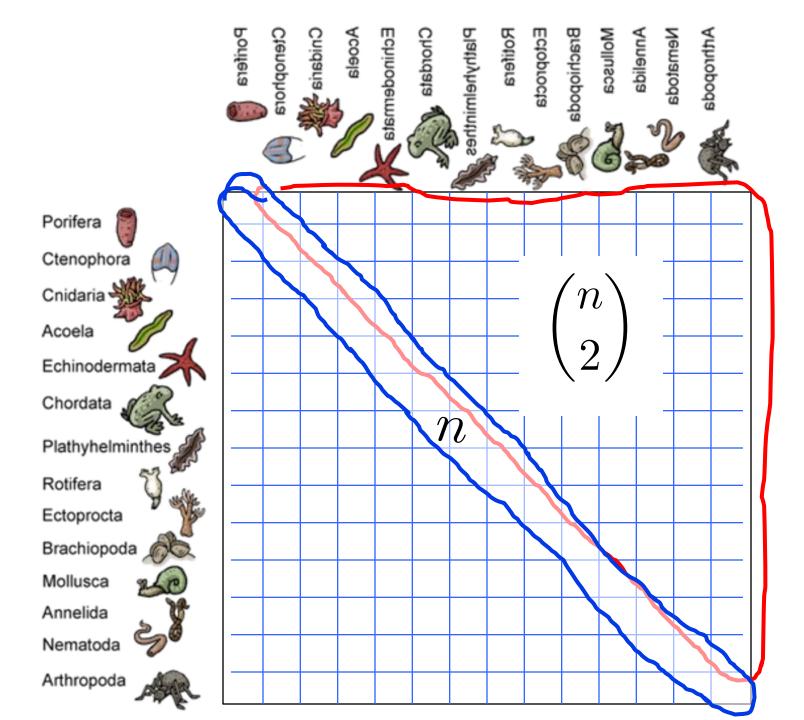
For a DNA tree we need to calculate the DNA distance between each pair of animals. How many calculations are needed?

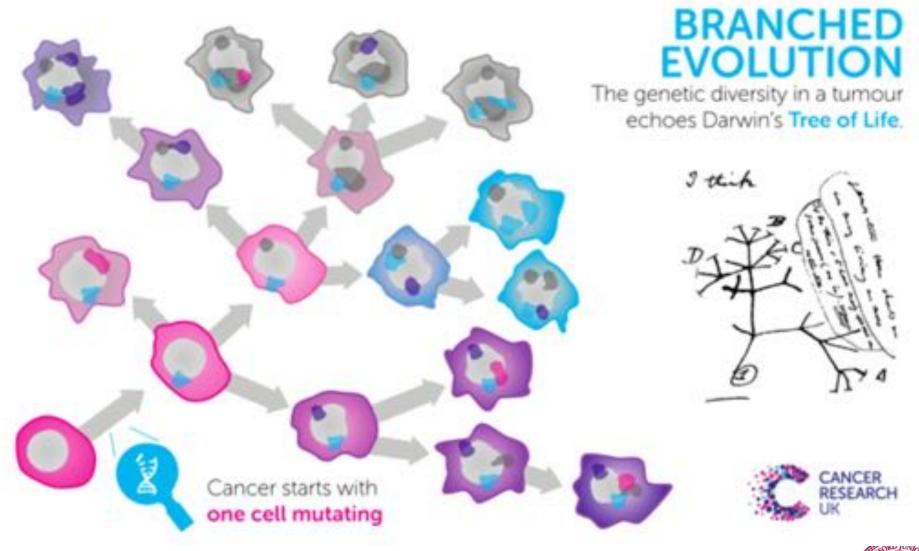


Counting Review

Q: There are *n* animals. How many distinct pairs of animals are there?







