#### Probability

ORI

189

#### **Counting Rules**





# **Counting Review**

For a DNA tree we need to calculate the DNA distance between each pair of animals. How many calculations are needed?



# **Counting Review**

Q: There are *n* animals. How many distinct pairs of animals are there?













#### End Review

### Sample Space

- **Sample space**, S, is set of all possible outcomes of an experiment
  - Coin flip:

  - Roll of 6-sided die:

  - $S = \{Head, Tails\}$ • Flipping two coins:  $S = \{(H, H), (H, T), (T, H), (T, T)\}$

- # emails in a day:  $S = \{x \mid x \in \mathbb{Z}, x \ge 0\}$  (non-neg. ints)
- YouTube hrs. in day:  $S = \{x \mid x \in \mathbb{R}, 0 \le x \le 24\}$



#### **Events**

#### • **Event**, E, is some subset of S $(E \subset S)$

- Coin flip is heads:
- $\geq$  1 head on 2 coin flips:
- Roll of die is 3 or less:
- # emails in a day  $\leq$  20:

- $E = \{Head\}$
- $E = \{(H, H), (H, T), (T, H)\}$
- $E = \{1, 2, 3\}$
- $E = \{x \mid x \in \mathbb{Z}, 0 \le x \le 20\}$
- Wasted day ( $\geq$  5 YT hrs.): E = {x | x \in \mathbf{R}, 5 \le x \le 24}

Note: When Ross uses:  $\subset$ , he really means:  $\subset$ 



#### Number between 0 and 1

#### **Ascribe Meaning**

# P(E)

\* Our belief that an event *E* occurs



$$P(E) = \lim_{n \to \infty} \frac{n(E)}{n}$$















What is a probability?  $P(E) = \lim_{n \to \infty} \frac{n(E)}{n}$ 

*n* is the number of trails



The "event" *E* is that you hit the target







#### **Axioms of Probability**

Recall: S = all possible outcomes. E = the event.

- Axiom 1:  $0 \le P(E) \le 1$
- Axiom 2: P(S) = 1
- Axiom 3:  $P(E^c) = 1 P(E)$

Aside: axiom 3 is often stated as the probability of mutually exclusive events. We'll come back to that later in the lecture...



### **Equally Likely Outcomes**

- Some sample spaces have equally likely outcomes
  - Coin flip: S = {Head, Tails}
  - Flipping two coins: S = {(H, H), (H, T), (T, H), (T, T)}
  - Roll of 6-sided die: S = {1, 2, 3, 4, 5, 6}
- P(Each outcome) =  $\frac{1}{|S|}$
- In that case,  $P(E) = \frac{\text{number of outcomes in } E}{\text{number of outcomes in } S} = \frac{|E|}{|S|}$



#### **Rolling Two Dice**

- Roll two 6-sided dice.
  - What is P(sum = 7)?

• 
$$S = \{(1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (1, 6), (2, 1), (2, 2), (2, 3), (2, 4), (2, 5), (2, 6), (3, 1), (3, 2), (3, 3), (3, 4), (3, 5), (3, 6), (4, 1), (4, 2), (4, 3), (4, 4), (4, 5), (4, 6), (5, 1), (5, 2), (5, 3), (5, 4), (5, 5), (5, 6), (6, 1), (6, 2), (6, 3), (6, 4), (6, 5), (6, 6)\}$$

- $E = \{(1, 6), (2, 5), (3, 4), (4, 3), (5, 2), (6, 1)\}$
- P(sum = 7) = |E|/|S| = 6/36 = 1/6



12

5

3

#### **Mandarins and Bananas**

- 4 Mandarins and 3 Bananas in a Bag. 3 drawn.
  - What is P(1 Mandarin and 2 Bananas drawn)?

Equally likely sample space? Thought experiment





### Mandarins and Grapefruit

- 4 Mandarins and 3 Bananas in a Bag. 3 drawn.
  - What is P(1 Mandarin and 2 Bananas drawn)?
- Ordered:
  - Pick 3 ordered items: |S| = 7 \* 6 \* 5 = 210
  - Pick Mandarin as either 1st, 2nd, or 3rd item:
     |E| = (4 \* 3 \* 2) + (3 \* 4 \* 2) + (3 \* 2 \* 4) = 72
  - P(1 Mandarin, 2 Grapefruit) = 72/210 = 12/35
- Unordered:

• 
$$|\mathbf{S}| = \begin{pmatrix} 7 \\ 3 \end{pmatrix} = 35$$
  
•  $|\mathbf{E}| = \begin{pmatrix} 4 \\ 1 \end{pmatrix} \begin{pmatrix} 3 \\ 2 \end{pmatrix} = 12$ 