End Review

Sample Space

- **Sample space**, S, is set of all possible outcomes of an experiment
 - Coin flip:

 - Roll of 6-sided die:

 - $S = \{Head, Tails\}$ • Flipping two coins: $S = \{(H, H), (H, T), (T, H), (T, T)\}$

- # emails in a day: $S = \{x \mid x \in \mathbb{Z}, x \ge 0\}$ (non-neg. ints)
- YouTube hrs. in day: $S = \{x \mid x \in \mathbb{R}, 0 \le x \le 24\}$

Events

• **Event**, E, is some subset of S $(E \subset S)$

- Coin flip is heads:
- \geq 1 head on 2 coin flips:
- Roll of die is 3 or less:
- # emails in a day \leq 20:

- $E = \{Head\}$
- $E = \{(H, H), (H, T), (T, H)\}$
- $E = \{1, 2, 3\}$
- $E = \{x \mid x \in \mathbb{Z}, 0 \le x \le 20\}$
- Wasted day (\geq 5 YT hrs.): E = {x | x \in \mathbf{R}, 5 \le x \le 24}

Note: When Ross uses: \subset , he really means: \subset

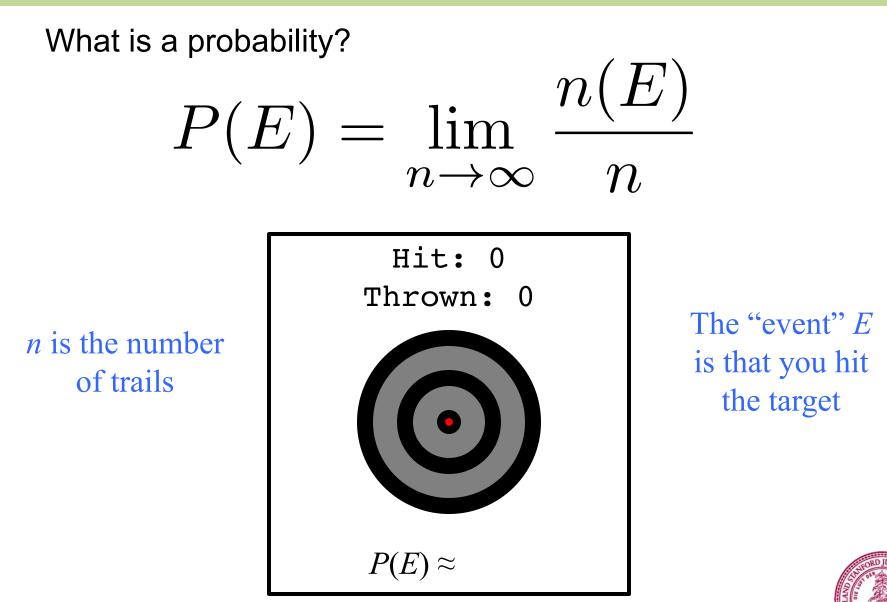
Number between 0 and 1

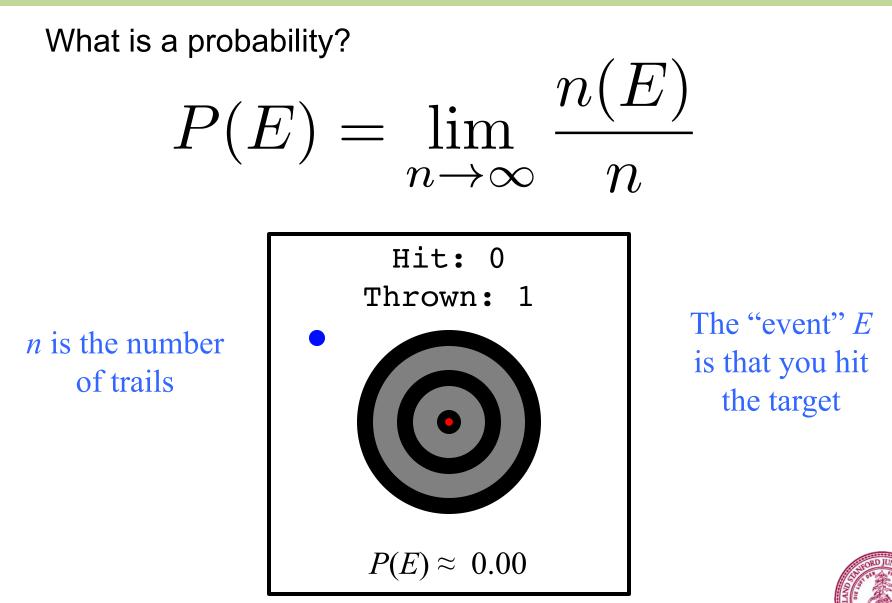
Ascribe Meaning

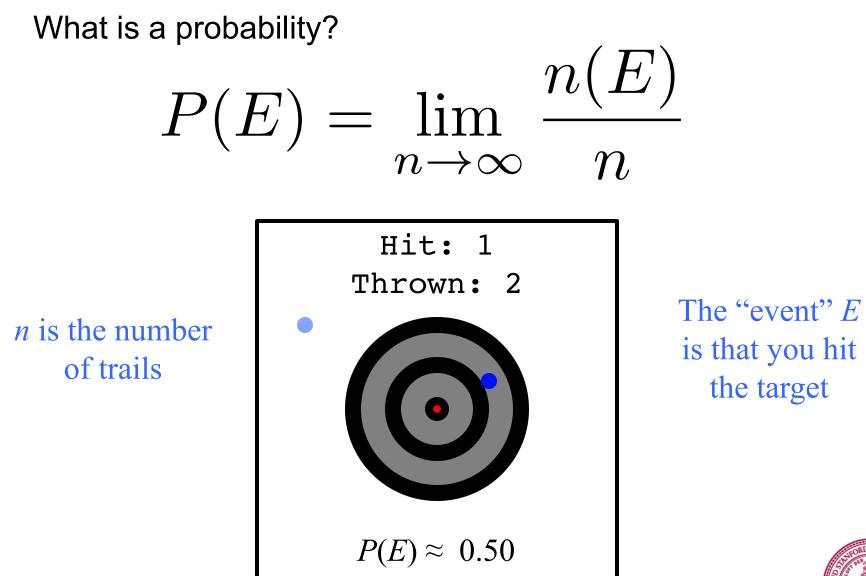
P(E)

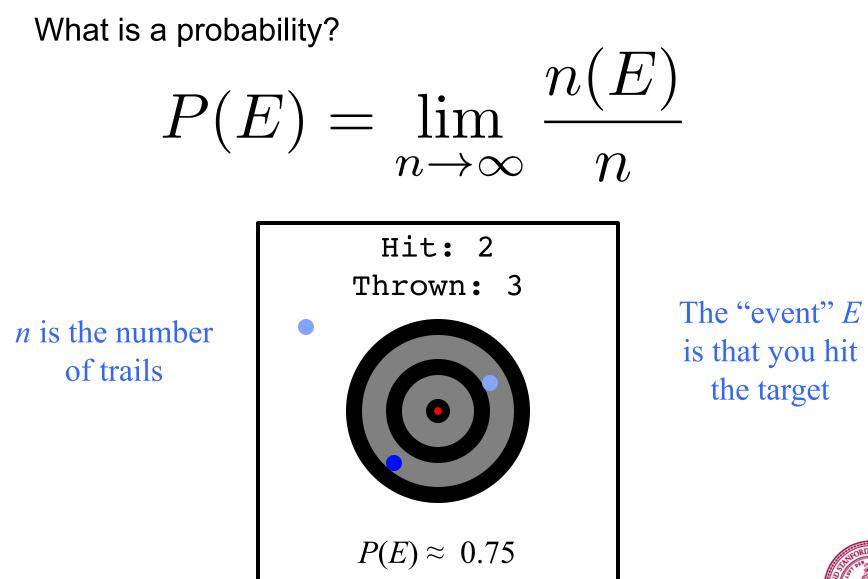
* Our belief that an event *E* occurs

$$P(E) = \lim_{n \to \infty} \frac{n(E)}{n}$$



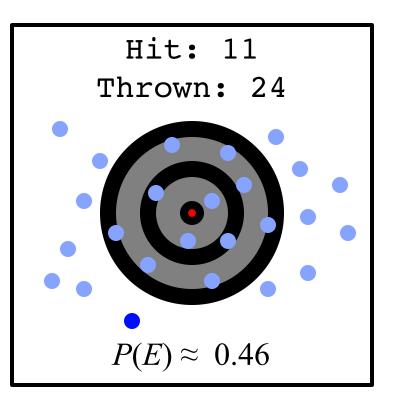






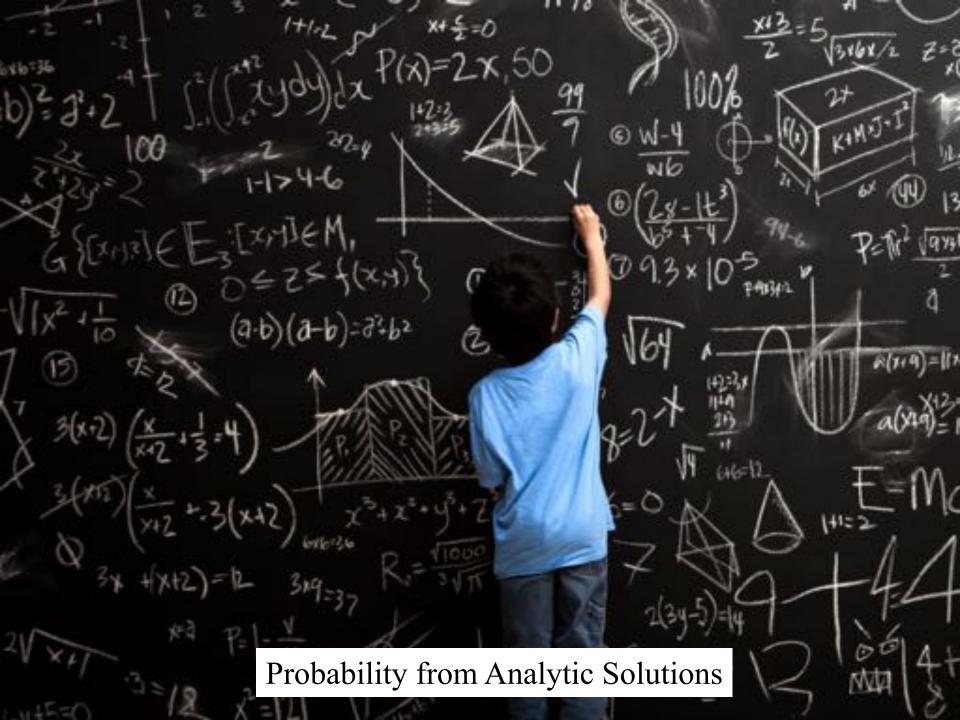
What is a probability? $P(E) = \lim_{n \to \infty} \frac{n(E)}{n}$

n is the number of trails



The "event" *E* is that you hit the target





Axioms of Probability

Recall: S = all possible outcomes. E = the event.

- Axiom 1: $0 \le P(E) \le 1$
- Axiom 2: P(S) = 1
- Axiom 3: $P(E^c) = 1 P(E)$

Aside: axiom 3 is often stated as the probability of mutually exclusive events. We'll come back to that later in the lecture...

Equally Likely Outcomes

- Some sample spaces have equally likely outcomes
 - Coin flip: S = {Head, Tails}
 - Flipping two coins: S = {(H, H), (H, T), (T, H), (T, T)}
 - Roll of 6-sided die: S = {1, 2, 3, 4, 5, 6}
- P(Each outcome) = $\frac{1}{|S|}$
- In that case, $P(E) = \frac{\text{number of outcomes in } E}{\text{number of outcomes in } S} = \frac{|E|}{|S|}$

Rolling Two Dice

- Roll two 6-sided dice.
 - What is P(sum = 7)?