P(1 Mandarin, 2 Grapefruit) = 12/35





Almost always make indistinct items distinct to get equally likely sample space outcomes



\*You will need to use this "trick" with high probability

#### **Chip Defect Detection**

- *n* chips manufactured, 1 of which is defective.
- *k* chips randomly selected from *n* for testing.
  - What is P(defective chip is in *k* selected chips)?
- $|\mathbf{S}| = \binom{n}{k}$

• 
$$|\mathsf{E}| = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \begin{pmatrix} n-1 \\ k-1 \end{pmatrix}$$

• P(defective chip is in k selected chips)

$$=\frac{\binom{1}{1}\binom{n-1}{k-1}}{\binom{n}{k}}=\frac{\frac{(n-1)!}{(k-1)!(n-k)!}}{\frac{n!}{k!(n-k)!}}=\frac{k}{n}$$



#### Any "Straight" Poker Hand

- Consider 5 card poker hands.
  - "straight" is 5 consecutive rank cards of any suit
  - What is P(straight)?
  - Note: this is a little different than the textbook

• 
$$|S| = \binom{52}{5}$$
  
•  $|E| = 10\binom{4}{1}^{5}$   
• P(straight) =  $\frac{10\binom{4}{1}^{5}}{\binom{52}{5}} \approx 0.00394$ 



#### **Official "Straight" Poker Hand**

- Consider 5 card poker hands.
  - "straight" is 5 consecutive rank cards of any suit
  - "straight flush" is 5 consecutive rank cards of same suit
  - What is P(straight, but not straight flush)?







# When approaching a problem, start by defining events.



#### **Target Revisited**



Screen size  $= 800 \times 800$ Radius of target = 200

The dart is equally likely to land anywhere on the screen.

What is the probability of hitting the target?

 $|S| = 800^2$  $|E| = \pi 200^2$ 

#### **Target Revisited**



Screen size  $= 800 \times 800$ Radius of target = 200

The dart is equally likely to land anywhere on the screen.

What is the probability of hitting the target?

 $|S| = 800^2$  $|E| = \pi 200^2$ 

#### Let it find you.

#### SERENDIPITY

the effect by which one accidentally stumbles upon something truely wonderful, especially while looking for something entirely unrelated.





#### WHEN YOU MEET YOUR BEST FRIEND

Somewhere you didn't expect to.



### Serendipity

- Say the population of Stanford is 17,000 people
  - You are friends with ?
  - Walk into a room, see 268 random people.
  - What is the probability that you see someone you know?
  - Assume you are equally likely to see each person at Stanford







# Many times it is easier to calculate ${\cal P}({\cal E}^{\cal C})$ .



# Back to Axiom 3



#### **Axioms of Probability**

Recall: S = all possible outcomes. E = the event.

- Axiom 1:  $0 \le P(E) \le 1$
- Axiom 2: P(S) = 1
- Axiom 3:  $P(E^c) = 1 P(E)$

Aside: axiom 3 is often stated as the probability of mutually exclusive events. We'll come back to that later in the lecture...



#### **Axioms of Probability**

Recall: S = all possible outcomes. E = the event.

- Axiom 1:  $0 \le P(E) \le 1$
- Axiom 2: P(S) = 1
- Axiom 3: If events E and F are mutually exclusive:  $P(E \cup F) = P(E) + P(F)$



#### **Mutually Exclusive Events**



If events are mutually exclusive, probability of OR is simple:

 $P(E \cup F) = P(E) + P(F)$ 



#### **Mutually Exclusive Events**



If events are mutually exclusive, probability of OR is simple:

$$P(E \cup F) = \frac{7}{50} + \frac{4}{5} = \frac{11}{50}$$



#### **OR with Many Mutually Exclusive Events**





If events are *mutually exclusive* probability of OR is easy!



#### $P(E^c) = 1 - P(E)?$

 $P(E \cap E^{c}) = P(E) + P(E^{c})$ 

 $P(\mathbf{S}) = P(E) + P(E^c)$ 

Since E and  $E^c$  are mutually exclusive

Since everything must either be in Eor  $E^c$ 

 $1 = P(E) + P(E^c)$  Axiom 2

 $P(E^c) = 1 - P(E)$ 

Rearrange



Trailing the dovetail shuffle to it's lair – Persi Diaconosis

# **Making History**

- What is the probability that in the *n* shuffles seen since the start of time, yours is unique?
  - |S| = (52!)<sup>n</sup>
  - |E| = (52! 1)<sup>n</sup>
  - P(no deck matching yours) =  $(52!-1)^n/(52!)^n$
- For n = 10<sup>20</sup>,
  - P(deck matching yours) < 0.00000001</li>

\* Assumes 7 billion people have been shuffling cards once a second since cards were invented