•
$$S = \{(1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (1, 6), (2, 1), (2, 2), (2, 3), (2, 4), (2, 5), (2, 6), (3, 1), (3, 2), (3, 3), (3, 4), (3, 5), (3, 6), (4, 1), (4, 2), (4, 3), (4, 4), (4, 5), (4, 6), (5, 1), (5, 2), (5, 3), (5, 4), (5, 5), (5, 6), (6, 1), (6, 2), (6, 3), (6, 4), (6, 5), (6, 6)\}$$

- $E = \{(1, 6), (2, 5), (3, 4), (4, 3), (5, 2), (6, 1)\}$
- P(sum = 7) = |E|/|S| = 6/36 = 1/6

12

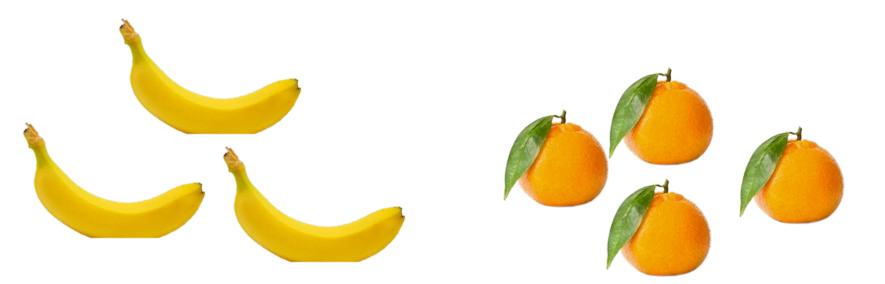
5

3

Mandarins and Bananas

- 4 Mandarins and 3 Bananas in a Bag. 3 drawn.
 - What is P(1 Mandarin and 2 Bananas drawn)?

Equally likely sample space? Thought experiment



Mandarins and Grapefruit

- 4 Mandarins and 3 Bananas in a Bag. 3 drawn.
 - What is P(1 Mandarin and 2 Bananas drawn)?
- Ordered:
 - Pick 3 ordered items: |S| = 7 * 6 * 5 = 210
 - Pick Mandarin as either 1st, 2nd, or 3rd item:
 |E| = (4 * 3 * 2) + (3 * 4 * 2) + (3 * 2 * 4) = 72
 - P(1 Mandarin, 2 Grapefruit) = 72/210 = 12/35
- Unordered:

•
$$|\mathbf{S}| = \begin{pmatrix} 7 \\ 3 \end{pmatrix} = 35$$

• $|\mathbf{E}| = \begin{pmatrix} 4 \\ 1 \end{pmatrix} \begin{pmatrix} 3 \\ 2 \end{pmatrix} = 12$

P(1 Mandarin, 2 Grapefruit) = 12/35

Almost always make indistinct items distinct to get equally likely sample space outcomes

*You will need to use this "trick" with high probability

Chip Defect Detection

- *n* chips manufactured, 1 of which is defective.
- *k* chips randomly selected from *n* for testing.
 - What is P(defective chip is in *k* selected chips)?
- $|\mathbf{S}| = \binom{n}{k}$

•
$$|\mathsf{E}| = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \begin{pmatrix} n-1 \\ k-1 \end{pmatrix}$$

• P(defective chip is in k selected chips)

$$=\frac{\binom{1}{1}\binom{n-1}{k-1}}{\binom{n}{k}}=\frac{\frac{(n-1)!}{(k-1)!(n-k)!}}{\frac{n!}{k!(n-k)!}}=\frac{k}{n}$$

Any "Straight" Poker Hand

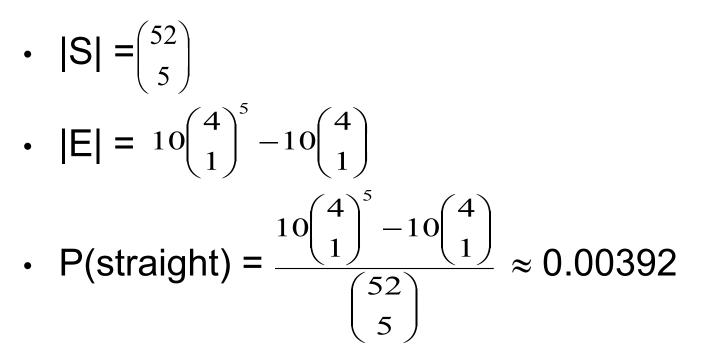
- Consider 5 card poker hands.
 - "straight" is 5 consecutive rank cards of any suit
 - What is P(straight)?
 - Note: this is a little different than the textbook

•
$$|S| = \binom{52}{5}$$

• $|E| = 10\binom{4}{1}^{5}$
• P(straight) = $\frac{10\binom{4}{1}^{5}}{\binom{52}{5}} \approx 0.00394$

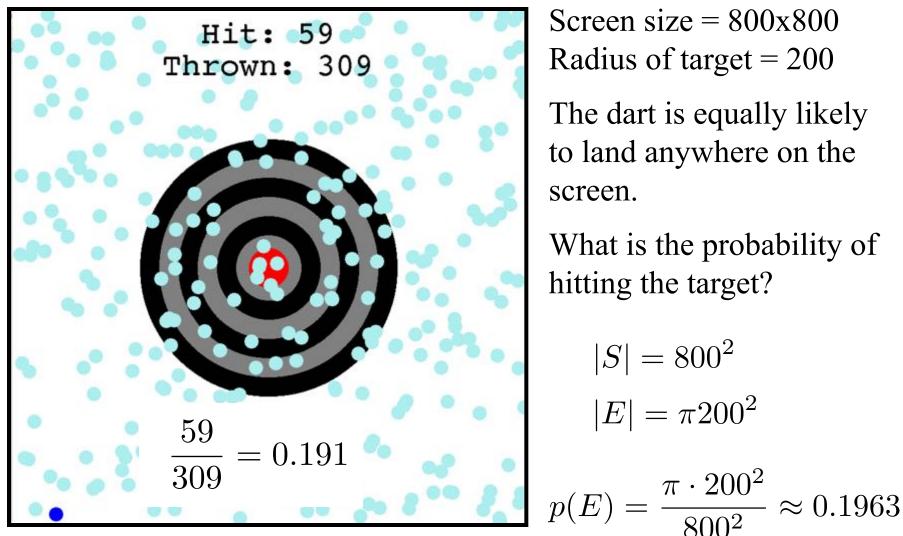
Official "Straight" Poker Hand

- Consider 5 card poker hands.
 - "straight" is 5 consecutive rank cards of any suit
 - "straight flush" is 5 consecutive rank cards of same suit
 - What is P(straight, but not straight flush)?



When approaching a problem, start by defining events.

Target Revisited



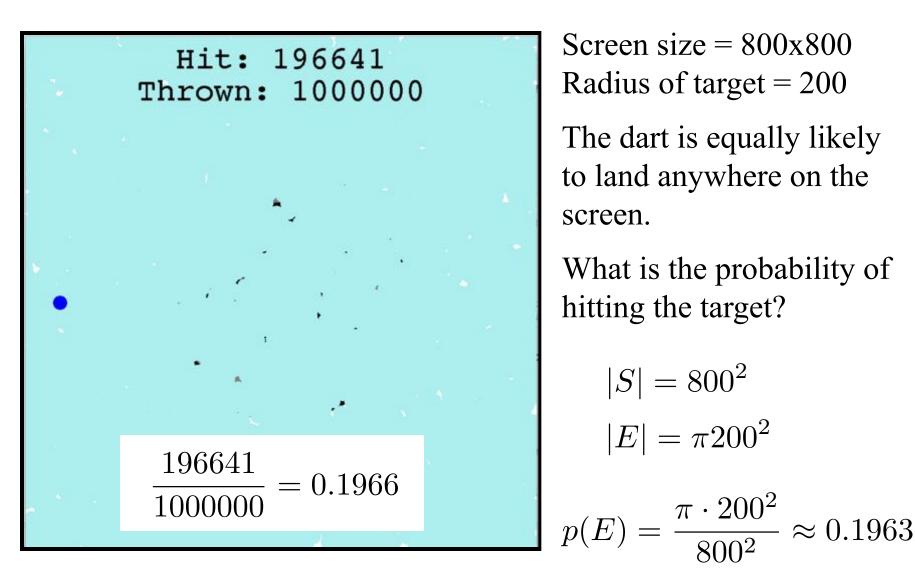
Screen size $= 800 \times 800$ Radius of target = 200

The dart is equally likely to land anywhere on the screen.

What is the probability of hitting the target?

 $|S| = 800^2$ $|E| = \pi 200^2$

Target Revisited



Screen size $= 800 \times 800$ Radius of target = 200

The dart is equally likely to land anywhere on the screen.

What is the probability of hitting the target?

 $|S| = 800^2$ $|E| = \pi 200^2$

Let it find you.

SERENDIPITY

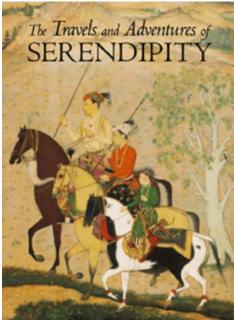
the effect by which one accidentally stumbles upon something truely wonderful, especially while looking for something entirely unrelated.

WHEN YOU MEET YOUR BEST FRIEND

Somewhere you didn't expect to.

Serendipity

- Say the population of Stanford is 17,000 people
 - You are friends with ?
 - Walk into a room, see 268 random people.
 - What is the probability that you see someone you know?
 - Assume you are equally likely to see each person at Stanford



Many times it is easier to calculate ${\cal P}({\cal E}^{\cal C})$.

Back to Axiom 3

Axioms of Probability

Recall: S = all possible outcomes. E = the event.

- Axiom 1: $0 \le P(E) \le 1$
- Axiom 2: P(S) = 1
- Axiom 3: $P(E^c) = 1 P(E)$

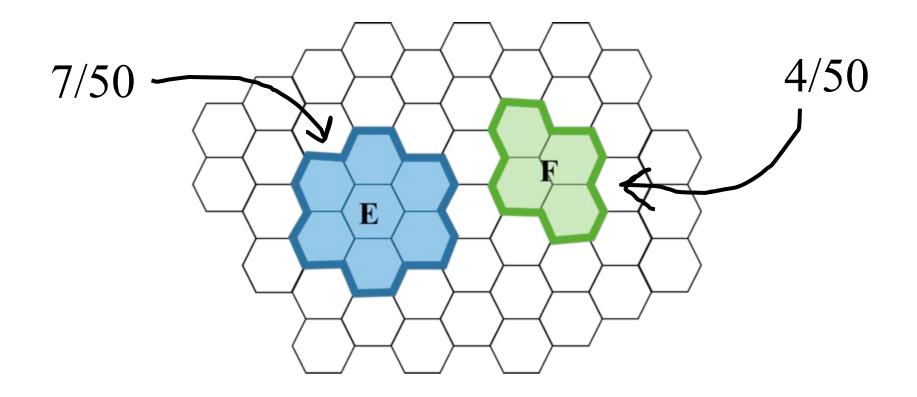
Aside: axiom 3 is often stated as the probability of mutually exclusive events. We'll come back to that later in the lecture...

Axioms of Probability

Recall: S = all possible outcomes. E = the event.

- Axiom 1: $0 \le P(E) \le 1$
- Axiom 2: P(S) = 1
- Axiom 3: If events E and F are mutually exclusive: $P(E \cup F) = P(E) + P(F)$

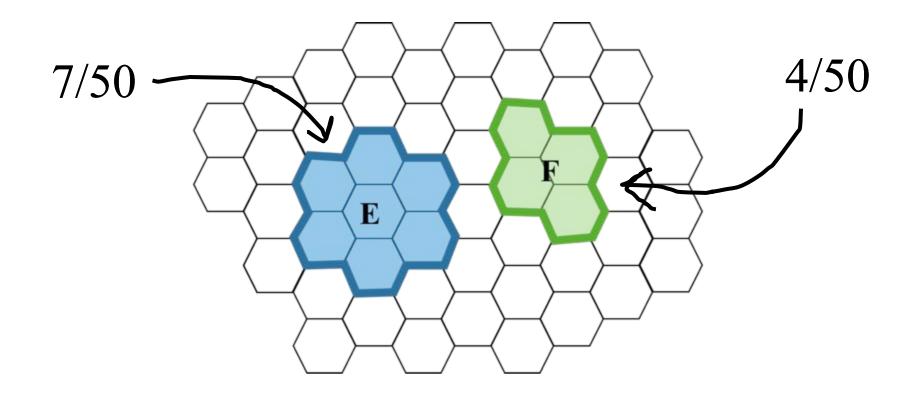
Mutually Exclusive Events



If events are mutually exclusive, probability of OR is simple:

 $P(E \cup F) = P(E) + P(F)$

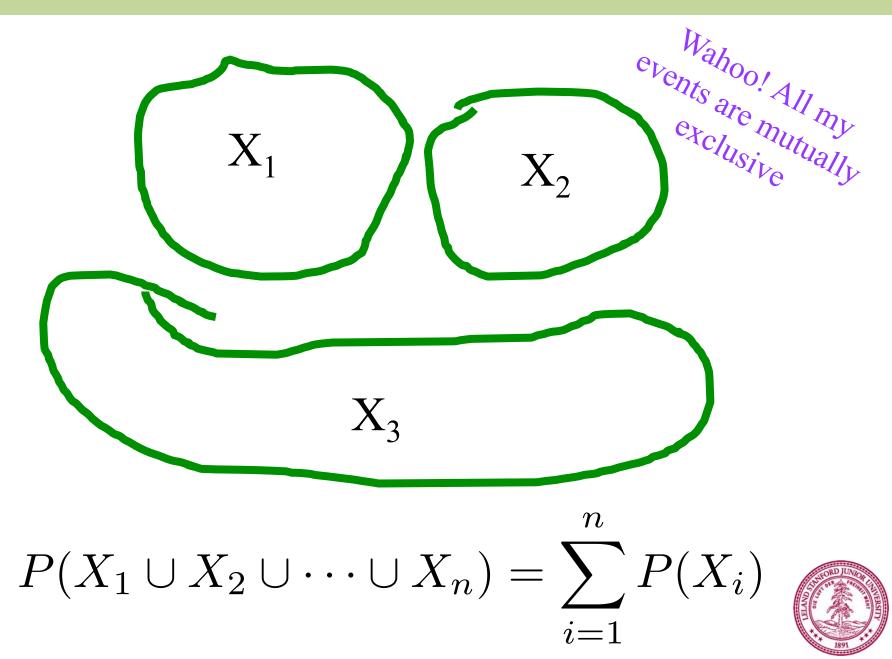
Mutually Exclusive Events



If events are mutually exclusive, probability of OR is simple:

$$P(E \cup F) = \frac{7}{50} + \frac{4}{5} = \frac{11}{50}$$

OR with Many Mutually Exclusive Events



If events are *mutually exclusive* probability of OR is easy!

$P(E^c) = 1 - P(E)?$

 $P(E \cap E^{c}) = P(E) + P(E^{c})$

 $P(\mathbf{S}) = P(E) + P(E^c)$

Since E and E^c are mutually exclusive

Since everything must either be in Eor E^c

 $1 = P(E) + P(E^c)$ Axiom 2

 $P(E^c) = 1 - P(E)$

Rearrange

Trailing the dovetail shuffle to it's lair – Persi Diaconosis

Making History

- What is the probability that in the *n* shuffles seen since the start of time, yours is unique?
 - |S| = (52!)ⁿ
 - |E| = (52! 1)ⁿ
 - P(no deck matching yours) = $(52!-1)^n/(52!)^n$
- For n = 10²⁰,
 - P(deck matching yours) < 0.00000001

* Assumes 7 billion people have been shuffling cards once a second since cards were invented

